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Abstract: The rapid spread of COVID-19 has demonstrated the need for accurate information to
contain its diffusion. Technological solutions are a complement that can help citizens to be informed
about the risk in their environment. Although measures such as contact traceability have been
successful in some countries, their use raises society’s resistance. This paper proposes a variation of
the consensus processes in directed networks to create a risk map of a determined area. The process
shares information with trusted contacts: people we would notify in the case of being infected. When
the process converges, each participant would have obtained the risk map for the selected zone.
The results are compared with the pilot project’s impact testing of the Spanish contact tracing app
(RadarCOVID). The paper also depicts the results combining both strategies: contact tracing to detect
potential infections and risk maps to avoid movements into conflictive areas. Although some works
affirm that contact tracing apps need 60% of users to control the propagation, our results indicate that
a 40% could be enough. On the other hand, the elaboration of risk maps could work with only 20%
of active installations, but the effect is to delay the propagation instead of reducing the contagion.
With both active strategies, this methodology is able to significantly reduce infected people with
fewer participants.

Keywords: consensus; complex network; COVID; risk map; collaboration; contact tracing

1. Introduction

The current challenge to stem the spread of COVID-19 is to track infected people
with coronaviruses that can spread the disease. Although technological solutions such
as contact traceability have been successful in some countries, they raise resistance in
society due to privacy concerns [1]. The European Data Protection Board has published a
guideline for governments to use this kind of technology, guaranteeing privacy and proper
access to the data [2]. The solutions currently in consideration fall into two main groups:
(1) personalized tracking of users from its geolocation and (2) individual monitoring of
contacts. These groups correspond to the two waves of technological responses in Europe
to the COVID-19 pandemic [3].

User tracking uses two sources of information: (i) data provided by telecommunication
companies, which know precisely the position of the terminals, or (ii) the location provided
by users of their own free will via GPS.

• advantages: precise information is available on the movements of people and their
contacts, known or unknown, allowing the tracking and control of people;

• drawbacks: a threat to privacy.

With private tracking of contacts, every time two mobiles are nearby, they ex-
change an encrypted key via Bluetooth (BT). These keys remain stored in the device or
at centralized servers.
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• advantages: some privacy is maintained;
• drawbacks: the administration does not receive global data or statistics. Moreover,

the information is available a posteriori, which makes prevention difficult (it prevents
propagation, but not contagion).

Most governments have recommended using the second type of applications, advising
against proposals based on individuals’ geolocation. Simko et al. [4] made a series of
surveys over 100 participants to analyze their opinion about contact-tracking applications
and privacy. It is a relevant study since the first part finished when some European
countries were under different forms of lockdowns, and contact-tracing apps were not
available yet. Between the first and the second study, several proposals appeared, such
as the ones made by Apple and Google [5,6], the Massachusetts Institute of Technology
(MIT) [7], the University of Washington (UW) [8], PEPP-PT [9], Inria [10], WeTrace [11],
and DP3T [12]. The study shows that people are more comfortable using an existing
mapping application that adds tracking for COVID-19 instead of using new apps, with
reservations even if they provide ’perfect’ privacy. One of the main concerns is sharing
data, preferring that Google or organizations such as the UN develop the application. In
general, participants manifest a lack of trust in how their governments would use the
citizens’ location data. They thought that it was unlikely that their government would
erase the data after the crisis and also that they would use it for other purposes. Something
in common for both studies was mixed feelings about using proximity tracking for the
contacts and negative towards using any other data source.

Therefore, how can this be done while maintaining privacy? Alternatively, at least,
allowing citizen controlling when and with who are they sharing the health data. This
work proposes a third type: a process of dissemination in exchanging information with
known and trusted contacts only.

• advantages: (i) privacy is maintained, (ii) the administration obtains aggregated
information at the time, and (iii) the citizenry and the administration have the same
data (transparency);

• drawbacks: the first exchange contains the data of only one node (in case someones
hacks it and retrieves the information), and a critical mass is necessary.

Throughout the day, we have contact with various people in different places: home,
transport, work, or leisure. In each place we relate in different degrees (see Figure 1): closer
(B,E,F,G) or farther (C,D,H,I). Private tracking of contacts via BT is useful for detecting risk
in contact with unknown people and isolating those who have been in contact with the
infectious agent to control the disease’s spread. The consensus process is useful to identify
persons already infected or at risk in the immediate environment. A second potential is to
provide aggregated statistical information to the health services [13].

Figure 1. Integration of BT’s anonymous user tracking with a local broadcast application for close
contacts (C4C). Image adapted from Ferreti et al. [13].

Despite the efforts to develop technological solutions to track the propagation of
COVID-19, the usage of the apps is not extended enough. That is why we propose an
alternative solution. The consensus for COVID-19 (C4C) method is a variation of the
consensus processes proposed by Olfati–Saber and Murray [14]. It is a dissemination
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process that allows a distributed calculation of the value of a function in a network,
exchanging information only with direct neighbors without having global knowledge of
the structure, size, values, or other characteristics of the graph. This process converges to a
final single value for the calculated function. Privacy is maintained using this approach,
the administration obtains aggregated information, and citizens and the administration
have the same data, promoting transparency. One relevant limitation is that some critical
mass is still necessary.

The rest of the paper is structured as follows. Section 2 reviews the usage of contact
tracing apps developed worldwide. Section 3 explains how citizens can collaboratively
create risk maps using a consensus process with their close contacts. Section 4 shows the
results using La Gomera as an example: one of the Canary Islands, with 21,550 inhabitants.
The Spanish government carried out a pilot project with its contact tracing application
(RadarCOVID) on that island, so we decided to use the same scenario. Finally, Section 5
summarizes the main findings of this work.

