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The Special Issue on “Computation in Complex Networks” focused on gathering
highly original papers in the field of current complex network research. Due to their ability
to model a wide variety of daily-life systems—including the Internet, communication,
chemical, neural, social, political and financial networks—complex network systems and
their behavior need to be deeply understood. As such, the focus of this Special Issue has
been highlighting and promoting current interdisciplinary contributions on the various
fields of complex networks, thus providing a collection of high-quality research papers
that capture the challenges recently posed by these networks. We selected 20 manuscripts,
which are described below.

In the paper “Active Learning for Node Classification: An Evaluation” by Madhawa
and Murata [1], the active learning framework was used as a method to make node
classification on attributed graphs by representing data instances as nodes of the graph.
The authors performed an empirical evaluation of different state-of-the-art active learning
algorithms proposed for graph neural networks, as well as other data types, such as images
and text, on several real-world attributed graphs. The results showed that active learning
algorithms designed for other data types do not perform well on graph-structured data,
highlighting the importance of complementing uncertainty-based active learning models
with an exploration term.

In the paper “Spreading Control in Two-Layer Multiplex Networks” by Jaquez et al. [2],
the problem of controlling an SIS (Susceptible-Infected-Susceptible) epidemic spreading
over a network with two layers was addressed. The stabilization of the extinction state for
the nonlinear discrete-time model was obtained by properly tuning system parameters,
such as intralayer and interlayer transmission rates, for a limited number of nodes charac-
terized by a parametric threshold condition. The sufficient conditions for the choice of the
subset of nodes and the parameters to be controlled were established through a rigorous
mathematical analysis guaranteeing the exponential stability of the extinction state globally,
with respect to the set of all possible probability states.

In the paper “Investigating the Influence of Inverse Preferential Attachment on Net-
work Development” by Siew and Vitevitch [3], the growth mechanism of phonological
language networks, in terms of the acquisition of new words that are phonologically similar
to existing ones, was explored. Specifically, the authors analyzed the network structure
and the degree distributions of networks synthetically generated through preferential
attachment, an inverse variant of the classical version where new nodes are connected to ex-
isting nodes with fewer edges, or combinations of both network growth mechanisms. The
simulation results showed that preferential attachment—followed by inverse preferential
attachment—in the network growth resulted in densely connected network structures.

In the paper “Classification of Literary Works: Fractality and Complexity of the Narra-
tive, Essay, and Research Article” by Ramirez-Arellano [4], the problem of the classification
of literary works was tackled. This research analyzed the node degree, betweenness, short-
est path length, clustering coefficient, nearest neighborhoods’ degree, fractal dimension,
complexity, area under box-covering, and area under robustness curve of the complex
networks. The literary works of Mexican writers were analyzed, with the aim of classifying
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them according to their genre. The results of this analysis classified 87% of the full word
co-occurrence networks as a fractal.

In the paper “Detecting Overlapping Communities in Modularity Optimization by
Reweighting Vertices” by Tsung et al. [5], the community detection problem was considered,
specifically focusing on overlapping community sets of nodes. By first introducing a node
weight allocation problem to formulate the overlapping property, the authors proposed
a genetic algorithm, exploiting an extension of the modularity function for solving the
node weight allocation problem and detecting the overlapping communities. Moreover,
three refinement strategies for improving the quality of results were added. On both real-
world and synthetic networks, the proposed algorithm was able to better detect nontrivial
overlapping nodes, compared to other contestant algorithms.

In the paper “Modelling and Recognition of Protein Contact Networks by Multiple
Kernel Learning and Dissimilarity Representations” by Martino et al. [6], the authors
focused on predicting the proteins’ functional role, proposing a hybrid classification system
based on a linear combination of multiple kernels defined over multiple dissimilarity spaces.
Here, the training procedure jointly optimized the kernel weights and the representatives’
selection in the dissimilarity spaces. The classification system was thus characterized by a
double knowledge discovery phase in which the analysis of the weights allowed the authors
to check which representations were better for solving the classification problem—whereas
the pivotal patterns selected as representatives give further insight into the modelled
system. Experimental results showed how the proposed classification system was able to
reliably analyze the considered protein contact networks.

