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Abstract: Proteins are essential molecules, that must correctly perform their roles for the good
health of living organisms. The majority of proteins operate in complexes and the way they interact
has pivotal influence on the proper functioning of such organisms. In this study we address the
problem of protein–protein interaction and we propose and investigate a method based on the use
of an ensemble of autoencoders. Our approach, entitled AutoPPI, adopts a strategy based on two
autoencoders, one for each type of interactions (positive and negative) and we advance three types
of neural network architectures for the autoencoders. Experiments were performed on several data
sets comprising proteins from four different species. The results indicate good performances of our
proposed model, with accuracy and AUC values of over 0.97 in all cases. The best performing model
relies on a Siamese architecture in both the encoder and the decoder, which advantageously captures
common features in protein pairs. Comparisons with other machine learning techniques applied
for the same problem prove that AutoPPI outperforms most of its contenders, for the considered
data sets.

Keywords: deep learning; autoencoders; protein–protein interaction

1. Introduction

All molecular interactions in a cell have been termed the interactome. Most such inter-
actions involve proteins, which can bind to other proteins or to small molecules. Among
these, the interactome of protein–protein interactions (PPI) is of particular significance, as
more than 80% of proteins perform their roles not individually, but in complexes [1] and
thus this interactome can unveil interactions that are connected to diseases and also which
genes are involved [2]. In addition, the interactome can assist in identifying functions
of unknown proteins, considering that proteins that interact are often times involved in
similar cellular processes [3]. Thus, by determining all interactions of a new protein, one
can infer its function, assuming that the interacting proteins are already accounted for.
Going one step further, interaction information can be instrumental in the field of drug
design, as knowledge about certain proteins’ interactions and binding sites can be used to
architect drugs that target those specific proteins.

Methods for the identification of PPI can be classified into three categories: in vivo,
in vitro and in silico [1]. The first one involves methods performed on whole organ-
isms (simpler organisms, e.g., yeast), the second includes chemical and physical mech-
anisms performed in a controlled environment (affinity chromatography, coimmuno-
precipitation, protein microarrays, X-ray crystallography, nuclear magnetic resonance
(NMR) spectroscopy) [1], while the third refers to computational methods, experiments
and simulations. In vivo and in vitro methods offer reliable results, however they also have
disadvantages such as false positives or negatives, lack of possible PPI, the necessity for
extra-validation of obtained results or high costs. As a consequence, in silico methods were
developed both to complement the first two more traditional techniques, but also to act
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independently for the identification of PPI. Computational techniques include approaches
starting from biological sources such as protein sequences, structures, co-evolution of
proteins, phylogenetic profiles, protein or gene ontologies, gene fusion, gene annotations or
various combinations of these [4–10]. As opposed to three-dimensional structures, primary
sequences (the chain of amino acids) are known for having a substantial number of proteins,
thus the sequence data constitutes a simple and available start source.

Machine learning methods are among the most popular choices for addressing this
problem. Many researchers have pointed their attention in this direction and there are
numerous studies approaching PPI that work with protein sequences. Earlier research
focuses on “traditional” learning techniques such as Bayesian networks [11], support vector
machines [12], random forests [13] or k-nearest neighbour [14]. Some recent approaches
also use such techniques in different combinations; for instance, in [15] the authors propose
a two-level stacked solution that integrates five classifiers. However, recent advances in
the field of deep learning and the versatility and generality of such methods make them
more than suitable candidates for proposing potential solutions to the problem at hand.

We propose and investigate a method based on the use of autoencoders with the aim
to tackle the underlying classification problem in relation to PPI. The proposed approach,
called AutoPPI, consists of data collection, feature selection, training of two autoencoders
(one focusing on the class of proteins that interact and the other on proteins that do not
interact) and performance evaluation. Three neural network architectures are proposed for
the autoencoders and experiments are performed for several PPI data sets. The obtained re-
sults support a competitive performance of the new AutoPPI classification model showing
that autoencoders can capture relationships between proteins relevant for their interactions
and can successfully be used by themselves for PPI prediction.

The main innovation our work brings, compared to the methods previously proposed,
resides in the manner in which autoencoders are involved in the process of PPI predic-
tion. While heretofore the main task of autoencoders was feature extraction, the actual
classification being performed by an additional classifier (as presented in Section 2), in our
approach these self supervised techniques are the main actors. We train an autoencoder for
each class in the input data (interacting and non-intersecting proteins) and further employ
these to compute, for each pair of proteins in the test set, a probability that will indicate
whether they are prone to interact or not. To the best of our knowledge, autoencoders have
not been used solo for the PPI task, so far.

