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Abstract: Detection of the temporal reversibility of a given process is an interesting time series
analysis scheme that enables the useful characterisation of processes and offers an insight into the
underlying processes generating the time series. Reversibility detection measures have been widely
employed in the study of ecological, epidemiological and physiological time series. Further, the time
reversal of given data provides a promising tool for analysis of causality measures as well as studying
the causal properties of processes. In this work, the recently proposed Compression-Complexity
Causality (CCC) measure (by the authors) is shown to be free of the assumption that the "cause
precedes the effect", making it a promising tool for causal analysis of reversible processes. CCC is a
data-driven interventional measure of causality (second rung on the Ladder of Causation) that is based
on Effort-to-Compress (ETC), a well-established robust method to characterize the complexity of time
series for analysis and classification. For the detection of the temporal reversibility of processes, we
propose a novel measure called the Compressive Potential based Asymmetry Measure. This asymmetry
measure compares the probability of the occurrence of patterns at different scales between the
forward-time and time-reversed process using ETC. We test the performance of the measure on a
number of simulated processes and demonstrate its effectiveness in determining the asymmetry of
real-world time series of sunspot numbers, digits of the transcedental number π and heart interbeat
interval variability.

Keywords: time-reversibility; time-irreversibility; temporal asymmetry; compression-complexity;
effort-to-compress; compressive potential; interventional causality; heart period variability asymme-
try; sunspot numbers

1. Introduction

When simulated data or data recorded from real world processes are present with
us, it is possible for us to create an imaginary process exhibiting the reverse dynamics
of the original process. Researchers, primarily in the field of time series analysis, have
widely deployed this technique to determine the time-reversibility/irreversibility of a given
process. Statistical time reversibility or time symmetry implies that statistical properties
of given time series remain invariant regardless of the direction of time. Statistical time
irreversibility implies otherwise. Time irreversibility is a common feature of non equi-
librium systems [1–3] as well as systems driven by non-conservative forces [4]. This has
been widely observed in time series obtained from ecological, epidemiological and physio-
logical systems. Some examples include time series recordings of measles outbreak [5,6],
annual phytoplankton bloom [6], and electroencephalographic recordings of normal [7]
and epileptic subjects [8–10] as well as beat-to-beat time interval recordings from the heart
of normal and abnormal subjects [11–14].

Many methods for the detection of statistical time reversibility have been discussed in
the literature. These include methods that make use of moment-based tests [15–17], those
analyzing distance between the distributions of forward and reversed time series [8,18,19],
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and methods based on visibility graphs [20–22]. Along with inference on reversibility, some
of these methods are useful in the characterization of the nature of processes, particularly to
distinguish non-linearity from Gaussian noise and to provide insights into the underlying
mechanisms for observed non-linear data [6,18,23–26].

In physical macroscopic systems, the arrow of time manifests as a consequence of
the second law of thermodynamics, where, for an isolated system, the thermodynamic
entropy of the system can only increase. This is the reason why the manifestation of events
follows a particular order and not its reverse. For example, the process of a glass falling
and smashing on the floor cannot be reversed. The methods discussed in the previous
paragraph characterize the irreversibility of time series only in a statistical sense. Thus,
without any rigorous mathematical formulation, the relation between time irreversibility
and thermodynamic entropy production remained a qualitative statement for several
years. In a series of papers, J.M.R. Parrondo and his group introduced Kullback Leibler
divergence (KLD), as measured between the probability distributions of the forward process
and its time-reversed version, as being related to the thermodynamic entropy produced
by the process. More specifically, KLD, multiplied by the Boltzmann constant, is shown
to be a lower bound to the entropy production along the process [27–30]. Their result
is a generalization of Landauer’s principle relating entropy production to any logically
irreversible manipulation of information [31].

Time-reversed processes are an important aspect of the study of causality (i.e., the
determining of cause–effect relationships between given data). Causal analysis and de-
tection of these signals can prove to be of immense use in the causal characterization of
these signals, as well as helping to offer insight into the assumptions and properties of the
employed causality measures. For example, the pioneering mathematical formulation for
time series causality testing, Granger Causality (GC) [32], works based on the assumption
that the "cause precedes the effect". Paluš et al. [33] have analyzed this assumption for GC
and other causality methods, such as Conditional Mutual Information [34,35], Predictability
Improvement [36] and Convergent Cross Mapping [37], by evaluating the performance
of these methods on time-reversed coupled processes. While the above assumption is
explicit in the formulation of GC, this is not the case for other methods. The analysis helps
shed some light on the properties and hidden assumptions of these methods. It is also
interesting to note the behavior of these methods for time-symmetrical (reversible) as well
as asymmetric (irreversible) processes.

Recently, complexity measures have begun to be widely used for time series analysis
and classification. These measures serve as great tools to offer insights into and understand
time series arising from different complex systems, further helping in their prediction and
control. Several measures of complexity exist, which use different approaches for com-
plexity estimation [38]. Compression-complexity measures define the complexity of a time
series by using (optimal and sometimes universal) lossless data compression algorithms.
These measures are practical methods that have the advantage of efficiently characterizing
the complexity of short and noisy time series over traditional complexity measures (such as
Shannon Entropy [34]) [39]. Some examples of compression-complexity measures include
Lempel-Ziv Complexity [40] and Effort-to-Compress (ETC) Complexity [41]. Both of these
measures have been employed in a wide variety of applications, such as the analysis of
neural spike trains, financial time series and cardiovascular dynamics [42,43], shaping the
behaviour of feedback musical instruments [44], and for causal inference directly from
pairs of genome sequences belonging to the SARS-CoV-2 virus, which could be used in epi-
demiological surveillance, contact-tracing, motif discovery and evolution of virulence and
pathogenicity [45]. Time-series-based causality estimation techniques have also been pro-
posed, using compression-complexity approaches such as Compression-Complexity Causality
(CCC) [46,47] and ORIGO [48].

In this work, we employ selected compression-complexity approaches to analyze
time-reversed processes. The motivation for this work is twofold: to test the usefulness
of compression-complexity measures for applications on time reversed processes and
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secondly to study the properties of these compression-complexity approaches by observing
their behavior in such applications. The work included in this manuscript can mainly
be divided into two categories: 1. Causal analysis of time-reversed simulated processes
using the CCC measure. Performance of CCC is compared with that of other widely used
methods, Transfer Entropy (TE) and GC. This gives insights on the measure CCC and
useful information on the applicability of the measure. 2. A novel method for detection of
time irreversible processes is proposed. This method is based on the measure ETC which
has several useful properties (as will be discussed in Section 2.1 below). We conjecture
some relations of the proposed method to thermodynamic entropy production along a
process which could be useful in the determination of the physical arrow of time. The
method is first tested on simulations and then its applicability is demonstrated for real-
world processes by taking three datasets: time-series of sunspot numbers, digits of the
transcendental number π and heart interbeat interval recordings from young and elderly
healthy human subjects.