2. Review of Contact Tracing Apps

States have put their efforts into the development of mobile applications to track the
spread of the SARS-Cov-2 over the population. The MIT Technology Review [15] has been
collecting the different proposals. In the last checked update (28 February 2021), there
are 49 registered apps. We have included in the studio the data from the application of
the Spanish government, RadarCOVID (https://radarcovid.gob.es/, accessed on 17 May
2021), so we have analyzed 50 applications. Table 1 summarizes their characteristics. There
are initiatives in the five continents, but most of the countries belong to Asia and Europe
since they were the first places where COVID-19 appeared (Figure 2).

Figure 2. Distribution of the tracing apps by continent.

The population that uses the applications varies from 9000 inhabitants in Cyprus or
Gibraltar to 163,000,000 in India. The median value is 970,000. Regarding the penetration,
the average value is 16.9%, ranging from 0.3% in cases such as Malaysia, Bangladesh,
or Hungary, to 91% in Qatar. However, the data are not Gaussian (see Figure 3). The
median is 12.3%, and the median absolute deviation 14.8%, which gives a fitter view of the
actual penetration.

The Bluetooth technology is the solution that most countries have chosen (Figure 4),
with 78% of the apps. Moreover, 38% of them use the Exposure Notification API provided
by Google and Apple. Despite the recommendation to avoid location services, 28% of the
apps use it.

https://radarcovid.gob.es/
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Table 1. Tracing apps in the world. Dep: deployer, government (gov), private (priv), academic (acad), and NGO, Pen: penetration, Tech: used technology, Dest: destroys data when
finished, Min: minimized data, Transp: transparency, Central: centralized or decentralized data storage, Status: launched or in development (Source: Adapted from MIT Technology
Review [15]).

Name Location Continent Dep Users Pen Tech Voluntary Limited Min Transp Central Status

Algeria’s App Algeria Africa Launched
COVIDSafe Australia Australia gov 7,160,909 28.64% Bluetooth Y Y Y Y Y Centralized Launched
Stopp Corona Austria Europe ong 600,000 6.77% Bluetooth, Google/Apple Y Y Y Y Y Decentralized Launched
BeAware Bahrain Asia gov 400,000 25.49% Bluetooth, Location Y Y N N Centralized Launched
Corona Tracer BD Bangladesh Asia priv 500,000 0.3% Bluetooth, GPS Y Y N N Centralized Launched
Coronalert Belgium Europe gov 970,000 8.37% Bluetooth, Google/Apple, DP3T Y Y Y Y Y Decentralized Launched
ViruSafe Bulgaria Europe priv, gov 55,000 0.79% Location Y Y Y N Y Centralized Launched
COVID Alert Canada America priv 5,314,026 14.03% Bluetooth, Google/Apple Y Y Y Y Y Decentralized Launched
Chinese health code system China Asia gov Location, Data mining N N N N N Centralized Launched
CovTracer Cyprus Europe acad 9000 0.77% Location Y N Y Y Y Decentralized Launched
eRouska Czech Republic Europe gov 240,000 2.25% Bluetooth Y Y Y Y Y Decentralized Launched
Smitte|stop Denmark Europe priv 619,000 10.69% Bluetooth, Google/Apple Y Y Y Y Y Decentralized Launched
HOIA Estonia Europe priv 250,944 18.88% Bluetooth, DP-3T, Google/Apple Y Y Y Decentralized Launched
CareFiji Fiji Asia gov 27,000 3.06% Bluetooth Y Y Y Decentralized Launched
Koronavilkku Finland Europe gov, priv 2,500,000 45.31% Bluetooth, Google/Apple Y Y Y Y Y Decentralized Launched
TousAntiCovid France Europe acad 2,400,000 3.58% Bluetooth Y Y Y Y Y Centralized Re-launched
Corona-Warn-App Germany Europe priv 18,000,000 21.68% Bluetooth, Google/Apple Y Y Y Y Y Decentralized Launched
GH COVID-19 Tracker Ghana Africa gov Location Y N N N Launched
Beat Covid Gibraltar Gibraltar Europe priv 9000 26.69% Bluetooth Y Y Y Y Y Decentralized Launched
VirusRadar Hungary Europe gov, priv 35,000 0.36% Bluetooth Y Y Y Y Centralized Launched
Rakning C-19 Iceland Europe gov 140,000 38.45% Location Y Y Y Y Y Both? Launched
Aarogya Setu India Asia gov 163,000,000 12.05% Bluetooth, Location N Y Y N N Centralized Launched
PeduliLindungi Indonesia Asia gov 4,600,000 1.72% Bluetooth, Location Y N N N N Centralized Launched
AC19 Iran Asia acad 0 0.00% NA N N N N N Launched
Covid Tracker Ireland Europe gov 1,300,000 26.33% Bluetooth, Google/Apple Y Y Y Y Y Decentralized Launched
HaMagen 2.0 Israel Asia gov 2,000,000 22.51% Location N Y Y Y Y Centralized Launched
Immuni Italy Europe priv 9,769,449 16.19% Bluetooth, Google/Apple Y Y Y Y Y Decentralized Launched
COCOA Japan Asia gov 7,700,000 6.09% Bluetooth, Google/Apple Y Y Y Y Y Decentralized Launched
Shlonik Kuwait Asia gov Location Y N N N Centralized Launched
MyTrace Malaysia Asia gov 100,000 0.32% Bluetooth Y N Y N N Decentralized Launched
CovidRadar Mexico America gov 50,000 0.04% Bluetooth Y N N N N Centralized Launched
NZ COVID Tracer New Zealand Australia gov 605,751 12.45% Bluetooth, QR codes, Google/Apple Y Y Y N Y Centralized Launched
StopKorona North Macedonia Europe priv Bluetooth Y Y Y Y Y Decentralized Launched
StopCOVID NI Northern Ireland Europe gov Bluetooth, Google/Apple Y Decentralized Launched
Smittestopp Norway Europe gov 158,000 2.94% Bluetooth, Google/Apple Y Y Y Y Y Decentralized Launched
StaySafe Philippines Asia priv 2,000,000 1.87% Bluetooth Y N N N N Decentralized Launched
ProteGO Safe Poland Europe gov 725,000 1.91% Bluetooth, Google/Apple Y Y Y Y Y Decentralized Launched
Ehteraz Qatar Asia gov 2,531,620 91.00% Bluetooth, Location N N N N Centralized Launched
Tawakkalna Saudi Arabia Asia gov 7,000,000 20.77% Location Y N Y N N Centralized Launched
Tabaud Saudi Arabia Asia gov Bluetooth, Google/Apple Y Y Y Y N Decentralized Launched
TraceTogether Singapore Asia gov 4,511,200 80.00% Bluetooth, BlueTrace N N Y N Y Centralized Launched
COVID Alert SA South Africa Africa gov 600,000 1.0% Bluetooth, Google/Apple Y Y Y Y Decentralized Launched
RadarCOVID Spain Europe priv 7.033.536 17% Bluetooth, DP-3T, Google/Apple Y Y Y Y Decentralized Launched
SwissCovid Switzerland Europe acad 1,600,000 18.67% Bluetooth, DP-3T, Google/Apple Y Y Y Y Y Decentralized Launched
MorChana Thailand Asia gov 3,690,000 53.15% Bluetooth, Location Y N N Decentralized Launched
E7mi Tunisia Asia gov 23,140 0.20% Bluetooth Y Y Y N N Centralized Launched
Hayat Eve Sığar Turkey Asia gov 14,186,000 17.30% Bluetooth, Location N N N Y N Centralized Launched
TraceCovid UAE America gov Bluetooth N Y N Decentralized Launched
NHS COVID-19 App UK Europe gov 19,000,000 28.51% Bluetooth, Google/Apple Y Y Y Y Y Decentralized Launched
BlueZone Vietnam Asia gov 20,000,000 20.93% Bluetooth Y Y N N Y Decentralized Launched
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Figure 3. Distribution of the penetration of the app in the population.