2. Literature Review

Protein sequence information is easily deduced from DNA using the genetic code.
For most discovered proteins this type of information is known: the most comprehensive
non-redundant protein sequence database currently contains 174 million sequences [16]
and is doubling in size every 28 months [17]. However, determining protein structure is a
complex process and thus there are considerably fewer structures available—approximately
175,000 structures in the Protein Data Bank [18]. Approaches for determining PPI that start
from sequence information not only have more data to work with, but can also be consid-
ered more general, as they do not need additional information such as structure, functions
or annotations. Considering that in this research we investigate deep autoencoders and
employ protein sequences, we direct our focus towards deep learning methods for PPI,
which also start from sequence data. Note that this is relevant not only with regard to
the data sets we use to experimentally evaluate our proposed methods, but also for the
type of encoding that must transform the input data into numerical representation for the
learning algorithm.

Chen et al. [19] approach multi-class PPI via a framework that includes a siamese deep
residual recurrent convolutional neural network (to capture latent features of sequence
pairs) and a data processing component, and which preserves contextualised and sequential
information found in proteins. Protein sequences are encoded using pre-trained Skip-Gram
embeddings which capture amino acids co-occurence similarities and one-hot encodings
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of hydrophobicity and electrotaticity classes [20]. Several data sets of different sizes are
employed for various types of prediction tasks (binary, multi-class interaction and binding
affinity estimation).

To leverage the strengths of several techniques and to achieve a more comprehensive
procedure, Li et al. [21] introduce a a deep ensemble learning method. The method uses a
combination of encodings for proteins (local descriptors, auto covariance, conjoint triads,
pseudo amino acid composition) and an ensemble model including several modules such
as: input, convolution, attention mechanism (which uses the multi-attention mechanism
to capture essential features), deep neural network and, lastly, an integration module.
The evaluation is performed on five data sets and the obtained prediction performances
demonstrate the strengths of the proposed method.

Autoencoders in particular have not been widely adopted to tackle PPI, but there
are some recent papers that propose solutions based on this type self-supervised learning
methods. Two works by Wang et al. [22,23] use autoencoders in the process of predicting
PPI. The main predictor is a probabilistic SVM, whose input is provided by the autoen-
coders. In both approaches numeric matrices extracted from protein sequences are brought
into play (in one case, the position specific scoring matrix and in the other the position
weight matrix). From these, the authors extract another level of information via Zernike
moments and Legendre moments, respectively, which are further refined via a stacked
autoencoder. Lastly, the obtained extracted features are fed to the SVM-based classifier. In
both cases the method was tested via several protein data sets and the resulting accuracies
are high.

A stacked autoencoder as for PPI classification is proposed by Sun et al. [7]. The input
is provided by applying either autocovariance or conjoint triads and the autoencoder latent
representation is linked to a softmax classifier. After the training phase, the authors notice
that models containing just one hidden layer were sufficient for relatively high accuracy.
Several test sets from different species have been experimented on and the results suggest
that the method obtains superior accuracies, compared to other methods.

Sharma and Singh [24] propose the use of autoencoders in conjunction with Light
Gradient Boosting Machine (LightGBM) for PPI prediction. They combine protein sequence
features obtained by conjoint triads and a multi-descriptor called composition-transition-
distribution and employ the autoencoder to reduce the dimentionality of the vectors fed to
LightGBM. Experiments were performed on six PPI data sets, as well as three PPI networks
and the proposed model obtained very good performances.

Variational autoencoders have also proved their value in PPI prediction, as demon-
strated by Yang et al. [25]. However, as opposed to the previously mentioned research,
this work is different in that it also needs structural information of PPI networks. The
main classifier in this case is a feedforward artificial neural network which receives as
input protein embeddings created by a signed variational graph autoencoder (S-VGAE).
Similar to many other research before, the proteins are first encoded using the conjoint
triads method and further the S-VGAE learns embeddings for proteins based on their
sequences and graph information (such as position, neighbouring nodes). The obtained
results show that the proposed approach outperforms other methods in the literature, yet
it must be noted that this method also requires additional input information.