2. Methods

In this section, we describe the compression-complexity measures used in this work:
ETC and CCC. Finally, we propose a measure for the detection of time-reversibility of time
series data which is based on ETC.

2.1. Effort-to-Compress

Effort-To-Compress or ETC, measures the effort needed to compress the input se-
quence by a lossless compression algorithm called the Non-Sequential Recursive Pair
Substitution (NSRPS) algorithm [49]. The time series is first converted into a symbolic
sequence. For the sake of simplicity, uniformly sized bins are taken. The NSRPS algorithm
works by finding that pair of consecutive symbols in the input sequence which occurs the
maximum number of times and replacing it with a new symbol in the first iteration. In next
iteration, the second most frequently occurring pair is replaced with a new symbol. This
procedure of replacing the most frequently occurring pair is repeated at each iteration until
the length of the sequence reduces to one or the sequence turns into a constant sequence of
reduced length (this will definitely happen as the length of the sequence decreases at each
iteration). The ETC complexity measure is defined as “the number of iterations needed to
reduce the input sequence into a constant sequence”. As an example, consider the input
sequence 011101001. In the first iteration, ETC transforms 011101001→ 211202 (since ‘01’
is the most frequently occurring pair, it is replaced by the new symbol ‘2’). In the next
iteration, ETC transforms 211202→ 31202 (all pairs occur equally frequently, so the first
pair is replaced). Subsequently, 31202→ 4202→ 502→ 62→ 7. Thus, it took six iterations
to transform 011101001 to a constant sequence (7). The value of the ETC measure, in this
instance, is n = 6. The normalized value of the measure is given by n

N−1 , where N is the
length of the input sequence (in this case, it is 0.75). 0 ≤ n

N−1 ≤ 1 always. A higher value
of normalized ETC implies higher complexity and a lower value implies lower complexity
of time-series.

It has been shown that both Lempel Ziv and ETC complexity measures beat Shannon
entropy in the accurate characterization of the dynamical complexity of both deterministic
chaotic systems and stochastic (Markov) systems in the presence of noise [38,39]. Moreover,
ETC is shown to have the additional advantage of reliably capturing the complexity of
very short time series over the Lempel Ziv complexity measure [39].

While ETC has been utilized for the purpose of measuring the complexity of time-
series using the NSRPS compression algorithm, we would like to note that there are other
methods that have used NSRPS/algorithms similar to NSRPS for data compression. For
example, an offline grammar-based data compression algorithm, very similar to the NSRPS
scheme, called "Re-Pair", has been developed and used independently. Re-Pair has been
shown to achieve high lossless compression ratios and to offer good performance for
decompression, but has the drawback of high memory consumption [50].
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2.2. Compression-Complexity Causality

CCC is a measure to estimate causality between time-series, which employs the
compression-complexity measure, ETC, for its computation. It is based on an Interventional
Complexity Causality (ICC) scheme which does not assume separability of cause and effect
samples in time-series. This is unlike existing measures of time-series causality estimation,
which are associational (a means of inferring causation, which is lower than intervention
on the Ladder of Causation [51]) and computed based on directional correlations of cause–
effect samples.

To estimate causality from a time series Z to a time series Y, ICC measures how the
dynamics of Z influence the dynamics of Y. For this, intervention is done on the system
to create new hypothetical blocks of time series data, Zpast + ∆Y, where Zpast is a window
of length L samples, taken from the immediate past of the window ∆Y. Here, "+" refers
to appending, for, e.g., time series C = [3, 4, 5] and D = [a, b], C + D = [3, 4, 5, a, b]. ICC
is defined as “the change in the dynamical complexity of time series Y when ∆Y is seen
to be generated jointly by the dynamical evolution of both Zpast and Ypast as opposed to
by the reality of the dynamical evolution of Ypast alone”. To estimate CCC from a time
series Z to Y, we compute dynamical complexities (in ICC formulation) using the measure
ETC. CC(∆Y|Ypast)—the dynamical complexity of the current window of data, ∆Y, from
a time series Y conditioned with its own past, Ypast—is computed and compared with
CC(∆Y|Ypast, Zpast), the dynamical complexity of ∆Y conditioned jointly with the past of
both Y and Z, (Ypast, Zpast). Mathematically,

CC(∆Y|Ypast) = ETC(Ypast + ∆Y)− ETC(Ypast), (1)

CC(∆Y|Ypast, Zpast) = ETC(Ypast + ∆Y, Zpast + ∆Y)− ETC(Ypast, Zpast), (2)

CCCZpast→∆Y = CC(∆Y|Ypast)− CC(∆Y|Ypast, Zpast). (3)

Averaged CCC from Z to Y over the entire length of time series, with the window ∆Y
being slided by a step-size of δ, is estimated as

CCCZ→Y = CCCZpast→∆Y = CC(∆Y|Ypast)− CC(∆Y|Ypast, Zpast), (4)

where CCCZpast→∆Y denotes average CCC and CC(·) denotes average CC computed from
all the windows taken in the time-series.

CCC does not make assumptions such as determinism, stochasticity, stationarity,
linearity, gaussianity or markovian property, and can therefore be applied widely and
reliably to real-world time series data. It has also been shown to overcome the limitations
of existing measures (GC, TE) in cases of signals with poor temporal resolution, long-term
memory, noise, non-uniform sampling, filtering and short-length signals [46].

2.3. A Novel Temporal Asymmetry Measure

We first discuss the theoretical underpinnings of ETC which help us to develop a
novel measure, compressive potential, which is the basis for temporal asymmetry measure
proposed in this work.

2.3.1. Theoretical Underpinnings of ETC

Though the ETC measure, as well as the underlying NSRPS algorithm (or the similar
Re-pair algorithm), have been widely used, to the best of our knowledge, this theoretical
understanding of the ETC measure has not been presented in any earlier work.

Let Y be a given sequence of symbols of length N, Y = a1a2a3a4 . . . aN , where
a1, a2, a3, a4, . . . aN ∈ {b1, b2, b3 . . . bm}. Thus, a1, a2, a3, a4, . . . aN can be taken as one of
m possible symbols.

We define the following for Y:

Y1: the given sequence Y as it is;
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Y2: transformed Y, once the most frequently occurring pair in Y has been substituted
with another symbol, i.e., the sequence after the first iteration of the ETC algorithm;
Yi: transformed sequence after i− 1 iterations of the ETC algorithm, where, at each
iteration, the most frequently occurring pair in that sequence is being substituted by a
new symbol;
Yn+1: transformed sequence Y after n iterations, where no more iterations after this are
possible, and hence n is the ETC value;
X1: most frequently occurring pair in Y1. In other words, it is the first most dominant
shortest pattern (of length 2);
X2: most frequently occurring pair in Y2. In other words, it is the second most dominant
shortest pattern (of length 2 in Y2, but may be of length 2 or 3 in the original sequence,
Y);
Xi: most frequently occurring pair in Yi;
Xn: most frequently occurring pair in Yn. It is the nth most dominant shortest pattern.