Figure 4. Technology used by the different proposals.

Figure 5 shows that privacy concerns have been considered in general. The app considers
five characteristics:

• voluntary: users opt-in to use the app or all citizens are compelled to download and
use it;

• limitations: data have constraints to be used for purposes other than public health;
• destroyed: the data are automatically deleted in a reasonable amount of time or the

the users can manually delete their data;
• minimized: the app collects only the information it needs;
• transparent: it has clear, publicly available policies and design, and open-source

code base.

The voluntariness and limited information tracking are present in a proportion of
80–20. The remaining features: minimization of the information, transparency, and decen-
tralization in a 60–40 balance.

In this situation, the usage of the apps is not extended enough despite the efforts
to develop technological solutions to track the propagation of COVID-19. Figures show
a total of 300 million installations or the available contact tracing applications, which
means a 4.1% of the world population. Even considering that, in most cases, governments
follow the recommendations to keep the citizens’ privacy at reasonable levels. For this
reason, we propose a third method that can work with the penetration obtained with
current applications.
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Figure 5. Characteristics related with privacy and the data treatment present in the available solutions.

3. Collaborative Risk Map Generation

The consensus for COVID-19 (C4C) proposal works over a contact network with
non-reciprocal relationships. C4C does not model the propagation of COVID-19. It aims
to use the acquittance network of the people to exchange the risk index, so the C4C is
about information propagation, no virus propagation. Therefore, we can choose to have
undirected (symmetric) or directed links.

If we use undirected links, a well-connected person can receive hundreds of requests.
Many of them will not be close contacts from his or her point of view. Our model allows
users to choose a small number of close contacts (maximum 15) who receive their health
information (the risk index) to maintain privacy. The limitation of output relations avoids
the existence of hubs just for the out-degree. The in-degree has no limits. Therefore, the
underlying structure is a directed graph. The original consensus algorithm works over
non-directed graphs, so we have to extend the model to consider this case (see Section 3.2).

Let G = (V, E) be a non-directed network formed by a set of vertices V and a set of
links E ⊆ V × V where (i, j) ∈ E if there is a link between the nodes i and j. We denote
by Ni the set formed by the neighbors of i. A vector x = (x1, . . . , xn)T contains the initial
values of the variables associated with each node. Olfati–Saber and Murray [14] propose
an algorithm whose iterative application converges to the mean value of x.

xi(t + 1) = xi(t) + ε ∑
j∈Ni

[
xj(t)− xi(t)

]
(1)

The authors demonstrated that this consensus process converges to the average of
the initial values when ε < 1

max di
, being di the degree of node i. There is an equivalent

matricial formulation.

x(t + 1) = (I − εL)︸ ︷︷ ︸
P

x(t), with L = DAG − AG (2)

where I denotes the identity matrix, and L is the Laplacian of G, calculated from the degree
matrix DAG and the adjacency matrix of the graph AG. P is called the Perron–Frobenius
matrix and governs the consensus process’s collective dynamics.
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3.1. Consensus as a Distributed Counting Mechanism

Without losing generality, we can extend the consensus process over m independent
variables, just considering xi = (x1

i , . . . , xm
i ) ∈ Rm. The consensus process over these

vectors is equivalent to m independent consensus process, each one over each component.
The complete process converges to the average of the initial components.