In the paper “Cross-Domain Recommendation Based on Sentiment Analysis and
Latent Feature Mapping” by Wang et al. [7], a cross-domain recommendation algorithm
(CDR-SAFM) based on sentiment analysis and latent feature mapping was proposed.
This algorithm specifically combined the sentiment information extracted from different
domains of users’ ratings. The sentiment is categorized into (1) positive, (2) negative
and (3) neutral. Moreover, the latent Dirichlet allocation (LDA) was used to model the
users’ semantic orientation to generate the latent sentiment review features. Finally, by
applying multilayer perceptron (MLP), the CDR-SAFM was able to obtain the cross-domain
nonlinear mapping function to transfer the users’ sentiment review features. Tested on the
Amazon dataset, the proposed recommendation algorithm outperformed other existing
recommendation algorithms in the considered cross-domain scenario.

In the paper “Complex Contagion Features without Social Reinforcement in a Model
of Social Information Flow” by Pond et al. [8], the problem of information spreading over
social networks through a complex contagion model was considered. Focusing on the
quoter model (a model of the social flow of written information copying or “quoting” short
subsequences of text from neighbors), the authors showed how this model has features of
complex contagion, including the weakness of long ties and the high network density that
limits information flow rather than boosting it, despite lacking an explicit mechanism of
social reinforcement that distinguishes complex contagion from epidemic spread.

In the paper “Optimizing Variational Graph Autoencoder for Community Detection
with Dual Optimization” by Choong et al. [9], variational graph autoencoders for com-
munity detection were considered. The research underlined how variational autoencoder
(VAE)-based approaches suffer from a deviation increase from the primary objective when
minimizing loss using the stochastic gradient descent, resulting in suboptimal community
structure. To smooth this effect, a dual optimization procedure was proposed to guide the
optimization process toward better communities. The results of the experiments showed
that the proposed community detection algorithm outperformed its predecessor.

In the paper “Properties of the Vascular Networks in Malignant Tumors” by Chimal-
Eguìa et al. [10], both synthetic and real angiogenic vascular networks of patients with
Hepato-Cellular Carcinoma (HCC), extracted from digital tomographies, were analyzed.
From the measurements of network properties, such as average path length, clustering
coefficient, degree of distribution and fractal dimension, the authors showed that there
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is a well-connected network (high clustering coefficient), different from previous related
works. The network exhibited efficient communication. This was also reflected by the
small average path length.

In the paper “Complex Network Construction of Univariate Chaotic Time Series
Based on Maximum Mean Discrepancy” by Sun [11], the focus was on the analysis of
chaotic time series; more specifically, on how measuring the similarity between time series
affected construction of the corresponding network. Here, a method that first transforms
univariate time series into high-dimensional phase space, then exploits a Gaussian mixture
model (GMM) to represent time series, and finally introduces maximum mean discrepancy
(MMD) to measure the similarity between GMMs was proposed. The introduced MMD
was validated using the Lorenz system, showing that the similarity between GMMs can be
measured more effectively.

In the paper “Analyzing Uncertainty in Complex Socio-Ecological Networks” by
Maldonado et al. [12], the aim was to assess the impact of using the Bayesian network
structure for modeling complex socio-ecological networks, whose behavior is often uncer-
tain. The conducted analysis was two-fold. The first experiment assessed the impact of the
Bayesian network structure on the entropy of the model. The second compared the entropy
of the posterior distribution of the class variable obtained from the different structures.
For the experiments, three types of Bayesian networks are analyzed: naive Bayes (NB),
tree augmented networks (TAN) and networks with unrestricted structure (GSS). The
results showed that GSS consistently outperformed both NB and TAN when evaluating
the uncertainty of the entire model, while NB and TAN resulted in lower entropy values of
the posterior distribution of the class variable, making them suitable for prediction tasks.

In the paper “Multi-Type Node Detection in Network Communities” by Ezeh et al. [13],
a new community detection method—able to uncover disjoint clusters of nodes, clusters
with overlapping nodes, and single isolated nodes forming a partition with a unique node—
was proposed. Differing from previous state-of-the-art methods, the authors proposed an
approach which iteratively computes the bridging centrality value of the nodes to find
those with the highest bridging centrality value. Once a bridge node has been identified,
the algorithm computes the node similarity between the bridge and its neighbors, and the
neighbors with the least node similarity values are disconnected. This step is iterated until
a stopping criterion condition is satisfied. Simulations on both real-world and synthetic
networks demonstrated that the proposed method was able to efficiently classify multi-type
nodes in network communities.

In the paper “Predicting the Evolution of Physics Research from a Complex Network
Perspective” by Liu et al. [14], the problem of quantitative knowledge evolution in physics
research was addressed through complex networks, built on bibliographic coupling and
co-citation data extracted from the American Physical Society repository from 1981 to 2010.
For each year, the topical clusters (TCs) were uncovered through the Louvain method
and compared to subsequent years to assess their similarity. Once this information was
gathered, a machine learning model was applied to predict the evolution of the clusters in
terms of permanence, disappearance, merging or splitting. This research showed that the
number of papers from certain journals, degree, closeness, and betweenness mostly drove
the predictor.