Autoencoders are neural networks which learn to reconstruct the input data, typically
by mapping the input to a compressed representation. From this perspective, autoencoders
learn nonlinear embeddings for the inputs, which are able to capture the essential char-
acteristics of the input data [26]. Paired data instances are usually modeled by siamese
architectures, which are networks designed to learn shared weights between the two
instances in a pair. Siamese neural networks have been successfully used for one-shot
classification of images [27] and sentence matching [28]. Siamese versions of autoencoders
have been studied for tackling various problems, however, they differ from our proposed
architectures. A siamese autoencoder composed of a shared encoder and two separate
decoders—one for each component in the pair—has been introduced by Utkin et al. [29]
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for detecting anomalies in multi-robot systems. Variational siamese networks were pro-
posed by Deudon [28] for effectively learning semantic similarities between questions. In
their work, variational autoencoders are used to map questions to their reformulations.
Afterwards, the pre-trained encoder is used as the siamese component of a neural network
trained to predict semantic similarity of two questions.

3. Methodology

In this section we are introducing a binary supervised classifier AutoPPI for predicting
if two proteins interact or not. The proposed classifier is composed of two autoencoders
(AEs) used for encoding relationships between both the class of proteins that interact and
the class of proteins that do not interact.

We decided to use autoencoders in designing AutoPPI due to their ability to self-
supervisedly learn, through their latent space representation, features that are relevant for
distinguishing between pairs of proteins that interact or not.

3.1. Theoretical Model

The PPI problem may be formalized as a binary classification one. Let us consider that
we are given two classes C+ (the positive class) and C− (the negative class), where by C+

we denote the class consisting of pairs of proteins that interact and C− is composed by all
pairs of proteins that do not interact. The PPI problem formalized as a binary classification
problem consists of deciding if a given pair of proteins (p1, p2) belongs to the positive class
or to the negative class. Let us denote, in the following, by C the set of all pairs of proteins,
i.e., C = C+ ∪ C−.

From a machine learning perspective, the PPI classification problem may be formalized
as learning to approximate two target functions pr+ : C → [0, 1] and and pr− : C → [0, 1]
expressing the probability that a certain pair of proteins belongs to either the “+” or the “−”
class, i.e., pr+(p) + pr−(p) = 1, ∀p ∈ C.

In a supervised learning scenario, the aim is to train a binary classifier on pairs of
proteins belonging to both C+ and C− with the goal of predicting if a pair of proteins
unseen during training belongs to C+ (i.e., the proteins interact) or to C− (i.e., the proteins
do not interact).

Our AutoPPI classifer uses two autoencoders A+ and A−, the first one being trained
to learn relationships between the proteins that interact while the second one is trained
to recognize pairs of proteins that do not interact. The aim is to train the classifier to
predict if a certain pair of proteins does or does not interact, the prediction being based on
the similarity degree of the given pair of proteins against all other pairs of proteins that
are encoded into the autoencoders A+ and A−. The autoencoders are used, through the
representation of their hidden (encoded) state, for learning relevant characteristics and
discriminating between pairs of proteins that interact and pairs of proteins that do not.

As depicted in Figure 1, the main stages of AutoPPI are as follows:

1. Data collection, representation and preprocessing. This stage includes the following steps:

i. Collection of data sets which will be used in further training AutoPPI (i.e., the
pairs of proteins from C);

ii. Selection of the set of features relevant for representing the pairs of protein
sequences in a vector space model.

2. Training. The set of preprocessed vectors characterizing pairs of proteins prepared at
the previous stage will be used for training the AEs and for building the supervised
learning model AutoPPI.

3. Performance evaluation. This stage refers to the performance evaluation of our
predictive model AutoPPI previously trained. AutoPPI will be tested on pairs of
proteins unseen during the training stage and its performance will be assessed through
relevant evaluation metrics.
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Figure 1. Overview of our approach: AutoPPI.

The following sections will detail the stages of our approach.

3.2. Data Collection, Representation and Preprocessing

Let us consider that a protein is encoded by a set F = (F1, F2, . . . Fk) of relevant
features. Thus, a protein p will be represented as a numerical high-dimensional vector
p = (p1, p2, . . . , pk), where pi represents the value of feature Fi obtained for protein p. A
pair of proteins (p, p′) will be, subsequently, visualized as a data point in R2·k, i.e., a 2 · k
dimensional vector obtained by concatenating the k-dimensional representation of proteins
p and p′. More specifically, if p = (p1, p2, . . . , pk) and p′ = (p′1, p′2, . . . , p′k) then the pair
(p, p′) is represented as the vector (p1, p2, . . . , pk, p′1, p′2, . . . , p′k).

For selecting the most appropriate feature-based representation for proteins, we
started from two representations extensively used in protein–protein interaction prediction
tasks: Conjoint Triad (CT) descriptors [7,20,30] and Autocovariance (AC) descriptors [7,12,15,30].