By adding one additional element yi ∈ R, we can determine the size of the network at
the same time. In each node, the state is defined by an extended vector

(xi|yi) = (x1
i , . . . , xm

i | yi) (3)

and, initially, yi = 0 ∀i. Without losing generality, we can introduce an additional node in
the network whose initial values are

(x0|y0) = (0, . . . , 0︸ ︷︷ ︸
m

| 1) (4)

This node does not affect the result since it does modify the values of any component
of xi. When the consensus process converges, each node calculates how many participants
have chosen each option dividing the final vector xi by the value obtained in the last
column yi to determine the overall result, as shown in Equation (5).

xi(t)
yi(t)

=
(〈x1〉, . . . , 〈xm〉)

1/n
= (n〈x1〉, . . . , n〈xm〉) (5)

= (∑
j

x1
j , . . . , ∑

j
xm

j ) (6)

where n = |V|.
Table 2 shows an example of the initialization of a network with six nodes. The nodes

choose between 3 options, being the choice of each one x(0) = (1, 2, 1, 3, 3, 1). Therefore,
(x1|y1) = (1, 0, 0|0), (x2|y2) = (0, 1, 0|0), (x3|y3) = (1, 0, 0|0), and so on.

We can see in Figure 6 the evolution of the consensus process over each one of the compo-
nents of the vector xi. The network converges to the total result xi(t) = (1/2, 1/6, 1/3 | 1/6),
and applying Equation (5) each node obtains the total counting

xi(t) =
(

1/2
1/6

,
1/6
1/6

,
1/3
1/6

)
= (3, 1, 2) (7)

Table 2. Configuration of xi(0) for counting. Nodes 1 to 6 mark with 1 the chosen option and the rest
of the vector remains with zeros. An extra node x0 is included, filled to zeros, and it is the only one
that inits the auxiliary variable as one to count the number of participants in the process.

x1
i x2

i x3
i | yi

x0 0 0 0 1
x1 1 0 0 0
x2 0 1 0 0
x3 1 0 0 0
x4 0 0 1 0
x5 0 0 1 0
x6 1 0 0 0

total 3 1 2
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Figure 6. Evolution of the consensus process for calculating the result of a distributed count. Random
network with n = 6 nodes and m = 3 options. The options are x(0) = (1, 2, 1, 3, 3, 1), which gives a
result of (3, 1, 2).

3.2. Consensus on Directed Networks

The algorithm of Olfati–Saber and Murray needs the Perron matrix P to be double
stochastic for the consensus to work. In a double stochastic matrix, all the rows and all the
columns sum one. That means that the network’s adjacency matrix has to be symmetric
and, therefore, the graph has to be undirected. As C4C is based on non-reciprocal relations,
the underlying graph is directed, and the associated Perron matrix will be stochastic by
rows only. In this situation, the equations of the consensus model converge, but to a value
different from the average of the initial values.

Figure 7a depicts the evolution of the consensus process over a directed network using
the general formulation. The network converges to a common value (0.3876), which is
different from the mean of the initial values (0.4660). Therefore, we need some mechanism
to correct this deviation.

(a) (b)
Figure 7. Consensus process over directed networks: (a) without the proposed correction, the
network converges to a common value 〈x〉 = 0.3876 different from the initial mean; (b) with the
proposed correction, the network converges to the average value at 〈x〉 = 0.4660 = 〈x(0)〉.

To explain the adaption of the formulation, we use the matricial representation of
the consensus process (Equation (2)). Inspired in the Dominguez-Garcia and Hadjicostis
matrix scaling algorithm [16], we define an iterative process to convert the Perron matrix
into a double stochastic one. This modification consists of including the consensus process
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in the master equation of the consensus process instead of using a general one. The process
begins with a row stochastic matrix P

P = (I − ∆(0) ∗ L) (8)

which is a local version of the Perron matrix, defined using each node’s degree ∆(0) instead
of a common ε value for all the nodes (see line 4). In each iteration, the matrix is scaled
following the expression

P(t) = P∆(t) + [I − ∆(t)] (9)

where P is a local Perron matrix and ∆(t) is updated as Algorithm 1 describes. The scaling
algorithm is an iterative process that executes until there are no more changes in the P
matrix. We do not have to wait until we obtain P to execute the consensus process. We can
combine the matrix’s scaling (line 11) with the consensus value calculation in the same step
(line 12). With the correction of the proposed algorithm, the process converges to the mean
of the initial values (Figure 7b).

Algorithm 1 Matrix scaling and consensus (collective)

1: init x(0)
2: L = Dout

A − A
3: ∆(0) = D−1

L
4: P = (I − ∆(0) ∗ L)
5: P(0) = P∆(0) + [I − ∆(0)]
6: π(0) = 0, η(0) = 1
7: repeat
8: π(t + 1) = P(0) π(t)
9: η(t + 1) = max(π(t), max η(t)A)

10: ∆(t + 1) = ∆(0)π(t+1)
η(t+1)

11: P(t + 1) = P∆(t + 1) + [I − ∆(t + 1)]
12: x(t + 1) = P(t + 1) x(t)
13: until x(t) converges

The adaptions of the scaling algorithm proposed by Dominguez-Garcia and Hadji-
costis to the equations of the consensus process implies:

1. the calculation of ∆(t), in lines 3 and 10;
2. the definition of the matrix P, as a local variation of the Perron matrix, in line 4;
3. how π(t) updates, in line 8.

3.3. Map Generation

Once we have defined the algorithm for consensus processes over directed networks,
the goal is to create a citizen network in an area (town, province, state, or any other
administrative division) that uses it to make a risk map collaboratively.

We can describe the process as follows:

• the nodes of the network are the population: the inhabitants of the city;
• the map (a town, an island or any other region) is divided into m zones. For instance,

postal codes in a city;
• each node i has a vector xi = (x1

i , . . . , xm
i ) with as many components as zones, that is,

m components;
• using the algorithm of Section 3.1, all inhabitants calculate the same vector that aggre-

gates the information of the zones. For instance, sum the values for each postal codes;
• we use a directed network, so the algorithm used is the variation of Section 3.2.