Let W be the event of joint occurrence of paired patterns (X1, X2, X3, . . . Xn) occurring at
different levels of transformations of Y. The probability of joint occurrence of these events
is given as

p(W) =p(X1, X2, X3, . . . Xn),

=p(Xn|X1, X2, . . . Xn−1) · p(X1, X2, . . . Xn−1),

=p(Xn|X1, X2, . . . Xn−1) · p(Xn−1|X1, X2, . . . Xn−2) · p(X1, X2, . . . Xn−2),
...

=p(Xn|X1, X2, . . . Xn−1) · p(Xn−1|X1, X2, . . . Xn−2) . . . p(X2|X1)p(X1).

(5)

Total self-information or Shannon information (an info-theoretic quantity that helps to
quantify the amount of "surprise" revealed by a variable [52]), G(W) contained in the joint
occurrence of patterns (X1, X2, X3, . . . Xn) can, therefore, be written as

G(W) = − log(p(W)),

= − log(p(X1))− log(p(X2|X1))− log(p(X3|X1, X2)) . . .− log(p(Xn|X1, X2, . . . Xn−1)).
(6)

We approximate the conditional probability, say p(Xi|X1, X2, . . . Xi−1) in the above
formulation by observing the frequency of pattern, Xi, in the sequence Yi, in which all
prior replacements X1, X2, . . . Xi−1 have been done. Thus, if q1, q2, . . . qn are the frequency
of occurrence of patterns X1, X2, . . . Xn in Y1, Y2, . . . Yn, respectively, then Equation (6) can
be written as

G(W) = − log
( q1

N

)
− log

(
q2

N − q1

)
− log

(
q3

N − q1 − q2

)
. . .− log

(
qn

N − q1 − q2 . . .− qn−1

)
,

= − log
( q1

N

)( q2

N − q1

)(
q3

N − q1 − q2

)
. . .
(

qn

N − q1 − q2 . . .− qn−1

)
.

(7)

As seen above, ETC algorithm reduces the length of sequence at each iteration by
transforming the original sequence Y. Thus, the compression achieved by the ETC algorithm
at any step of the algorithm can be seen as the fractional reduction in the length of the
sequence achieved at that step. Let us suppose the equivalent (or average) compression
(or fractional reduction in length) being done by ETC at each iteration is denoted by x.
Then, if the ETC algorithm takes n steps to stop

xn =
( q1

N

)( q2

N − q1

)(
q3

N − q1 − q2

)
. . .
(

qn

N − q1 − q2 . . .− qn−1

)
, (8)
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Taking a natural logarithm on both sides

n · log(x) = log
(( q1

N

)( q2

N − q1

)(
q3

N − q1 − q2

)
. . .
(

qn

N − q1 − q2 . . .− qn−1

))
,

n =
log
(( q1

N
)( q2

N−q1

)(
q3

N−q1−q2

)
. . .
(

qn
N−q1−q2 ...−qn−1

))
log(x)

.

(9)

Using Equation (7) in Equation (9)

n = − 1
log(x)

· G(W),

n = k · G(W),
(10)

where k = −1/ log(x). Thus, ETC can be seen as a constant multiplied by the total self-
information contained in the joint occurrence of most dominant (shortest) patterns at all
levels (scales) of the sequence.

From Equation (9), it can be seen that ETC for a sequence is a function of the fractional
reduction in length at all steps and of the equivalent or average compression per step.
The quantity ( q1

N )( q2
N−q1

)( q3
N−q1−q2

) . . . ( qn
N−q1−q2 ...−qn−1

), which is the product of fractional
reductions in length, is the total compression achieved by the ETC algorithm. Let us denote
this by Cn, as it is the compression achieved in n steps. By looking at this equation, ETC
can be thought of as a dimension-like quantity, computing the effective dimension at which
the patterns in a sequence appear. To clarify this, let us consider the expression for the
box-counting dimension [53] for a set s

dimbox(S) = lim
ε→0

log(Nd(ε))

log(1/ε)
, (11)

where Nd(ε) is the number of boxes of length ε required to cover the set s. Nd(ε) =
k1 · (ε)−dim, means that Nd(ε) scales as (1/ε)dim.

ETC can be thought of as a dimension with a limit on the length N of the sequence
approaching ∞. Let n∞ be the total number of ETC steps required for N → ∞, and let x∞
denote the limit (based on the working of ETC, it is fair to assume that a limit exists) of per
step compression, x, as N → ∞.

n∞ = lim
N→∞

log(Cn∞)

log(x∞)
. (12)

Cn∞ = k2 · xn∞
∞ , means that the total compression achieved by ETC for the infinite

length sequence scales as xn∞
∞ .

2.3.2. Compressive Potential

Although ETC is useful to compare the dimension at which patterns manifest, in
certain scenarios, for a given pair of sequences, we may be interested in comparing the
total compression Ck in some k steps, when the given sequences are transformed using
the ETC (or NSRPS) algorithm. Here, we may compare the quantity log(Ck), which is the
potential to transform/compress a given sequence in the first k iterations of the algorithm.
We name this quantity the compressive potential, PC. As Ck < 1, PC is always < 0. Intuitively,
for a fixed k, PC attains lower values for less compressible sequences (some examples are
discussed in Section 3.2.1). Since Ck is a function of the sequence, we denote it as Ck(X) for
the sequence X. Similarly PC is a function of X and also of k.

PC(X, k) = log(Ck(X)), where

Ck(X) =
( q1

N

)( q2

N − q1

)(
q3

N − q1 − q2

)
. . .
(

qk
N − q1 − q2 . . .− qk−1

)
.

(13)
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From Equation (9), PC(X, k) = k · log(xk(X)), where xk is the equivalent per-step
compression considering only the first k iterations of the ETC algorithm. Moreover,
from Equation (7), we can obtain the relationship between total self-information con-
tained in the patterns jointly occurring in the given sequence X up to the kth level and
PC(X, k). Let Wk denote the the joint occurrence of paired patterns occurring at differ-
ent levels of transformation of X, and G(Wk) be the total self-information contained in
their occurrence. Since, G(Wk(X)) = − log(( q1

N )( q2
N−q1

)( q3
N−q1−q2

) . . . ( qk
N−q1−q2 ...−qk−1

)) or
G(Wk(X)) = − log(Ck(X)), gives us

PC(X, k) = −G(Wk(X)); (14)

PC is a useful quantity to be computed for given sequences when only the patterns at
higher levels (scales) are to be compared or the probabilities of shorter patterns are more
relevant to our analysis. By fixing the steps of sequence transformation to k and computing
the logarithm to the natural base, the potential measured is not influenced by equivalent per-
step compression, which is different for each sequence. Hence, the compressive potential
of the ETC algorithm for given sequences allows for a direct comparison of the frequency
of occurrence of particular sections (levels) of the joint patterns in the selected steps of
the algorithm.