1. CT features [20] can be used to obtain fixed-length representations for protein se-
quences by grouping amino acids into seven classes based on their physico–chemical
properties. Then, a sliding window of size 3 is passed through the protein sequence
and the frequencies of possible triples of amino acid classes are computed. Thus, for
a protein, a vector of size 7× 7× 7 = 343 is built. Since longer protein sequences
are more likely to have higher frequency values than shorter sequences, the final
values of the CT descriptors are represented by the normalized frequencies. The CT
descriptors were obtained using the iFeature library [31].

2. AC features are another type of descriptors which characterize variable-length pro-
tein sequences using vectors of fixed size [12]. Unlike CT features which take into
account only groups of three consecutive amino acids, AC descriptors are able to
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capture long-term dependencies in a protein sequence, through defining a lag variable
and computing correlations between amino acids situated in the sequence at at most
lag positions apart. Thus, for m properties and a distance lag, a vector of size m× lag
is obtained. We computed the AC features using the group of 14 amino acid properties
provided by Chen et al. [15]. These properties are hydrophobicity computed using
two different scales, hydrophilicity, net charge index of side chains, two scales of po-
larity, polarizability, solvent-accessible surface area, volume of side chains, flexibility,
accessibility, exposed surface, turns scale and antegenic propensity [15]. Since the
value of lag needs to be smaller than the sequence length, we selected different values,
according to each tested data set (details are provided in Section 4).
In the computation of both descriptors we used the default procedure of iFeature
which removes non-standard amino-acids from the protein sequences.

In this study, we considered a combined feature-based representation for the proteins,
obtained by concatenating the AC and CT features computed for a protein sequence, in
order to leverage the information captured by both types of features. The chosen method
of representation uniformizes proteins, irrespective of their sequence length.

3.3. Training

As previously described, an autoencoder is trained for each class Ci (i ∈ {+,−}) and
is aimed to encode relationships between the features characterizing proteins that do or do
not interact. Let us denote by AE+ and AE− these autoencoders: AE+ will be trained on
the data set C+, while AE− will be trained on the data set C−. A training example consists
of the 2 · k-dimensional vectorial representation (see Section 3.2) for the pair of proteins
labeled with the class to which the pair of proteins belongs (i.e., “+” or “−”). During the
autoencoders’ training, a loss function that penalizes the difference between the output
generated by the autoencoder and the provided input is used such that the autoencoders
will learn to encode pertinent relationships between pairs of proteins.

For training AutoPPI, for each i ∈ {+,−}, we will use the majority (either 80% or
90%, according to the tested data set) of the data set Ci for training AEi and validation and
the remaining data (20%, 10%) from Ci will be subsequently used for testing. From the
training and validation portion of the data, we randomly selected a proportion of 10% for
model validation.

3.3.1. Proposed AE Architectures

Three architectures are proposed for the autoencoders AE+ and AE− and these are
detailed in the following sections.

Joint–Joint architecture

Our first architecture receives as input data the representation describing the pairs of
proteins and reconstructs the concatenated features corresponding to the protein pairs. A
schematic representation of the architecture is depicted in Figure 2.

Figure 2. Overview of the Joint–Joint architecture.

Siamese–Joint architecture

Guided by the success of siamese neural network architectures in modeling pair
data [19,32–34], we designed two autoencoder architectures aimed at better capturing
common features in the protein pairs. Thus, instead of directly combining the protein
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features in the input space, these architectures have a shared encoder structure which
compresses the two proteins in a pair in two encodings, thus being able to capture patterns
present in both proteins from a pair.

The first such architecture, further referred to as Siamese–Joint, has a shared structure
only for the encoder, while aiming to reconstruct the concatenated features of the two
proteins. This architecture is presented in Figure 3. The shared encoder compresses the
two proteins p and p′ into the latent space representations z and z′, which are subsequently
concatenated and used to reconstruct the pair (p, p′).

Figure 3. Overview of the Siamese–Joint architecture.

Siamese–Siamese architecture

The last investigated architecture has a siamese structure in both the encoder and
decoder, the weights being shared between the two proteins in a pair. In order to encode
information about both proteins in a pair, we obtain a reconstruction for each protein
by also using the other protein in the pair. This is achieved by combining the encodings
of the two proteins into a common encoding that is used for reconstructing the original
proteins. Figure 4 depicts the autoencoder architecture. The encodings z and z′ for p and p′

respectively are multiplicated element-wise, yielding a common representation ẑ. Then, the
reconstruction of p is obtained from the concatenation of z and ẑ and the reconstruction of
p′ is obtained from the concatenation of z′ and ẑ. The last concatenation step is performed
in order to obtain different encodings for the two proteins in the pair to be passed through
the shared decoder.