Figure 8 shows an example for the creation of a risk map. Let us consider a network
of citizens with n = 10 nodes and a city divided into m = 6 zones. The initial risk
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values are (3, 2, 10, 54, 30, 3, 18, 8, 5, 28) and the zones corresponding to each node z =
(3, 1, 5, 1, 2, 6, 2, 5, 4, 4). Node i = 1 has a risk value of r1 = 3 and she lives in zone z1 = 3,
so x1(0) = (0, 0, 3, 0, 0, 0). For the rest, x2(0) = (2, 0, 0, 0, 0, 0), x3(0) = (0, 0, 0, 0, 10, 0), and
so on. When the consensus converges, all the nodes have the same copy of the vector,
xi(t) = (28, 24, 3, 16, 9, 2). Observe that it matches with the mean values for each zone.
Zone 1 is the one with a higher risk.

r1 =
x1(0) + x4(0)

2
=

2 + 54
2

= 28 (10)

(a) (b) (c)
Figure 8. Example of creation of a risk map in a city: (a) network of citizens in their living zone;
(b) consensus process; (c) risk maps values obtained by the process.

We have chosen the census districts from the National Institute of Statistics (INE)
of Spain. The sizes of the districts are relatively homogeneous, having between 900 and
3000 inhabitants each. It is easily scalable, aggregating the information in bigger adminis-
trative units. Moreover, they never provide statistics with less than 100 persons to avoid
reidentification.

Inhabitants share a risk index (RI) that measures their probability of being infected
by COVID-19. The risk in a census district depends on the RI of all the people that live in
it. The RI could integrate data from different sources: medical symptoms, symptoms of
close contacts, age, family situation, or habitability conditions. In this work, we use the
same measure as the emergency service 112 (https://coronavirus.comunidad.madrid/,
accessed on 17 May 2021). The risk value depends on medical symptoms: shortness of
breath (60 points), fever (15), coughing (15), or close contact (29). Over 30 points, it is
considered that the person has been infected.

We use the following notation:

• ri: risk index of node i, i = 1, . . . , n.
• (xi|yi) = (x1

i . . . , xm
i | yi): vector with the risk map values in node i.

• Ri = (r1
i , . . . , rm

i ): complete risk map calculated in node i.

Let us assume an extra node representing an administrative unit, such as the town
hall, acts as the x0 node (see Section 3.1). Algorithm 2 describes the complete process.

Algorithm 2 Risk map creation

1: calculate ri
2: init (xi(0)|yi(0)) = (0, . . . , ri, . . . , 0 | 0),
3: execute Algorithm 1 until convergence
4: calculate Ri =

xi(t)
yi(t)

Some important remarks related to the process are:

1. the position of ri in xi(0) corresponds to its census district;
2. each node executes a local version of Algorithm 1;

https://coronavirus.comunidad.madrid/
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3. the first exchange is the only moment in which vectors contain individual values: the
risk and the census district of i. We assume that there are no privacy concerns since
the node would share this information with its Ni trusted neighbors;

4. in the following exchanges, the received vectors xj(t) contains aggregated information.
As the neighbors of j remain unknown for i, it is complicated to track back the data.

It is a successive refinement mechanism: there is a map available at any time, and the
longer the algorithm executes, the fitter the risk values are. The final risk map R is equal to
the one obtained by a centralized process with all the risk indexes available. You can find
an example in Section 4.2.

4. Results

The purpose of this section is to validate the effect of an app with the characteristics of
C4C, based on the algorithms presented in Section 3, for the COVID-19 propagation. Such
a tool would provide the citizens the risk map of their town. With this information, they
can decide if they modify aspects of their daily routines.

As there is no other tool with similar characteristics, we will try to simulate its effects
in the propagation of COVID-19 and compare it with the impact of common contact tracing
apps. To compare the results, we have chosen RadarCOVID: the contact tracing application
created by the Spanish government.

We have run several simulations using the same scenario as RadarCOVID. The authors
of the application have published the study’s conclusions, but it contains the results about
the application usage [17]. Therefore, for this scenario, we need to recreate an epidemic
model for SARS-Cov-2 and the mobility patterns of the people (Section 4.1). To recreate the
network’s structure generated for a hypothetical C4C application, Section 4.2 proposes a
distribution following how people could be connected in small towns. Once the topologies
of the networks and the contagion process have been established, the rest of the section
shows the results of the contact tracing application (Section 4.3), the behavior of the
population using information from risk maps (Section 4.4), and the combination of both
methods (Section 4.5).

4.1. Population and Infection Model

As an application example, we have chosen La Gomera: one of the Canary Islands,
with 21,550 inhabitants. The National Institute of Statistics divides the island into 14 census
districts. We need a model of the population of the area and how they move to incorporate
it into an epidemiological model to simulate the propagation of SARS-Cov-2. Due to
privacy restrictions, the 14 districts are grouped into two, called Valle Gran Rey and San
Sebastian de La Gomera. The only available information is the aggregated number of
movements from and to each one on these two areas. Nevertheless, the aim was not to
have a detailed model of the movements of the individual citizens, but something coherent
with the observations and the actual public data available.

We make the following assumptions

1. Lévy flights model properly the commuting movements of the people;
2. any person has the same probability to get infected;
3. the propagation of SARS-Cov-2 follows an SEIR model.

The population that lives in each area is publicly available through the Spanish
National Statistics Institute (INE). The network has as many nodes as inhabitants. For each
node, we generate the coordinates for their home address at random. The data available
are just the number of residents in each census district. In addition to the two biggest
towns on the island, Valle Gran Rey and San Sebastian de La Gomera, many tiny villages
and individual houses spread along all the island. The two first towns are included in a
district for themselves (Figure 9a shows clearly both by their density). We have considered
a uniform distribution in the absence of additional data.
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(a)
(b)

Figure 9. Population model in La Gomera: (a) Population distribution; (b) simulated commuting
movements sample with 100 paths using Lévy flights.

