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of the respective cumulant function and mean value function. Moreover, the same applies to related
entropy and affinity measures. We compile representations scattered in the literature and present a
unified approach to the derivation in exponential families. As a statistical application, we highlight
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1. Introduction

There is a broad literature on divergence and distance measures for probability distri-
butions, e.g., on the Kullback–Leibler divergence, the Cressie–Read divergence, the Rényi
divergence, and Phi divergences as a general family, as well as on associated measures of
entropy and affinity. For definitions and details, we refer to [1]. These measures have been
extensively used in statistical inference. Excellent monographs on this topic were provided
by Liese and Vajda [2], Vajda [3], Pardo [1], and Liese and Miescke [4].

Within an exponential family as defined in Section 2, which may consist of multi-
parameter and multivariate distributions, several divergence measures and related quan-
tities are seen to have nice explicit representations in terms of the respective cumulant
function and mean value function. These representations are contained in different sources.
Our focus is on a unifying presentation of main quantities, while not aiming at an ex-
haustive account. As an application, we derive confidence regions for the parameters of
exponential distributions based on different divergences in a simple multi-sample setup.

For the use of the aforementioned measures of divergence, entropy, and affinity, we
refer to the textbooks [1–4] and exemplarily to [5–10] for statistical applications, including
the construction of test procedures as well as methods based on dual representations of
divergences, and to [11] for a classification problem.

2. Exponential Families

Let Θ 6= ∅ be a parameter set, µ be a σ-finite measure on the measurable space (X ,B),
and P = {Pϑ : ϑ ∈ Θ} be an exponential family (EF) of distributions on (X ,B) with
µ-density

fϑ(x) = C(ϑ) exp

{
k

∑
j=1

Zj(ϑ) Tj(x)

}
h(x) , x ∈ X , (1)

of Pϑ for ϑ ∈ Θ, where C, Z1, . . . , Zk : Θ → R are real-valued functions on Θ and
h, T1, . . . , Tk : (X ,B) → (R1,B1) are real-valued Borel-measurable functions with h ≥ 0.
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Usually, µ is either the counting measure on the power set of X (for a family of dis-
crete distributions) or the Lebesgue measure on the Borel sets of X (in the continuous
case). Without loss of generality and for a simple notation, we assume that h > 0 (the set
{x ∈ X : h(x) = 0} is a null set for all P ∈ P). Let ν denote the σ-finite measure with
µ-density h.

We assume that representation (1) is minimal in the sense that the number k of sum-
mands in the exponent cannot be reduced. This property is equivalent to Z1, . . . , Zk being
affinely independent mappings and T1, . . . , Tk being ν-affinely independent mappings;
see, e.g., [12] (Cor. 8.1). Here, ν-affine independence means affine independence on the
complement of every null set of ν.

To obtain simple formulas for divergence measures in the following section, it is
convenient to use the natural parameter space

Ξ∗ =

{
ζ ∈ Rk :

∫
eζtT h dµ < ∞

}
and the (minimal) canonical representation {P∗ζ : ζ ∈ Z(Θ)} of P with µ-density

f ∗ζ (x) = C∗(ζ) eζtT(x) h(x) , x ∈ X , (2)

of P∗ζ and normalizing constant C∗(ζ) for ζ = (ζ1, . . . , ζk)
t ∈ Z(Θ) ⊂ Ξ∗, where Z =

(Z1, . . . , Zk)
t denotes the (column) vector of the mappings Z1, . . . , Zk and T = (T1, . . . , Tk)

t

denotes the (column) vector of the statistics T1, . . . , Tk. For simplicity, we assume that P is
regular, i.e., we have that Z(Θ) = Ξ∗ (P is full) and that Ξ∗ is open; see [13]. In particular,
this guarantees that T is minimal sufficient and complete for P ; see, e.g., [14] (pp. 25–27).

The cumulant function

κ(ζ) = − ln(C∗(ζ)) , ζ ∈ Ξ∗ ,

associated with P is strictly convex and infinitely often differentiable on the convex set Ξ∗;
see [13] (Theorem 1.13 and Theorem 2.2). It is well-known that the Hessian matrix of κ at ζ
coincides with the covariance matrix of T under P∗ζ and that it is also equal to the Fisher
information matrix I(ζ) at ζ. Moreover, by introducing the mean value function

π(ζ) = Eζ [T ] , ζ ∈ Ξ∗ , (3)

we have the useful relation
π = ∇κ , (4)

where ∇κ denotes the gradient of κ; see [13] (Cor. 2.3). π is a bijective mapping from Ξ∗ to
the interior of the convex support of νT , i.e., the closed convex hull of the support of νT ;
see [13] (p. 2 and Theorem 3.6).

Finally, note that representation (2) can be rewritten as

f ∗ζ (x) = eζtT(x)−κ(ζ) h(x) , x ∈ X , (5)

for ζ ∈ Ξ∗.