Figure 4. Overview of the Siamese–Siamese architecture.

The neural network architectures employed in our study are formed of fully connected
layers. For all of the three above mentioned autoencoder architectures, the encoder was



Entropy 2021, 23, 643 8 of 15

formed of two layers of 600 neurons linked to a bottleneck layer of 300 neurons, followed
by a symmetric decoder. The SELU [35] activation function was used. The autoencoders
were trained by minimizing the mean squared error loss using the Adam optimizer with
an initial learning rate of 0.0005 and batch size of 64 for 2000 epochs. The learning rate was
reduced by a factor of 2 when reaching a sequence of 5 epochs during which the validation
loss had not improved, up to a minimum value of 10−5. The models were implemented
using the TensorFlow library [36].

3.4. Performance Evaluation

This section introduces the methodology applied for evaluating the performance of
AutoPPI model after it was trained as shown in Section 3.3. We start by explaining in
Section 3.4.1 how the classification of a new pair of proteins will be provided by the trained
AutoPPI. Then, the evaluation metrics and the testing methodology will be introduced.

3.4.1. Classification Using AutoPPI

At the testing stage of the previously trained AutoPPI classifier, a new pair of proteins
(p, p′) has to be classified as belonging to the “+” or “−” class. As shown in Section 3.2,
the pair (p, p′) is represented as an 2 · k-dimensional numerical vector consisting of the
concatenated list of relevant features characterizing the proteins p and p′. We decide if two
proteins p and p′ are likely to interact if the loss of autoencoder AE+ computed for the pair
(p, p′) is lower than the loss of autoencoder AE− computed for the same pair. This means,
intuitively, that the pair (p, p′) is likely to be more similar to the information encoded by
AE+ than to the one encoded by AE−. The underlying idea is the fact that an autoencoder
is known to be able to reconstruct data selected from the same distribution as the data it
was trained on. Moreover, the autoencoder is unable to recreate, using its learned hidden
representation, an input instance dissimilar to the training data. The classification of
AutoPPI is based on computing two probabilities: pr+(p, p′) representing the probability
that the proteins p and p′ interact and pr−(p, p′) representing the probability that the
proteins p and p′ do not interact.

Let us denote by L−(p, p′) the loss value computed for the pair (p, p′) by the au-
toencoder AE− and by L+(p, p′) the loss value computed for the pair (p, p′) by the
autoencoder AE+.

The probabilities pr−(p, p′) and pr+(p, p′) are computed as given in Formulas (1) and (2).

pr−(p, p′) = 0.5 +
L+(p, p′)− L−(p, p′)

2 · (L+(p, p′) + L−(p, p′))
(1)

pr+(p, p′) = 1− pr−(p, p′). (2)

From Formula (1) we note that 0 ≤ pr−(p, p′) ≤ 1 and that if L−(p, p′) ≤ L+(p, p′),
then pr−(p, p′) ≤ 0.5, meaning that the pair (p, p′) is classified by AutoPPI as being
negative (i.e., there is no interaction between proteins p and p′ ). Moreover, pr−(p, p′) = 1
if L−(p, p′) = 0.

3.4.2. Testing

After it was trained, AutoPPI is tested on the remainder of each data set C+ and C−
which was not used for training or validation. For each testing set, the confusion matrix is
computed for the binary classification task and it consists of the following values: TP (true
positives), FP (false positives), TN (true negatives) and FN (false negatives). The classification of
a certain pair of proteins (p, p′) is decided as described in Section 3.4.1.

For measuring the performance of AutoPPI on a certain testing data set, the following
evaluation measures are reported based on the confusion matrix values (TP, TN, FP and
FN). Based on the values from the confusion matrix, the following evaluation measures are
computed [37]:
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• precision, Prec = TP
TP+FP ;

• recall or sensitivity, Recall = TP
TP+FN ;

• specificity or true negative rate, Spec = TN
TN+FP ;

• F1-score or F-score, F1 = 2 · precision·recall
precision+recall ;

• Area Under the ROC Curve (AUC), AUC = Spec+Recall
2 .

Due to the randomness involved in the selecting the training/validation/testing data
sets, a k-fold cross-validation testing methodology is applied by repeating the testing k times.
The values for the evaluation measures are then averaged over the k runs and a 95%
confidence interval (CI) [38] of the average value is computed. We used the same number of
folds used in the literature for those data sets.

4. Experimental Results

This section starts by describing in Section 4.1 the data sets used for evaluating the
performance of the AutoPPI classifier introduced in Section 3. The experimental results
obtained from the considered case studies are then presented in Section 4.2.