The people’s movements along the day are simulated using recurrent Lévy flights [18].
Lévy flights are random walks where the step-length follows a Lévy distribution. This
type of search involves mostly short move steps combined with sporadic longer move
steps. Each person has assigned a path with 96 points (taken every 5 min during 8 h) that
begins and ends at his or her home location (Figure 9b). With this approach, we model the
commuting trips when people go to work, study, or other regular activities. The recurrent
model includes the return to the origin, which is typical in daily human movements. The
model parameters are the same as proposed in the referred paper: the distribution of the
displacements follows a power law of parameter variable for each node β = 1.75± 0.15,
scaled to the size of the island with σ = 100 as factor. The MATLAB library uses the
McCulloch’s implementation [19] to generate Lévy flights with these two parameters β and
σ.) Trips avoid going out of the bounds of the island. Two consecutive points at a distance
lower than 10 m are unified.

We have validated the model by comparing the movements with the data available in
the study on mobility based on mobile phones carried out by the Spanish National Statistics
Institute (INE) in 2020 (https://www.ine.es/en/experimental/movilidad/experimental_
em_en.htm, accessed on 15 January 2021). In this study, La Gomera was divided into two
areas to avoid reidentification and keep privacy: Valle Gran Rey (VGR), with 10,393 inhabi-
tants, and San Sebastián de La Gomera (SSG), with a population of 11,110. The average
daily mobility from March to June was 429± 148 persons for VGR and 523± 221 for SSG.
The simulation with Lévy flights throws a total flow of 464 persons for VGR and 668 in the
case of SSG. Therefore, we can consider that the movements are in the same magnitude
order, so we assume that Lévy flight model is coherent with actual commuting trips.

To simulate the close contacts, we use the same criteria as the contact tracing app [17]:
a close contact is defined when two persons are at 5 m at most and during 15 min since
with 2 m it only obtains a 78% accuracy. The distance is estimated from the strength of the
Bluetooth signal. Initially, a range between 63 dB and 74 dB was considered, but after a few
days, it was recalibrated, and the range [53 dB, 74 dB] was established. The result is a daily
risky contact matrix of dimension 21,550 × 21,550.

To simulate the spread of the COVID-19, we use an SEIR model, where each person
can be in one of these states:

• Susceptible (S): a person that has not the disease and can be infected;
• Exposed (E): someone that has been in contact with an infected person. He or she

cannot infect others yet;
• Infected (I): someone with symptoms that can infect other people;
• Recovered (R): people cured that are immune to the disease.

https://www.ine.es/en/experimental/movilidad/experimental_em_en.htm
https://www.ine.es/en/experimental/movilidad/experimental_em_en.htm
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Its parameters follow the literature’s findings that have analyzed the COVID-19
propagation [20]. Particularly, the incubation time is 7 days, so β = 1/7, the probability
of infection σ = 0.1 and the recovery time is 15 days, so γ = 1/15. Another relevant
parameter is the time that elapses from the appearance of the first symptoms until the
person receives a positive diagnosis. We use an optimistic period of 48 h. The purpose
of the model is not to predict precisely the behavior of the disease. Therefore, the model
provides the consensus process with different scenarios to check the risk maps’ accuracy.

Infection models usually assume a single infection stage per day. Nevertheless, the
domestic environment has demonstrated to be a significant source of contagion [21,22]. For
that reason, we have defined a two-step model, similar to the model proposed by Gomez,
Soriano, and Arenas [23], but including a second infectious phase. In Figure 10, we present
the general scheme of the infection processes considered in our model, that, considering
that people start at their home location, can be summarized as follow:

1. People start at their home location;
2. They move along the day, interacting with the other persons;
3. Nodes update their state according to the epidemic model and the contact matrix;
4. They go back to their home locations;
5. A new infection stage is performed at home.

Figure 10. Scheme of the stages involved in the two-step contagion model considered. The population
moves alternatively between the home and the working location. Carriers can infect other people
in both places. The cycle consists of a sequence movement→ infection→movement→ infection.
Only some nodes are shown. Color nodes indicate the health state of the corresponding person:
susceptible (blue), exposed (yellow), infected (red), recovered (purple). Two nodes are connected if
they are close enough to transmit the COVID-19.

Once the update is completed, a new cycle begins.
The results of the model show that there have been a total of 37,900 risky daily contacts,

i.e., contacts of more than 15 min at less than five meters. That is the result considering
the total population of La Gomera. If we consider only the 3000 people who have the
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contact tracing app installed, this number remains at 864 daily contacts, which would be
the maximum number of alerts that the application would launch. Our results can be
compared with the observations of the pilot project that evaluated the use of RadarCOVID
contact tracing app [17]. The actual number of alerts triggered by the app was 821. On
average, each user has 6.38 contacts, in line with the 6.4 identified in the pilot project.
Supercontagiators appear, with more than 30 contacts. This would also indicate that the
model is not far-fetched since it is observed in different outbreaks. We can assume that the
infection model reflects the observations in the pilot project, so the assumptions about the
parameters of the SEIR model and the contact matrix generated by the Levy flights and the
two-step contagion process are coherent with the observations.

With all this data, we can now see how a COVID-19 infection would have behaved on
the island and the effect RadarCOVID would have had over the base scenario (Figure 11).
In the pilot project, they started with 100 infected users on 10th July, and then they added
three waves of 50 to 100 more simulated infections on July 13th, 15th, and 17th. In the
model, 300 randomly infected people have instead been introduced across the island at
instant zero. Of these, about 50 had the tracking application installed. The result is similar,
with about 400 infected people being added to the network corresponding to the week of
July 10–17.