3. Divergence Measures

Divergence measures may be applied, for instance, to quantify the “disparity” of
a distribution to some reference distribution or to measure the “distance” between two
distributions within some family in a certain sense. If the distributions in the family are
dominated by a σ-finite measure, various divergence measures have been introduced by
means of the corresponding densities. In parametric statistical inference, they serve to
construct statistical tests or confidence regions for underlying parameters; see, e.g., [1].
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Definition 1. Let F be a set of distributions on (X ,B). A mapping D : F ×F → R is called a
divergence (or divergence measure) if:

(i) D(P, Q) ≥ 0 for all P, Q ∈ F and D(P, Q) = 0 ⇔ P = Q (positive definite-
ness).

If additionally

(ii) D(P, Q) = D(Q, P) for all P, Q ∈ F (symmetry)

is valid, D is called a distance (or distance measure or semi-metric). If D then moreover meets

(iii) D(P1, P2) ≤ D(P1, Q) + D(Q, P2) for all P1, P2, Q ∈ F (triangle inequality),

D is said to be a metric.

Some important examples are the Kullback–Leibler divergence (KL-divergence):

DKL(P1, P2) =
∫

f1 ln
(

f1

f2

)
dµ ,

the Jeffrey distance:
DJ(P1, P2) = DKL(P1, P2) + DKL(P2, P1)

as a symmetrized version, the Rényi divergence:

DRq(P1, P2) =
1

q(q− 1)
ln
(∫

f q
1 f 1−q

2 dµ

)
, q ∈ R \ {0, 1} , (6)

along with the related Bhattacharyya distance DB(P1, P2) = DR1/2(P1, P2)/4, the Cressie–
Read divergence (CR-divergence):

DCRq(P1, P2) =
1

q(q− 1)

∫
f1

[(
f1

f2

)q−1
− 1

]
dµ , q ∈ R \ {0, 1} , (7)

which is the same as the Chernoff α-divergence up to a parameter transformation, the re-
lated Matusita distance DM(P1, P2) = DCR1/2(P1, P2)/2, and the Hellinger metric:

DH(P1, P2) =

[∫ (√
f1 −

√
f2

)2
dµ

]1/2
(8)

for distributions P1, P2 ∈ F with µ-densities f1, f2, provided that the integrals are well-
defined and finite.

DKL, DRq , and DCRq for q ∈ R \ {0, 1} are divergences, and DJ , DR1/2 , DB, DCR1/2 ,
and DM (= D2

H), since they moreover satisfy symmetry, are distances on F × F . DH is
known to be a metric on F ×F .

In parametric models, it is convenient to use the parameters as arguments and briefly
write, e.g.,

DKL(ϑ1, ϑ2) for DKL(Pϑ1 , Pϑ2) , ϑ1, ϑ2 ∈ Θ ,

if the parameter ϑ ∈ Θ is identifiable, i.e., if the mapping ϑ 7→ Pϑ is one-to-one on Θ. This
property is met for the EF P in Section 2 with minimal canonical representation (5); see,
e.g., [13] (Theorem 1.13(iv)).

It is known from different sources in the literature that the EF structure admits simple
formulas for the above divergence measures in terms of the corresponding cumulant
function and/or mean value function. For the KL-divergence, we refer to [15] (Cor. 3.2)
and [13] (pp. 174–178), and for the Jeffrey distance also to [16].
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Theorem 1. Let P be as in Section 2 with minimal canonical representation (5). Then, for ζ, η ∈
Ξ∗, we have

DKL(ζ, η) = κ(η) − κ(ζ) + (ζ − η)t π(ζ) (9)

and DJ(ζ, η) = (ζ − η)t (π(ζ) − π(η)) .

Proof. By using Formulas (3) and (5), we obtain for ζ, η ∈ Ξ∗ that

DKL(ζ, η) =
∫ [

ln( f ∗ζ ) − ln( f ∗η )
]

f ∗ζ dµ

=
∫ [

(ζ − η)tT − κ(ζ) + κ(η)
]

f ∗ζ dµ

= κ(η) − κ(ζ) + (ζ − η)t π(ζ) .

From this, the representation of DJ is obvious.

As a consequence of Theorem 1, DKL and DJ are infinitely often differentiable on
Ξ∗ × Ξ∗, and the derivatives are easily obtained by making use of the EF properties.
For example, by using Formula (4), we find∇DKL(ζ, ·) = π(·)−π(ζ) and that the Hessian
matrix of DKL(ζ, ·) at η is the Fisher information matrix I(η), where ζ ∈ Ξ∗ is considered
to be fixed.

Moreover, we obtain from Theorem 1 that the reverse KL-divergence D∗KL(ζ, η) =
DKL(η, ζ) for ζ, η ∈ Ξ∗ is nothing but the Bregman divergence associated with the cu-
mulant function κ; see, e.g., [1,11,17]. As an obvious consequence of Theorem 1, other
symmetrizations of the KL-divergence may be expressed in terms of κ and π as well, such
as the so-called resistor-average distance (cf. [18])

DRA(ζ, η) = 2
(

1
DKL(ζ, η)

+
1

DKL(η, ζ)

)−1

=
2 DKL(ζ, η) DKL(η, ζ)

DJ(ζ, η)
, ζ, η ∈ Ξ∗ , ζ 6= η , (10)

with DRA(ζ, ζ) = 0, ζ ∈ Ξ∗, or the distance

DGA(ζ, η) = [DKL(ζ, η) DKL(η, ζ)]1/2 , ζ, η ∈ Ξ∗ , (11)

obtained by taking the harmonic and geometric mean of DKL and D∗KL; see [19].