4.1. Data Sets

The first data set used in our experiments is Pan’s human protein–protein interactions
data set [39], which contains positive samples collected from the HPRD-2007 database. The
negative interactions were obtained by selecting pairs of proteins with different sub-cellular
localizations [7,39]. The data were obtained from the source http://www.csbio.sjtu.edu.
cn/bioinf/LR_PPI/Data.htm, accessed on 20 May 2020, indicated in [39].

The Multi-species data set was proposed by Chen et al. [19] and was obtained by
gathering proteins belonging to three organisms—C. elegans, D. melanogaster and E.coli. The
data set has been obtained by combining the three protein–protein interactions data sets
originally proposed by Guo et al. [40]. In addition to the full combined data set, several
non-redundant versions are available, in which proteins with sequence similarity above
a certain threshold have been removed. We have used in our experiments the full data
set, alongside the data sets https://github.com/muhaochen/seq_ppi, accessed on 20 May
2020, filtered using 25% and 1% similarity thresholds.

An overview of the data sets and their number of positive and negative interactions is
presented in Table 1.

Table 1. Data sets used in the experiments.

Data Set Number of Positive Number of Negative
Interactions Interactions

HPRD 36,630 36,480

Multi-species 32,959 32,959

Multi-species < 0.25 19,458 15,827

Multi-species < 0.01 10,747 8065

The data were preprocessed and features were extracted as described in Section 3.2.
The value for the lag parameter (necessary in the computation of AC features) was 30, as
suggested by Guo et al. [12,40] for the Multi-species data set, resulting in a number of
14× 30 = 420 features per protein sequence; for the HPRD data set we used a value of
20, resulting in 280 features (this value was chosen considering that the protein with the
shortest primary sequence is formed of 25 amino acids).

Figure 5 depicts a two-dimensional PCA projection of the protein pairs for the Multi-
species data set, in which pair features are obtained by concatenating the features of the
two proteins. The figure shows a low degree of separation between the two classes.

http://www.csbio.sjtu.edu.cn/bioinf/LR_PPI/Data.htm
http://www.csbio.sjtu.edu.cn/bioinf/LR_PPI/Data.htm
https://github.com/muhaochen/seq_ppi
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Figure 5. PCA visualization of the data instances for the Multi-species data set.

4.2. Results

We followed the evaluation protocol used in previous studies [7,19] and performed 10-
fold cross-validation for the HPRD data set and 5-fold cross-validation for the multi-species
data set. Thus, during each cross-validation step, AutoPPI was trained and validated
on the majority of the data sets C+ and C− (80% for the Multi-species data sets and 90%
for the HPRD data set). After training, AutoPPI is tested on the remaining data (20% for
Multi-species and 10% for HPRD) which was not used for training and validation.

Table 2 presents the results for the three architectures proposed in Section 3.3.1 on the
data sets described in Section 4.1, following the methodology introduced in Section 3. In
the second column of the table the used architecture is depicted: one denotes the Joint–
Joint architecture, two corresponds to the Siamese–Joint architecture and three indicates
the Siamese–Siamese architecture The values for the performance measures described in
Section 3.4.2 were averaged over the cross-validation runs and a 95% CI of the average
values is provided. The best performances are highlighted, for each data set.

Table 2. Experimental results. 95% CIs are used for the results. 1—denotes the Joint–Joint architecture, 2—the Siamese–Joint
architecture, 3—the Siamese–Siamese architecture. The best performances are marked in bold.

Data Set Arch. Accuracy F1 − Score Precision Recall Specificity AUC

1 0.977 ± 0.0006 0.977 ± 0.0007 0.986 ± 0.0009 0.968 ± 0.001 0.986 ± 0.0009 0.977 ± 0.0006
2 0.979 ± 0.0007 0.979 ± 0.0007 0.973 ± 0.0015 0.985 ± 0.009 0.973 ± 0.0015 0.979 ± 0.0007HPRD

3 0.96 ± 0.0014 0.959 ± 0.0015 0.992 ± 0.006 0.928 ± 0.0024 0.992 ± 0.006 0.960 ± 0.0014

1 0.97 ± 0.0007 0.969 ± 0.0006 0.995 ± 0.0007 0.944 ± 0.0015 0.995 ± 0.0006 0.97 ± 0.0005
2 0.969 ± 0.0008 0.97 ± 0.0009 0.965 ± 0.0028 0.974 ± 0.002 0.964 ± 0.0025 0.97 ± 0.008Multi-species