Figure 11. Evolution of the risk map with an SEIR model in La Gomera island, without considering
any app. Color bar indicates the value of infected population (I).

4.2. Risk Map Creation

The consensus process described in Algorithm 2 obtains the actual risk map if all the
inhabitants participating in the process. However, as we have seen the results with contact
tracing apps in Section 4.1, this is a utopic scenario. Therefore, we assume that

1. only a subset of the population participates in the creation of risk maps;
2. people has an small subset of confident contacts among family, friends, and colleagues

from work or studies;
3. risk values are uniformly distributed among all the population.

With these assumptions, let us check if the risk maps created by a reduced subset of
the population reflect the reality with enough accuracy.

Usually, the contact network of a person is modeled with an egocentric exponential
random graph, which has been used in other works in the COVID-19 context [24]. Never-
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theless, the size of the island produces exponential decay due to the finite size effect of such
a small population. In these cases, a Weibull distribution fits better with the data [25,26].

As in the case of the commuting trips, we have no direct data about the actual structure
of the relationships in La Gomera. To simulate it, we have used previous works in which
towns between 4000 and 70,000 were analyzed. We have assumed that the structure of the
citizens’ relationships in Twitter is a reflex of the actual relations among all the people. We
have analyzed the network formed by the Twitter account followers of the town halls of
cities of similar sizes [27]. The cumulated degree distribution, in this case, follows a power
law with parameter α ≈ −1.7. Therefore, to model the entire population’s contact network,
we have generated a preferential attachment network following the same distribution
(Figure 12a). This generates a network of 58,000 contacts and a maximum degree of 876.

As a potential application would bound the number of closer contacts, we choose a
subset of the potential links. A reasonable limit is 15 contacts, five of each type (family,
colleagues, and friends). If we choose randomly 9± 2 of the contacts, the resulting network
has 26,500 links and the number of connections vary from 4 to 16, with a Weibull degree
distribution with scale parameter α = 13.4, and shape character λ = 0.48 (Figure 12b).
The Lilliefors test rejects the null hypothesis for the normality of the data and gives a
p-value = 0.5132 to follow a Weibull distribution. The strategy used to generate the contact
network for C4C matches with the findings in the literature for similar networks.

(a) (b)

Figure 12. Cumulative degree distribution of the networks: (a) Complete contact network with a
power-law with α = −1.7; (b) random selection of contacts. It follows a Weibull distribution with
parameters α = 13.4, λ = 0.48.

Just 3000 persons have participated in the RadarCOVID contact tracing app. To
compare the results, we will use a graph of the same size. Therefore, we have created a
network with 3000 nodes and mean degree 10, varying from 4 to 16, generated as a subset
of social network contacts. Over this scenario, the inhabitants can create their town’s risk
map at the end of the day. We assume that no additional measures, such as social distancing
or limitations of movements, are taken.

As an example, let us consider the situation after 30 days. Each node has a vector
of 14 components, one for each census district Ri(t)= (x1

i , . . . , x14
i | 0). Let ri be the risk

index of i and k the census district in which i lives. The first value Ri(0) starts with all
components xl

i = 0, l 6= k and for the census district of the node xk
i = rii. Each node

executes the process detailed in Algorithm 2. The evolution appears in Figure 13a and the
resulting maps in Figure 13b. When the consensus process converges, the values obtained
by the node are Ri(t) (see Table 3). The 3000 inhabitants have obtained similar values. R are
the real risk values for each census district considering all the population. In this example,
the districts with higher risk (7, 8, 9, and 11) are properly identified by the participants
(Figure 13c).
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Table 3. Sample of risk values by zone. R are the actual values, Ri(0) the initial value for node i, and
Ri(t) the final values calculated by node i.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ri(0) 0 0 0 0 0 0 0 0 0 0 45 0 0 0
Ri(t) 10 8.1 12.3 8.6 13.2 9.5 49.2 48.3 40.1 12.5 22 9.6 11.4 8.8
R 9.9 10.1 9.9 9.9 12.2 11.3 50.3 55.6 53.1 15.4 21.8 9.9 10.9 10.1

To sum up, a contact network formed by between 4 and 15 close contacts allows the
creation of a significant risk map compared with the real risk of the census districts. The
modifications described in Section 3 produce the expected result even with a subset of the
complete population.

In the remaining sections, we analyze the effect contact tracing and risk maps on the
propagation of SARS-Cov-2, separately and combined.

(a) (b)

(c)

Figure 13. Evolution of the consensus in the creation of a risk map. (a) Convergence of the process;
(b) evolution of the map build by one random node; (c) map created by consensus versus real
risk map.

4.3. Evolution with Contact Tracing App Active

The first analysis tries to determine if the problem with tracking applications is
that they need a large percentage of the population to use them. Some works suggest
that tracking applications need at least 60% of penetration to be effective [28]. We have
simulated the propagation of COVID-19 in three scenarios:

• worst case (blue): no measures taken;
• best case (red): all infected detected and isolated;
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• isolation of traced users (yellow): people with contact tracing app isolated 48 h after
the first symptom appears, as well as all other persons that have been in contact
with them.

To evaluate the impact of the penetration of the app, we have considered 20%, 40%,
60%, and 80% of the total population using the app (Figure 14). The effect of contact
tracing apps in the propagation is almost irrelevant with 20% of users. There are just little
differences between 40% and 60%, so we don’t need to arrive at the 60% of penetration
since we have shown that 40% of active users would be enough. With 80%, the transmission
is almost controlled.

Figure 14. Evolution of infected in three scenarios: no isolation (blue), total isolation (red), and
isolation for traced users (yellow), from 20% to 80% of users. (top) Total infected by day and (bottom)
cumulative infections.