2.3.3. Compressive-Potential-Based Temporal Asymmetry Measure

The measure for temporal asymmetry, APC , of a time series X is formulated using
compressive potential, PC, as follows

APC (X, τ, k) = PC(X, Xτ , k)− PC(X′, X′τ , k). (15)

In the above equation, for binned symbolic sequence X of given time series of length
N, the quantities used in the computation of APC are as given below

Xτ(t) =X(t + τ), 1 ≤ t ≤ N − τ,

X′(t) =X(N − t + 1), 1 ≤ t ≤ N − τ,

X′τ(t) =X′(t + τ), 1 ≤ t ≤ N − τ.

(16)

Xτ is the time-shifted (by τ points) to the future analog of X, X′ is the time-reversed
version of the original sequence and X′τ is the time-shifted (by τ points) to the future analog
of X′. For example, for a given time series 1, 2, 3, . . . , 12 and τ = 2, we take

X =1, 2, . . . , 10,

Xτ =3, 4, . . . , 12,

X′ =12, 11, . . . , 3,

X′τ =10, 9, . . . 1.

(17)

PC(X, Xτ , k) is the joint compressive potential of the sequences X, Xτ based on the
total compression obtained by the ETC algorithm when it is allowed to run up to k iter-
ates. PC(X′, X′τ , k) denotes the same for sequences X′, X′τ . For the computation of joint
PC, ETC algorithm is run after encoding information contained in the given sequences
into a single symbolic sequence. This is illustrated using an example. Suppose that the
symbolic sequences (

A
B

)
of length 4 timepoints take values (

0 0 1 1
1 0 1 0

)
,
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after each time series block (A and B) is binned using two bins. The encoding of the new
sequence is done by assigning a particular value to each column. As each row in the first
column can take two values, a total of four possible combinations exist that the two rows
can take together in a column. Information contained in the two rows is encoded to a single
row by assigning combinations of different values in the two rows, with an encoding from
‘0’ to ‘3’. The encoding for the above sequences will be as follows(

1 0 3 2
)
.

The value of the measure APc can be either positive or negative, as either forward
or reversed processes can have greater compressive potential. What matters in our case
is the magnitude of the difference; a larger difference implies that the statistics of the
forward-time and time-reversed processes are more different, and so the the process can be
classified as being time-irreversible. In order to test the significance of the obtained APc

value for a particular kind of process, we perform surrogate analysis, as is discussed in the
next section.

As discussed in the introduction, KLD between the joint probability distributions
of forward-time and time-reversed process is a measure of the time-irreversibility of a
given process. This is not just a statistical means of testing time-irreversibility but also has
an established connection to thermodynamic entropy production along the process. APC ,
computed based on joint compressive potential, also indirectly compares joint probability
distributions (by taking a sequence X and its future Xτ) of the given process and with its
reversed version, (X′ and X′τ). From Equation (14), we have seen that the term PC(X, k) =
−G(Wk(X)), that is, the compressive potential based on the first k iterations, is equal to the
negative of total self-information contained in the joint occurrence of most dominant paired
patterns occurring up to the first k levels of the transformation of the sequence. Thus, the
comparison that APC makes is not just between simple joint probability distributions (of a
time sequence and its future) but joint distributions occurring jointly at all levels (scales) of
the sequence (and its future). The choice of k limits the point at which the scales are taken.
Most often, the higher set of scales (which are the shorter patterns in the original sequence,
found at a lesser number of iterations of the ETC algorithm) may be most useful for our
analysis. Lower sets of scales (which are longer patterns in the original sequence, found at a
greater number of iterations of the ETC algorithm), may contribute to non-requisite details
and be less reliable. This is because their frequency of occurrence cannot be measured very
accurately, with the possibility of their occurrence becoming limited to only a few times
owing to the finite length of the sequence. For this reason, the limit k imposed on number
of iterations is useful and helps offer reliable results.

For the above reason of the fundamental similarity of APC to KLD, as well as the
additional beneficial features discussed, the proposed measure of temporal asymmetry is
extremely promising. Though not established to date, it is expected to have relations to
thermodynamic entropy production along the process.

3. Results

In this section, we report the results of the two performed analyses: causality testing of
coupled time-reversed processes and testing of the proposed temporal asymmetry measure
on simulations as well as real-world time series.

3.1. Causality between Coupled, Time-Reversed Processes

Causality between coupled, time-reversed processes using the measure CCC was eval-
uated for both stochastic as well deterministic processes. Along with CCC, we also demon-
strate the behavior of the two most widely used causality measures, TE and GC. For this,
coupled autoregressive processes and deterministic chaotic tent maps were simulated.
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Autoregressive processes of order one (AR(1)) were simulated as in [46] (Equation (15)).
Let Y and Z be the dependent and independent processes, respectively,

Y(t) = aY(t− 1) + εZ(t− 1) + εY,t

Z(t) = bZ(t− 1) + εZ,t,
(18)

where a = 0.9, b = 0.8, t = 1 to 1000 s, sampling period = 1s. ε is varied from 0–0.9 in
steps of 0.1. εY, εZ = νη are the noise terms, where ν = noise intensity = 0.03 and η follows
standard normal distribution. The performance of CCC along with that of TE and GC for
the original time-series is shown in Figure 3 of [46] as mean values over 50 trials.

Linearly coupled tent maps were simulated as per the following equations. Indepen-
dent process, Z, is generated as

Z(t) = 2Z(t− 1), 0 ≤ Z(t− 1) < 1/2,

Z(t) = 2− 2Z(t− 1), 1/2 ≤ Z(t− 1) ≤ 1.
(19)

The linearly coupled dependent process, Y, is as below

Y(t) = εZ(t) + (1− ε)g(t),

g(t) = 2Y(t− 1), 0 ≤ Y(t− 1) < 1/2,

g(t) = 2− 2Y(t− 1), 1/2 ≤ Y(t− 1) ≤ 1,

(20)

where ε is the degree of linear coupling.
Figure 6 in [46] shows the performance of CCC and TE for the original time series

from linearly coupled tent maps, as ε is varied.
Causality estimation from time-reversed AR and chaotic tent map processes was done

as follows. Fifty trials, each of length 1000 timepoints, were taken after the elimination of
100 and 2000 transients for the above simulated AR and tent map processes, respectively.
A higher number of transients for tent maps were removed because chaotic maps can have
longer transient times. Let Z′ denote the time-reversed independent process Z, and Y′ the
time-reversed dependent process Y (in case of both AR and tent systems). The equations
for Z′ and Y′ are as given below

Z′(t) = Z(1000− t + 1), where 1 ≤ t ≤ 1000,

Y′(t) = Y(1000− t + 1), where 1 ≤ t ≤ 1000.
(21)