3 0.982 ± 0.0008 0.982 ± 0.0008 1 ± 0 0.964 ± 0.0016 1 ± 0 0.982 ± 0.008
1 0.973 ± 0.0011 0.975 ± 0.0009 0.995 ± 0.0011 0.956 ± 0.0017 0.995 ± 0.0012 0.975 ± 0.001
2 0.976 ± 0.0007 0.978 ± 0.0008 0.974 ± 0.0011 0.983 ± 0.0008 0.968 ± 0.0013 0.975 ± 0.0008

Multi-species
<0.25

3 0.983 ± 0.0015 0.984 ± 0.0014 1 ± 0 0.969 ± 0.0027 1 ± 0 0.985 ± 0.0013

1 0.972 ± 0.0023 0.975 ± 0.0019 0.993 ± 0.001 0.958 ± 0.0035 0.991 ± 0.0015 0.975 ± 0.002
2 0.978 ± 0.0015 0.981 ± 0.0013 0.975 ± 0.0024 0.987 ± 0.0027 0.966 ± 0.0031 0.976 ± 0.0015

Multi-species
<0.01

3 0.981 ± 0.0016 0.983 ± 0.0014 1 ± 0 0.966 ± 0.0027 1 ± 0 0.983 ± 0.0014

The results presented in Table 2 reveal very good performances for all three archi-
tectures in terms of AUC values raging from 0.96 to 0.985. Generally, the Siamese–Joint
and Siamese–Siamese architectures outperform the Joint–Joint variant, thus indicating the
importance of capturing common patterns in both proteins involved in the interaction. The
best performing model is the Siamese–Siamese architecture (denoted by three in the table)
that provided the best AUC values for three out of the four data sets used. Moreover, when
inspecting the values for the other evaluation measures we notice that this architecture
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conveys the best results in most cases (accuracy and F1-score: three out of four, precision
and specificity: four out of four).

Despite the low degree of separation between the “+” and “−” classes (see Figure 5),
AutoPPI succeeded to learn a good decision boundary. The quality of the learned decision
surface is reflected in high values obtained for the performance metrics. As expected, the
autoencoders AE+ and AE− were able to learn encodings (through their latent representa-
tions) able to distinguish between the class of proteins that interact and the class of proteins
that do not interact.

With regard to the data sets, we observe that our models have good performances,
irrespective of data set size and degree of imbalance. This is best noticed when inspecting
the three versions of the Multi-species data set, where the AUC measure is above 0.98
for all three, with very small differences between obtained values, with respect to all
evaluation measures.

Last, but not least, we note very small values obtained for the CI (below 0.01) express-
ing the stability of our model.

5. Comparison to Related Work

Table 3 presents a comparison between our best model on the HPRD data set, AutoPPI
with Siamese–Joint architecture, and various machine learning and deep learning ap-
proaches that use protein sequence data, tested on the same data set. The machine learning
and deep learning methods include support vector machines (SVMs) trained on CT and
AC features or other representations derived from the protein sequence [20,40,41], parallel
SVMs [42], SVMs used in combination with a compressed sensing algorithm for reducing
the input space dimensionality (CS-SVM) [43], extreme learning machines (ELM) [44], a
Latent Dirichlet allocation model combined with a Random Forest (LDA-RF) [39], a stacked
autoencoder [7], a graph variational autoencoder [25], deep neural networks [45–47] and
a deep convolutional recurrent neural network [19]. From the results presented in the
table, we can see that AutoPPI outperforms classical machine learning algorithms, with
the exception of the LDA-RF approach proposed by Pan et al. [39], is slightly surpassed
by the S-VGAE proposed in [25] and achieves comparable performance with the stacked
autoencoder proposed by Sun et al. [7] (marginally outperforming it). We note that
the LDA-RF, ELM, CS-SVM and S-VGAE methods performed a 5-fold cross-validation
evaluation procedure, while the other studies employed a 10-fold methodology.

Table 3. Comparison between our method and related work on the HPRD data set.

Method Accuracy F1
AutoPPI 0.979 ± 0.0007 0.979 ± 0.0007

SAE [7] 0.9719 -
PIPR [19] 0.9811 0.9803

LDA-RF [39] 0.979 ± 0.005 -

CT-SVM [20] reported in [7] 0.83 -

AC-SVM [40] reported in [7] 0.9037 -

Parallel SVM [42] reported in [7] 0.9200–0.9740 -

ELM [44] reported in [7] 0.8480 0.8477

CS-SVM [43] 0.941 0.937

SVM [41] 0.942 -

DNN [46] 0.9443 ± 0.0036 -

DNN-PPI [45] 0.9726 ± 0.0018 -
DNN-CTAC [47] 0.9837 -

S-VGAE [25] 0.9915 ± 0.0011 0.9915 ± 0.0012
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Table 4 presents a comparison between our best model on the Multi-species data set,
AutoPPI with Siamese–Siamese architecture, and the deep residual recurrent convolutional
architecture proposed by Chen et al. [19].