In the paper “Uncovering the Dependence of Cascading Failures on Network Topology
by Constructing Null Models” by Ding et al. [15], the problem of cascading failures in
complex network infrastructures was taken on. The authors analyzed the impact that
underlying network topology has on cascading failures in realistic Internet Autonomous
System network scenarios by constructing different types of null models. By analyzing
the shortest paths in different topological configurations, the results revealed the effects
that microscale (e.g., degree distribution, assortativity, and transitivity) and mesoscale (e.g.,
rich-club and community structure) network properties have on cascade robustness when
intentional node attacks are performed.
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In the paper “Service-Oriented Model Encapsulation and Selection Method for Com-
plex System Simulation Based on Cloud Architecture” by Xiong et al. [16], a service-oriented
model encapsulation and selection method to construct complex system simulation ap-
plications was proposed. The method encapsulates models with large computational
requirements in shared simulation services in the cloud architecture. It also allows the
distributed scheduling of model services and a semantic search framework, useful for the
users in searching the required models. An optimization selection algorithm based on qual-
ity of service (QoS) was proposed to support users in obtaining an ordered candidate model
set satisfying a certain QoS. The performed experiment proved that the proposed method
was able to effectively improve the execution efficiency of complex system simulation
applications.

In the paper “Minimum Memory-Based Sign Adjustment in Signed Social Networks”
by Qi et al. [17], the authors focused on signed social networks—and in particular, on
the impact of limited memory on the convergence of the network. The research analyzed
random and minimum memory-based sign adjustment rules. Under these rules, the
impacts of an initial ratio of positive links, rewiring probability, network size, neighbor
number and randomness upon structural balance are compared. The experimental results
showed that the minimum memory-based sign adjustment can globally balance the network
if the rewiring probability in the Newman–Watts small world model exceeds a critical
value. When the rewiring probability is large, the resulting network is denser, and as a
consequence, it is easier for the influence of each sign adjustment to spread to the whole
network.

In the paper “A SOM-Based Membrane Optimization Algorithm for Community
Detection” by Liu et al. [18], an evolutionary membrane community detection algorithm
based on self-organizing maps (SOMs) was proposed. Initially, the community detection
problem was formulated as a discrete optimization problem. Then, three features typical of
the membrane algorithm—objects, reaction rules, and membrane structure—were designed
to analyze the characteristics of the community structure. Here, an object was defined as a
partition. Genetic algorithms and differential evolution were employed as two reaction
rules, to let the objects evolve in different regions of the membrane. Finally, to choose
the number of membranes by learning, and to mine the structure of the current objects in
the decision space, the SOM was employed. To validate the algorithm, simulations were
carried out on both synthetic and real-world networks. The experimental results showed
that the proposed algorithm is highly accurate, stable and efficient in the execution when
compared to other contestant algorithms.

In the paper “Image Entropy for the Identification of Chimera States of Spatiotemporal
Divergence in Complex Coupled Maps of Matrices” by Smidtaite et al. [19], the complex
networks of coupled maps of matrices (NCMM) are investigated. The authors proved
that an NCMM can achieve two different steady states: quiet or divergence. The analysis
of the regions around the boundary lines separating these two steady states showed the
existence of chimera states of spatiotemporal divergence. This work demonstrated that for
identifying such regions, digital image entropy can be exploited as an effective measure in
different networks, including regular, feed-forward, random, and small-world NCMM.

In the paper “Evolution Model of Spatial Interaction Network in Online Social Net-
working Services” by Dong et al. [20], the research focused on modelling the evolution of
spatial interactions between users of online social networks diffusing geospatial informa-
tion at a city level. Through such interactions, a city interaction network was built. The
proposed evolution model of the city interaction network takes into account two dynamics:
the edge arrival time and the preferential attachment of the edge. More specifically, six
preferential attachment models (Random-Random, Random-Degree, Degree-Random, Geo-
graphical distance, Degree-Degree, Degree-Degree-Geographical distance) were considered
and compared. The authors found that the degree of the node and the geographic distance
of the edge highly influenced the evolution of the spatial interaction network. Moreover,
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the experiments—comparing the optimal model with the real city interaction network,
extracted from the information dissemination of WeChat users—revealed a good matching.

We hope that the selected papers described above will be of interest for the community
of physicists, computer scientists and others working in the challenging field of complex
networks.
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journal Entropy and MDPI for their support during this work.
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