For time-reversed AR processes, estimated causality using CCC, TE and GC is as shown in
Figure 1. For time-reversed tent map processes, estimated causality using CCC and TE is as
shown in Figure 2. GC values were not estimated for tent map processes as the assumption
of a linear model, for this set of processes can give spurious estimates (GC works on the
assumption that the given time series come from linear autoregressive processes). Results
are displayed as mean values over 50 trials. GC and TE estimation was done as in [46] for
the original processes. In brief, for GC, MVGC toolbox [54] was used in its default settings
and TE was estimated using the MuTE toolbox [55]. Akaike Information Criteria was
used for model-order estimation with the maximum model order set to 20 in the MVGC
toolbox. In the MuTE toolbox, the approach of non-uniform embedding for representation
of the history of the observed processes, and the nearest-neighbor estimator for estimating
the probability density functions, was used. The number of lags under consideration for
observed processes was set to 5 and the maximum number of nearest neighbors to consider
was set to 10. The parameters used in the computation of CCC also remain the same as
used for the original processes in [46]. CCC settings used for AR processes were L = 150,
w = 15, δ = 80, B = 2. CCC settings used for tent map processes were L = 100, w = 15,
δ = 80, B = 8.
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Figure 1. Mean causality values estimated using (a) CCC, (b) TE and (c) GC for coupled time-reversed AR(1) processes, from Z′ to
Y′ (solid-line circles, black) and Y′ to Z′ (solid-line crosses, magenta) as the degree of coupling, ε is varied. CCC is invariant to time
reversal, while for TE and GC, the dominant direction of causality is seen to be reversed.
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Figure 2. Mean causality values estimated using (a) CCC and (b) TE for linearly coupled time-
reversed tent map processes, from Z′ to Y′ (solid line-circles, black) and Y′ to Z′ (solid line-crosses,
magenta) as the degree of coupling, ε is varied. CCC is invariant to time reversal and, in the case of
TE, the dominant direction of causality identified is same as for the original processes.

3.2. Detection of Temporal Reversibility

Before testing the performance of the proposed temporal asymmetry measure on
simulations and applying it to real-world datasets, we demonstrate the behavior of the
Compressive Potential, PC, on some example cases. This is done in order to provide
an intuitive understanding of what PC captures and how a useful temporal asymmetry
measure can be built on this basis.

3.2.1. Example Cases to Demonstrate the Performance of Compressive Potential

The behavior of PC is demonstrated for a few cases. Four symbolic sequences X1,
X2, X3 and X4 are simulated as shown in Table 1. X1 and X2 are periodic time series,
while X3 is partly periodic, partly random, and X4 is a fully random time series. Each of
the series were simulated up to a length of 10,000. The ETC value (or the number of
steps) required to compress the sequences using the ETC algorithm is also displayed in the
table. For the computation of PC and ETC value, the time series were binned using eight
uniform-sized bins.
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Table 1. Time series simulated to study properties of PC.

Time Series Composed of ETC

X1 Repeating periodic sequence: [1 2 3 4] 3

X2 Repeating periodic sequence: [1 2 3 . . . 1000] 95

X3
Repeating partly periodic partly random sequence: [1 2 3 . . . 20]

followed by 100 random numbers uniformly chosen from between 1 and 20 100

X4 Uniformly randomly distributed real numbers in the range (0,1) 4110

Figure 3 shows the behavior of PC for each of the sequences as k is varied. We see that,
in the case of X1 (Figure 3a), for which the repeating patterns are of the shortest length and
the sequence is fully periodic, the ETC value obtained is 3, suggesting that the patterns
reappear at the third dimension. PC value is the highest and fastest to saturate in this case,
attaining a value of −3.18 as k becomes equal to 3.
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Figure 3. Variation in Compressive potential, PC, with k for time series (a) X1 (periodic with short
patterns), (b) X2 (periodic with long patterns), (c) X3 (partly periodic, partly random) and (d) X4

(completely random), simulated as per Table 1.

X2 and X3 have similar ETC values, 95 and 100, respectively, even though X2 is com-
pletely periodic with period length 1000, while X3 has a more frequently occurring, shorter
periodicity of period 20, interspersed with random sequences (of length 100 timepoints).
For X2, PC saturates at a value of −280.65, while for X3, PC saturates at a value of −317.19.
If we set k = 40, then at this k, for X2, PC = −108.30, while for X3, PC = −155.17. For the
two time series, the rate at which PC falls is also slightly different at different values of k.
Thus, for X2 and X3, even though the ETC values are not very different, PC values, being
significantly different for k = 40, indicate that there is more structure in the completely
periodic X2 at the level of shorter patterns when compared to X3. Since X4 is completely
random, ETC value is high, equal to 4110, and the PC values are much lower compared
to other time series. For instance, PC(X4, k = 200) = −1186.3 and goes on decreasing
further until it is fully compressed by the ETC algorithm at k = 4110. In a completely
random sequence, neither shorter patterns nor longer patterns exist, making the time series
highly incompressible.
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3.2.2. Performance of Compressive-Potential-Based Temporal Asymmetry Measure
on Simulations

The following processes were simulated for the detection of temporal irreversibilty
using the proposed measure APC .

Time-reversible processes that were simulated include:

1. Linear Gaussian Process (LGP), that is, Gaussian noise with distribution N (0, 1);
2. Autoregressive process of second order, AR(2)

X(t) = 0.7X(t− 1) + 0.2X(t− 2) + 0.03εt, (22)

where t is the time index and εt is Gaussian white noise, N (0, 1);
3. Static nonlinear transformation of a first order Gaussian process, STAR(1)

X(t) = tanh2(Y(t)), where

Y(t) = 0.6Y(t− 1) + 0.03εt,
(23)

where εt is Gaussian white noise, N (0, 1).

Time-irreversible processes that were simulated include:

1. Self-Exciting Threshold AR (SETAR(2;2,2)) process with two regimes, each one with
second-order delays

X(t) =

{
0.62 + 1.25X(t− 1)− 0.43X(t− 2) + 0.0381εt if X(t− 2) ≤ 3.25
2.25 + 1.52X(t− 1)− 1.24X(t− 2) + 0.0626εt otherwise,

(24)

where εt is Gaussian white noise, N (0, 1);
2. Chaotic tent-map process

X(t) =

{
2X(t− 1), 0 ≤ X(t− 1) < 1/2,
2− 2X(t− 1), 1/2 ≤ X(t− 1) ≤ 1.

(25)

A length of 10,000 timepoints were taken for each of the above processes for the
estimation of APC . This was after discarding 1000 transients for all the processes. For the
case of tent map alone, 2000 transients were discarded. For the computation of APC value,
the given time series were symbolized using eight bins. The parameters for the measure
were set as τ = 500, k = 500.

In order to test for the statistical significance of the obtained APC for each process taken,
surrogate analysis was done. For this, an ensemble of surrogate data {XS}, consisting of
50 realizations, was constructed from the original time series using the Iterative Amplitude
Adjusted Fourier Transform (IAAFT) [56]. This method preserves the power spectrum
density and amplitude distribution of the original data. Randomization of the Fourier
phases results in the constructed surrogate ensemble with the null hypothesis of Gaussian
linear stochastic process. Since Gaussian processes are time-reversible [23,24,57,58], our
null hypothesis, H0, is that the considered process is time-reversible. To assess the statistical
significance of the APC of original time series, z-test is used to to quantify its statistical
deviation from APC values obtained in the constructed ensemble of surrogate data. H0
is rejected in favour of the alternate hypothesis of irreversibility, with obtained p-values
being less than or equal to the significance level, α = 0.05.