Table 4. Comparison between our method and related work on the Multi-species data sets.

Data Set Method Accuracy F1

Multi-species
AutoPPI 0.9821± 0.0008 0.9818 ± 0.0008

PIPR [19] 0.9819 0.9817

Multi-species
<0.25

AutoPPI 0.9829 ± 0.0015 0.9842 ± 0.0014

PIPR [19] 0.9791 0.9808

Multi-species
<0.01

AutoPPI 0.9808 ± 0.0016 0.9829 ± 0.0014

PIPR [19] 0.9751 0.9780

The comparative results illustrated in Table 3 highlight that our AutoPPI approach
outperforms the related work on the HPRD data set, except for three cases: the S-VGAE
approach, which is a graph-based method that exploits network information in PPIs and
two deep neural networks (the PIPR method, which is a deep neural network that models
long range dependencies and patterns in protein sequences through bidirectional gated
recurrent units networks, and DNN-CTAC). On all Multi-species data sets, our approach
has higher performance than the related approaches [19], in terms of accuracy and F1-
score. Overall, in 81.25% of the comparisons with the related work (in 13 cases out of 16
comparisons), AutoPPI provides better results.

For verifying the statistical significance of the performance improvement brought by
AutoPPI compared to the approaches considered in Tables 3 and 4, a one tailed paired
Wilcoxon signed-rank test [48,49] was applied. The sample of values obtained for all
evaluations and both accuracy and F1 performance metrics described in Tables 3 and 4 for
AutoPPI was tested against the sample of values obtained for the related work. A p-value
of 0.00094 was obtained, showing that the performance improvement of our method with
respect to the related work approaches is statistically significant, at a significance level of
alpha = 0.01.

6. Conclusions

Living beings are complex machinery whose inner gears have evolved to work flaw-
lessly, in ideal conditions. Proteins, the fundamental cogwheels in this gear, perform most
of their functions in complexes and thus understanding the way they interact with each
other as well as with other molecules represents a step forward in figuring out the mecha-
nisms of life. Through the present work we aim to bring our contribution in this endeavour
and to advance the state of in silico methods for solving the problem of PPI prediction.

We propose a procedure for the binary classification of protein–protein interactions
(positive versus negative) having as focal points two autoencoders that are trained to
encode relationships between proteins that do or do not interact. In addition to protein
interactions, the input data are represented by protein primary sequences, which are
encoded by a combination of two types of descriptors: conjoint triad and autocovarriance.
We propose three types of architectures for the autoencoders and evaluate our approach on
four data sets including proteins from different species. Experimental results demonstrate
the potential of our approach, which proves to be highly competitive in relation to other
solutions proposed in the literature. To the best of our knowledge autoencoders have
not been exclusively used for predicting PPI so far (in all other approaches autoencoders
provide an intermediate assistant used for feature extraction and dimensionality reduction
in data before this is fed to the main classifier).

We note the generality of the binary classification model AutoPPI introduced in this
paper. The current approach used features extracted from pairs of protein sequences, but
sequence alignments and position-specific scoring matrices may be used as input data for



Entropy 2021, 23, 643 13 of 15

AutoPPI as well. Even if it has been applied and evaluated for protein–protein interaction, it
is general and may be applied for other binary classification problems.

To further evaluate the performance of AutoPPI, its experimental evaluation will be
extended on other data sets from the PPI literature, including PPI networks. Given the
fact that experimental methods of obtaining PPIs are expensive and prone to generating
false positives, PPIs databases are being continuously updated. In order to more reliably
asses the performance of our approach from this perspective, we plan to further evaluate
it on more recently curated PPI data sets. In addition, alternative representations for the
proteins will be envisaged, such as matrices derived from protein sequences, evolutionary
information and word embeddings representations for these sequences. In this context, we
plan to investigate deep architectures, formed of convolutional and recurrent layers, which
could skip the additional step of representing proteins using fixed-length representations
and better extract sequential information involved in protein interactions. For assessing
the generality of the AutoPPI model, it will be applied and evaluated on sequence align-
ments instead of protein sequences as well as on other classification problems, such as the
identification of protein–RNA interactions, the prediction of protein–protein interaction
sites or protein family classification.
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