4.4. Effect of Risk Maps in Infections

The effect of having a risk map available and avoid areas with high risk does not
reduce the total number of infections significantly. It reduces the peak (see Figure 15a), but
it keeps the propagation active for more days and the total number of cases at the end of
the period is similar (Figure 15b). Therefore, we can conclude that the use of a risk map
does not reduce the number of infected people in the long run. Nevertheless, the effect is a
reduction in the peak, smoothing the curve of infections. The main benefit of this situation
is to avoid the collapse of health services if the cases are reduced enough. We do not have
available the information to check that hypothesis.

(a) (b)

Figure 15. Evolution of infected with and without considering the risk map: (a) evolution;
(b) cumulated.

Since neither the isolated use of a contact tracing application nor the availability of a
risk map seems to be enough to control the transmission, we have combined both tools
and simulated the results.
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4.5. Contact Tracing and Risk Maps Combined

Finally, we have tested the combination of risk maps and contact tracing. The behavior
of the people follows these rules:

1. people that live in an area with medium or high risk do not go out from it;
2. people that live in a low-risk area move freely but do not enter risky ones;
3. tracing app notifies exposure in 48 h. People that receive a warning from the applica-

tion isolate themselves and stay at home.

The risk denomination as low, medium, and high follows the same criteria defined for
the individual risk index specified in Section 3.3. We consider high risk a value >30 since
symptoms appear in the population, medium risk between 15 and 30, and low risk any
region under 15.

Five scenarios are analyzed: no isolation, total isolation, limited movement by risk
map, isolation by contact tracing, and risk map plus contact tracing. Considering the case
with 3000 users (15% of the population of La Gomera), we see that contact tracing or risk
maps have a low effect on their own in controlling the propagation (Figure 16a). The total
number of cases without constraints reach 8890 persons. RadarCOVID barely reduces the
contagion, with 8605 infected. On the other hand, the only effect of including risk maps
is to smooth the curve of infections, reaching 8594 infected people. However, with both
strategies combined, we obtain a significant reduction in total infected, until 8290, reducing
50% the difference with the best case, in which 7695 persons were infected (Figure 16b).
Furthermore, in all cases, the peak is reduced, which can be translated to a lower number
of hospitalizations. This could help health authorities manage the situation and take more
efficient measures once the saturation has been avoided.

(a) (b)

Figure 16. Evolution if the number of infections with different technological solutions was applied
with 15% of penetration: (a) evolution; (b) cumulated.

5. Conclusions

Technology can be an essential ally to control the transmission of COVID-19. Never-
theless, concerns about privacy and the possible use of the data after the pandemic have
made difficult the implantation of technological solutions.

This work proposes an alternative for users to create risk maps collaboratively, called
C4C. This approach executes a consensus process that uses local information and data
from the direct neighbors to calculate the value of a shared function. In our case, the
values are the risk index of the different districts that form the town. Close contacts (family,
colleagues, and friends) define the network relationships, whom we warned about being
infected. The data exchanged are an aggregation, and it is not possible to reidentify the
personal information. At the end of the process, all the participants obtain the same copy
of the complete risk map. However, the effect of constraining the movements using the
information on risk maps reduces the peak and smoothens the evolution of the infection.



Entropy 2021, 23, 638 19 of 21

Current technological solutions are based on contact tracing. Many countries have
implemented their own applications to alert when a person has been in contact with some-
one infected after being diagnosed with COVID-19. The Spanish government conducted
a pilot study. We have followed the same conditions to validate the models built for the
experiments. After validating the network structure and the mobility pattern, we have
simulated the propagation of SARS-CoV-2 in different scenarios. From the experiments,
we can conclude that:

• A relatively high percentage of users is necessary for it to be effective. If we consider
that approximately 70% of the population has a smartphone, we would be talking
about the need to install it on 55% of the devices, something like 19 million users—
an unattainable figure if we look at the percentages that have been achieved in the
countries around us. It is necessary to combine it with other tools so that a lower rate
is sufficient.

• Availability of risk maps reduces the peak of infections, but not the total number.
Despite its benefits to control the saturation of the health system, it is not enough to
stop the transmission.

• The combination of the information from risk maps to avoid areas with a high index
of infections and alerts of exposure obtain good results even with relatively low
penetration of the apps.

In addition to these conclusions from the results of the experiments, there are some
other considerations to take into account.

• A high number of users implies an increased number of alerts. The health system
must be prepared to deal with them and test all suspicious persons.

• tracking applications are not a substitute for professionals but a supplement. We do
not need contact tracing apps to alert about cases in the family, work colleagues, or
friends. It is beneficial to identify possible contacts with strangers: on public transport,
in stores, or entertainment venues.

• This type of application is vital in the early stages of the epidemic but is overflowing
when there is community transmission.

• Contact tracings are safe applications, but that does not exempt us from privacy threats
by social engineering mechanisms, such as the scenarios that appear in Anonymous
tracing, a dangerous oxymoron, or also by the platform itself, as is the case of Google
Play Services, as indicated in the report ’Contact Tracing App Privacy: Europe’s
GAEN Contact Tracing Apps shares what Data.’ So do not be confident and take the
same precautions as with other apps.

Once we have checked the theoretical validity of the proposal, we pretend to create a
prototype of the distributed application as future work. The deployment of such a solution
introduces additional problems to be addressed when actual users install and activate the
application. Most of them involve technical details, such as the platform to allow truly
distributed communications, security, robustness under deliberate attacks, and fake data,
or synchronization among users when they activate the application at different moments.

The usage of agent-based models (ABM) allows considering individual behaviors.
In this work, all agents behave equally and fulfill all the recommendations from health
authorities. As an extension to the current model, we plan to include, for instance, people
with different risk perceptions, different isolation measures, or segregate people by age.
The consideration of these improvements generates more accurate models to make better-
informed decisions.
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