Figure 4 displays the distribution of APC values of surrogate data as well as a dotted
line showing where the APC value of the original time series lies for each of the simlated
processes. APC distribution of surrogates for all the processes was found to satisfy normality
based on the Anderson–Darling test. For LGP, the null hypothesis is not rejected with
p-value = 0.50 (Figure 4a); for AR(2) process, the null hypothesis is not rejected with
p-value = 0.47 (Figure 4b); for STAR(1), the null hypothesis is not rejected with p-value
= 0.13 (Figure 4c). All these processes are time-reversible processes as per the existing
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literature [18,19,59]. The obtained APC values for these processes are not found to be
significant, qualifying them as reversible based on our proposed measure. For SETAR
process, the null hypothesis is not rejected with p-value = 0.35 (Figure 4d); and for tent-map
process, the null hypothesis is rejected with p-value = 4.6× 10−8 (Figure 4e). Both these
processes are statistically irreversible processes [19,60–62]. While the tent map process is
classified correctly using APC , the method fails for the simulated SETAR process.
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Figure 4. Compressive-potential-based temporal asymmetry test result on simulated data from processes: (a) LGP, (b) AR(2),
(c) STAR(1), (d) SETAR(2;2,2) (e) Tent map. Dashed line indicates APc value obtained for original series. Its position is
indicated with respect to Gaussian=curve-fitted normalized histogram of surrogate APC values that form the null hypothesis
of reversible processes. Null hypothesis is not rejected in case of (a)–(d) and rejected in case of (e).

3.2.3. Performance of Compressive-Potential-Based Temporal Asymmetry Measure on
Real Data

We tested the performance of the asymmetry measure on three real-world datasets.
These include: 1. time series of sunspot numbers; 2. digits of π after the decimal; 3. heart
period variability time series obtained from young and old healthy human subjects.

1. Sunspot numbers
Time series analysis of sunspot numbers is an active area of research. Sunspots are
regions of reduced surface temperature on the Sun’s surface that appear as spots
darker than the surrounding areas. They are caused by concentrations of magnetic
field flux that inhibit convection. These numbers are important in the study of the
solar system as well as the activities of the sun. Monthly and annual data of sunspot
activity are typically known to be nonlinear, non-Gaussian and non-stationary with
characteristics of chaotic sequences [63–65], and, hence, these are treated as irreversible.
The sunspot numbers used in this study were obtained from the SILSO website
(www.sidc.be/silso/datafiles; accessed on 24 February 2021) as monthly mean mea-
surements (Sunspot data from the World Data Center SILSO, Royal Observatory of
Belgium, Brussels). This dataset consists of monthly data recorded starting from
January, 1749. It currently comprises data from 3265 months of observation, recorded
up to January, 2021. The entire dataset, comprising these 3265 datapoints, was used
in our analysis. A subset of this dataset, starting from the beginning of the year 1920
to the end of year 2020, is depicted in Figure 5.
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Figure 5. Variation in Sunspot numbers with time. Monthly mean total sunspot numbers
are plotted from the beginning of the year 1920 to the end of the year 2020. Data source:
www.sidc.be/silso/datafiles; accessed on 24 February 2021.

2. Digits of the transcendental number π
The decimal expansion of number π is known to be non-repeating (transcendental
irrational number). Furthermore, it is widely believed that π is a normal number
(though proof has remained elusive till date). A number is said to be normal (in base
b) if, for every positive integer N, all possible strings of length N have a frequency
of occurrence b−N . Equivalently, we can say that a normal number does not prefer
a set of patterns in its expansion over others, and, thus, every possible pattern occurs
equally often. A recent work by Peter Trueb [66] analyzed the first 22.4 trillion decimal
digits of π and found that frequencies of sequences of lengths one, two and three are
consistent with the hypothesis of π being a normal number in base-10 and base-16.
We claim that this would mean that normal numbers are essentially reversible, since
the reversed order of the digits would not change the frequency of occurrence in any
way (else it would fail to be normal). We consider the decimal expansion (b = 10) of
π up to a 1000 digits and check its reversibility using our proposed measure.
For the computation of APC value for 1. and 2., the time-series taken were symbolized
using four bins. The number of bins taken here were fewer compared to that taken
for simulated data in order to allow for more patterns to repeat (and, hence, an
appropriate computation of ETC to take place) in a shorter length of available data.
The parameters for the measure were set as τ = 500, k = 100. In order to assess
the statistical significance of the obtained APC for each process taken, surrogate data
testing was done by generating a surrogate ensemble of 50 realizations in the same
manner as for simulated data (discussed in Section 3.2.2). Figure 6 displays the
distribution of APC values of surrogate data, as well as a dotted line showing where
the APC value of the original time series lies for real datasets 1 and 2. APC distribution
of surrogates for both the processes was found to satisfy normality based on the
Anderson–Darling test. For Sunspot numbers, the null hypothesis (of reversibility)
was rejected with p-value = 0.04 (Figure 6a). On the other hand, for digits of π, the
null hypothesis was not rejected with p-value = 0.13 (Figure 6b). Hence, the sunspot
numbers time-series was correctly determined as being irreversible and digits of π
were correctly determined as being time-reversible based on the performance of APC .

3. Heart period variability
The last set of data taken was of heart interbeat intervals from young and elderly
healthy human subjects. This dataset was obtained from “Physionet: Fantasia
database” [67] and was originally acquired for the study in [68]. In the study, twenty
young (21–34 years old) and twenty elderly (68–85 years old) subjects underwent
120 min of continuous supine resting while watching the movie Fantasia (Disney,
1940) in order to help maintain wakefulness. During this time, continuous ECG data
were recorded and digitized by sampling at 250 Hz. The heartbeats were annotated
using an automated arrhythmia detection algorithm and the beat annotations were
later verified by visual inspection. The occurrence of each "R" peak was noted, and the
time series consisting of the time difference between successive peaks was generated.
This process was repeated for each of the participants.
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The interbeat interval variations in the heart are characterized by an asymmetric
behavior under time reversal. This is because the heart decelerates faster than it
accelerates, thus resulting in heart period variability asymmetry (HPVA) [69,70].
In previous studies, the HPVA has been assessed by the use of different measures
applied to the difference between two successive heart period values. These studies
include [11,13,14,71]. Furthermore, it has been shown that the HPVA is influenced by
pathological conditions such as heart failure [14,72] and mental disorders [73,74], as
well as aging [11,75]. In particular, HPVA is found to reduce with aging [11,75].
In the analysis here, we estimated the values of APC for each of the young and
old subjects by using time series obtained by subtracting successive values of heart
periods (or RR intervals) taken from the Physionet Fantasia database. The first 2500
observations of heart period were taken from each subject. The number of bins used
to obtain the symbolic sequence were set to four, and the parameters for estimation
of APC were set to τ = 450, k = 500. Since the APC can attain both positive and
negative values, and a higher magnitude of the measure implies higher asymmetry,
the absolute values of APC obtained from young and old subjects were compared.
The mean and standard deviation of absolute APC for young subjects were found to
be 27.96 and 32.99, respectively, and the mean and standard deviation of absolute
APC for elderly subjects were found to be 11.59 and 15.82, respectively. Further, the
Mann–Whitney U (single tailed) test was done to check if the magnitude of APC
values estimated from young subjects were significantly greater than the magnitude
of APC values estimated from elderly subjects. The null hypothesis, H0, was that the
median of the magnitude of APC values obtained from the young population was
less than or equal to the median of the magnitude of APC values obtained from the
old population. p < 0.05 was considered statistically significant. It was found that
H0 was rejected in favour of the alternate hypothesis, with the p value being equal
to 0.0168. This suggested that the HPV of younger subjects was more irreversible
or asymmetric as compared to that of older subjects. This result is in line with the
findings of existing studies.
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Figure 6. Compressive-potential-based temporal asymmetry test result on time series of (a) Sunspot
numbers, and (b) Digits of π. Dashed line indicates APc value obtained for original series. Its position
is indicated with respect to Gaussian-curve-fitted normalized histogram of surrogate APC values that
form the null hypothesis of reversible processes. The null hypothesis is rejected in the case of (a) and
not rejected in the case of (b).

4. Discussion and Conclusions

As discussed in the introduction, a causal analysis of coupled time-reversed processes
helps to provide insight into the causality measures used, as well as reveal interesting
properties of the coupled processes. In [33], Paluš et al. have applied Conditional Mutual
Information (CMI) [34,35], (an information-theoretic approach to GC, which is equivalent
to TE for a particular case [76]), on coupled time-reversed autoregressive processes X and
Y generated with unidirectional coupling X → Y. With both the processes reversed in
time, the measured dominant causal direction reverses and was found to be from Y → X.
This result shows that, with the violation of the Granger Causality principle “cause precedes
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the effect”, results for CMI are altered, with the effect now seeming to be the cause. This is
because GC-based methods evaluate the ability of the driver process to predict or forecast
the driven process. With the driver and the driven now interchanged, the information
about the driver first occurs in the driven process.

A unidirectionally coupled set of Rössler systems was also evaluated in [33] using a
time-reversed time series of the coupled variable. Causality was estimated using measures
Convergent Cross Mapping (CCM) [37] (which is based on the topology of dynamical
systems), Predictability Improvement (PI) [36] (which is a generalization of the GC principle
for nonlinear dynamical systems) and CMI. It was found, using the three measures, that the
discovered causal direction remained the same as for the original processes. It is suggested
that this result was expected for the measure CCM, as it determines the ability of the driven
system to provide information regarding the present state of the driver. Therefore, the
sequence of cause and effect do not make a difference for CCM. Other measures (CMI and
PI) were not expected to perform symmetrically, and hence a speculated rationale for this
result is the presence of dynamical memory in chaotic systems.

CCM and PI cannot be applied to AR processes, as their working is based on the man-
ifold (or geometry) of dynamical systems. At the same time, GC is a failure when applied
to dynamical systems, as it makes the assumption of linear AR processes underlying the
system. CCC is, however, a method that works for both stochastic as well as deterministic,
linear and non-linear processes (this has been demonstrated in [46]). Analysis of time-
reversed coupled processes in this work was thus done in order to analyse the properties
of the promising measure CCC.

In consensus with the results reported in [33] for CMI, it is observed from results
in Section 3.1, that, for TE and GC, the dominant causal direction for the time-reversed
AR processes is reversed (compared to the original case), with the estimated values from
Z′ → Y′ being less than that for Y′ → Z′. Interestingly, for the measure CCC, the trend
of causality values remains unaltered when compared to the original case. To the best of
our knowledge, CCC is the only measure which performs in this way for stochastic linear
AR processes. Though based on Wiener’s principle, it works by measuring the change in
the dynamical compression-complexity of the driven process when information from the
driving process is brought to the former and is not based on prediction (in a sequential
sense) of the future of the caused based on the past of the causal (as can be seen from its
formulation given in Section 2.2 and discussed in detail in [46]).

For time-reversed tent map processes, for both TE and CCC, the dominant direction
of causality is as identified for the original case. TE displays some spurious results at
ε = 0.4, 0.5, but the trend in the magnitude of CCC values clearly increases for increasing
coupling until the processes are synchronized. The values obtained for CCC are negative,
which is in line with the CCC values for original coupled time series (please see [46]). The
unchanging nature of both CCC and TE on the reversal of these chaotic processes may be
the result of memory in dynamical systems, as has been suggested in [33].

By taking the simulated experiments results discussed above into account, it is found
that the CCC measure works symmetrically for time-forward and time-reversed processes.
This behavior is observed for both stochastic AR as well as deterministic chaotic processes,
unlike other measures, such as TE (or CMI), where symmetric behavior is noticed only for
chaotic processes with dynamical memory. These results indicate that the violation of the
GC assumption that the "cause should precede the effect" does not affect the CCC measure.
Thus, CCC can be applied to a broader range of processes such as microscopic processes,
which are reversible, and the arrow of time is not restricted to a single direction. This also
allows for the possibility of CCC being applied on quantum processes or subjective psycho-
logical processes. While quantum mechanics allows for certain processes and information
to travel backwards in time, subjective experiences such as dreams and intuitions seem to
dismiss the sequential order of a linear arrow of time. The possibility of these applications
are, as of now, very speculative and would require appropriate translation of the data for
implementation of CCC.
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A reason as to why CCC works symmetrically is because the measure of ETC that it
employs works on finding the most frequently occurring pairs in the given sequence in
several iterations, transforming the original sequence at each iteration. Whether we run the
ETC algorithm on forward-time or reverse-time windows of data (for CCC computation)
does not typically make much of a difference, as the chosen pairs for substitution remain
more or less the same. In measuring the causality from Z → Y, what is important is the
choice of the length of past windows Zpast, Ypast and the future window ∆Y, to which
there is a potential effect of the latter two (see Section 2.2 for details). As long as these
windows are selected appropriately using the parameter selection criteria for CCC (see
Supplementary Material of [46] for parameter selection criteria and its details), computation
of ETC and, hence, dynamical compression-complexity, which are based on the occurrence
of patterns held together in these windows and not on whether the patterns occur on
parsing from right to left or left to right in a sequence, determine the requisite causal
influence. What this means is that once an intervention has been made at the correct spot
to put appropriate blocks of cause and effect dynamics from a given time series together,
whether the complexity of blocks is measured in forward-time or in reverse-time does
not matter.

In the second part of this work, we proposed a compressive-potential-based temporal
asymmetry measure for time series data, which is based on the ETC algorithm. It helps to
compare the forward- and reverse-time joint probability distributions occurring jointly at
different scales (levels) of the given time series. The established relation of the proposed
compressive potential measure to the total self-information contained in the joint occurrence
of most dominant paired patterns brings the asymmetry measure closer to KLD measure
of temporal asymmetry. KLD is not just a statistical asymmetry measure, but is also shown
to be related to thermodynamic entropy production along a process, relating the obtained
value of asymmetry to the physical arrow of time for the process. KLD already has some
estimators based on compression algorithms, such as the Ziv-Merhav estimator [30,77]. The
proposed measure is promising because of the advantages of ETC, such as its better perfor-
mance on short and noisy time series when compared to other complexity estimators [39,41].
Additionally, some of the discussed theoretical properties of ETC, by which it can account for
distributions at many scales of the time series, can help to provide reversibility/irreversibility
information that may be hidden at different scales. The choice of the parameter k in PC
can help to fix the number of most dominant scales to take at which the most dominant
probabilities are considered. The measure can also be generalized to consider some set of
intermediate steps of the ETC algorithm instead of the first k steps, in order to compute
compressive potential based on probabilities only at these intermediate specific scales.

While the proposed measure is similar to the KLD measure of temporal asymmetry, it
evidently has properties different from data-driven predictability-based asymmetry estima-
tion schemes such as the one discussed in [14]. The latter scheme exploits local nonlinear
prediction properties of the time series in the time-forward and time-reverse directions. If
there is a mismatch in the level of forward prediction and backward prediction of samples
in the time series based on the formulated method, then the time-series is considered to
be irreversible. The idea behind APC , on the other hand, is that of mismatch in joint com-
pressibility (or effort to compress) of a time-series window and a window from its future, in
the forward-time and time-reverse directions. Other data-driven markers of irreversibility,
such as the one discussed and applied in [75,78–80], have looked at the gain/slope of the
relationship between two variables. More specifically, in the above studies, to assess a
physiological variable that is termed “Baroreflex Asymmetry” [81–83], the measure looks
at the relationship between heart period (HP) and systolic arterial pressure (SAP) observa-
tions. The mean slope (or ramp) of contemporaneous HP and SAP increases was compared
with that of the mean slope of contemporaneous HP and SAP, which decreases. APC , in
its current stage, can be applied only to assess the asymmetry of time series from a single
variable. This is the way most existing methods of asymmetry work. In the future, we



Entropy 2021, 23, 327 18 of 21

would like to work towards extending the functionality of the measure to capture the
asymmetry resulting from the relationship between two or more variables.

Though the use of ETC ensures that CCC works symmetrically for time-forward and
time-reversed time series, still, with appropriate modification of ETC, we can obtain the
temporal asymmetry measure, APC . This measure uses PC. Though derived from the
ETC algorithm, PC ensures that minute differences in jointly occurring paired patterns
are captured. PC(X, k) = log(Ck(X)), thereby taking into account the actual compression
taking place at each step of the ETC algorithm. In fact, the number of steps of the ETC
algorithm are held constant, and the amount by which the given sequence is compressible
in these steps is computed. This provides a fair ground for comparison of sequences as
differences in their equivalent per-step compression, that is, the quantity x in Equation (9),
may eventually result in their similar ETC values (this is the case for sequences X2 and
X3, discussed as examples in Section 3.2.1). ETC is not concerned about the “scales” at
which the compression of the sequence takes place; it is only concerned about the "effective
dimension" at whicch the compression is taking place. Restraining the number of steps
to take, through k (which is actually deciding which scales to consider), helps to enhance
the difference or asymmetry, thus resulting in a measure adequate for capturing time-
reversibility for given data. To explain this in simpler terms, the route to compressibility
using ETC or NSRPS may be different for different sequences, even though the final ETC
value is the same. Thus, for a time-series to be truly reversible, these routes also should be
the same. The PC measure helps to account for this route to compressibility.

Out of the processes simulated for the testing of APC , correct reversibility/irreversibility
is detected for all the cases except for SETAR, which was incorrectly classified as being
reversible. Time-irreversibility was also correctly identified for real-world time series of
sunspot numbers and reversibility, correctly identified for digits of the transcendental
number π. Furthermore, in line with the existing literature, the HPV of younger human
subjects was found to possess greater asymmetry when compared with that of older sub-
jects. In future work, different values of parameters k and τ will be taken to check for
improved results using APC . Other processes, such as continuous-time chaotic processes
(Lorenz, Rössler, etc.), will be tested for reversibility. A generalized version of the mea-
sure using intermediate range of ETC steps for the computation of PC will also be tested
on simulations for irreversibility detection at different scales. Further, the measure will
also be tested on other real-world datasets such as ecological and epidemiological time
series. The difference between Pc values as a means to compare distributions (not just
forward-time and reverse-time distributions of a single time series) is also left for future
work. It would also be interesting to explore the relationship between Pc and different
types of fractal dimensions.

Author Contributions: Conceptualization, A.K. and N.N.; Methodology, A.K. and N.N.; Software,
A.K.; Validation, A.K.; Formal Analysis, A.K. and N.N.; Investigation, A.K. and N.N.; Resources, A.K.
and N.N.; Data Curation, A.K. and N.N.; Writing—Original Draft Preparation, A.K.; Writing—Review
and Editing, A.K. and N.N.; Visualization, A.K. and N.N.; Supervision, N.N.; Project Administration,
N.N.; Funding Acquisition, N.N. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the Czech Science Foundation, Project No. GA19-16066S and
by the Czech Academy of Sciences, Praemium Academiae awarded to M. Paluš. The authors also
acknowledge the financial support of Cognitive Science Research Initiative, Department of Science
and Technology, India (CSRI-DST) Grant No. DST/CSRI/2017/54(G) and Tata Trusts.

Acknowledgments: The authors are thankful to M. Paluš (from The Czech Academy of Sciences,
Institute of Computer Science) for reviewing the manuscript and giving useful comments.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the
design, execution, interpretation, or writing of the study.



Entropy 2021, 23, 327 19 of 21

Abbreviations
The following abbreviations are used in this manuscript:

ETC Effort-to-Compress
CCC Compression-Complexity Causality
PC Compressive potential
APC Compressive potential based temporal asymmetry measure
GC Granger Causality
TE Transfer Entropy
CMI Conditional Mutual Information
CCM Convergent Cross Mapping
PI Predictability Index
KLD Kullback Leibler Divergence
AR Autoregressive
LGP Linear Gaussian Process
STAR Static nonlinear transformation of a first order Gaussian process
SETAR Self-Exciting Threshold AR
IAAFT Iterative Amplitude Adjusted Fourier Transform
HP Heart Period
HPV Heart Period Variability
HPVA Heart Period Variability Asymmetry
SAP Systolic Arterial Pressure
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