Remark 1. Formula (9) can be used to derive the test statistic

Λ(x) = −2 ln

(
supζ∈Ξ0

f ∗ζ (x)

supζ∈Ξ∗ f ∗ζ (x)

)
, x ∈ X ,

of the likelihood-ratio test for the test problem

H0 : ζ ∈ Ξ0 against H1 : ζ ∈ Ξ∗ \ Ξ0 ,
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where ∅ 6= Ξ0 ( Ξ∗. If the maximum likelihood estimators (MLEs) ζ̂ = ζ̂(x) and ζ̂0 = ζ̂0(x) of ζ
in Ξ∗ and Ξ0 (based on x) both exist, we have:

Λ = 2
[
ln( f ∗

ζ̂
)− ln( f ∗

ζ̂0
)
]

= 2
[
κ(ζ̂0)− κ(ζ̂) + (ζ̂ − ζ̂0)

t T
]

= 2 DKL(ζ̂, ζ̂0)

by using that the unrestricted MLE fulfils π(ζ̂) = T; see, e.g., [12] (p. 190) and [13] (Theorem
5.5). In particular, when testing a simple null hypothesis with Ξ0 = {η} for some fixed η ∈ Ξ∗, we
have Λ = 2DKL(ζ̂, η).

Convenient representations within EFs of the divergences in Formulas (6)–(8) can also
be found in the literature; we refer to [2] (Prop. 2.22) for DRq , DH , and DM, to [20] for DB,
and to [9] for DRq . The formulas may all be obtained by computing the quantity

Aq(P1, P2) =
∫

f q
1 f 1−q

2 dµ , q ∈ R \ {0, 1} . (12)

For q ∈ (0, 1), we have the following identity (cf. [21]).

Lemma 1. Let P be as in Section 2 with minimal canonical representation (5). Then, for ζ, η ∈ Ξ∗

and q ∈ (0, 1), we have:

Aq(ζ, η) = exp{κ(qζ + (1− q)η) − [qκ(ζ) + (1− q)κ(η)]} .

Proof. Let ζ, η ∈ Ξ∗ and q ∈ (0, 1). Then,

Aq(ζ, η) =
∫
( f ∗ζ )

q ( f ∗η )
1−q dµ

=
∫

exp
{
(qζ + (1− q)η)t T − [qκ(ζ) + (1− q)κ(η)]

}
h dµ

= exp
{

κ(qζ + (1− q)η) − [qκ(ζ) + (1− q)κ(η)]
}

,

where the convexity of Ξ∗ ensures that κ(qζ + (1− q)η) is defined.

Remark 2. For arbitrary divergence measures, several transformations and skewed versions as
well as symmetrization methods, such as the Jensen–Shannon symmetrization, are studied in [19].
Applied to the KL-divergence, the skew Jensen–Shannon divergence is introduced as

DJSq(P1, P2) = q DKL(P1, qP1 + (1− q)P2) + (1− q) DKL(P2, qP1 + (1− q)P2)

for P1, P2 ∈ P and q ∈ (0, 1), which includes the Jensen–Shannon distance for q = 1/2 (the
distance D1/2

JS1/2
even forms a metric). Note that, for ζ, η ∈ Ξ∗, the density q f ∗ζ + (1− q) f ∗η of the

mixture qP∗ζ + (1− q)P∗η does not belong to P , in general, such that the identity in Theorem 1 for
the KL-divergence is not applicable, here.

However, from the proof of Lemma 1, it is obvious that

1
Aq(ζ, η)

(
f ∗ζ
)q (

f ∗η
)1−q

= f ∗qζ+(1−q)η , ζ, η ∈ Ξ∗ , q ∈ (0, 1) ,

i.e., the EF P is closed when forming normalized weighted geometric means of the densities. This
finding is utilized in [19] to introduce another version of the skew Jensen–Shannon divergence
based on the KL-divergence, where the weighted arithmetic mean of the densities is replaced by
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the normalized weighted geometric mean. The skew geometric Jensen–Shannon divergence thus
obtained is given by

DGJSq(ζ, η) = q DKL(ζ, qζ + (1− q)η) + (1− q) DKL(η, qζ + (1− q)η) , ζ, η ∈ Ξ∗ ,

for q ∈ (0, 1). By using Theorem 1, we find

DGJSq(ζ, η) = q
[
κ(qζ + (1− q)η)− κ(ζ) + (1− q) (ζ − η)tπ(ζ)

]
+ (1− q)

[
κ(qζ + (1− q)η)− κ(η) + q (η− ζ)tπ(η)

]
= κ(qζ + (1− q)η)

− [qκ(ζ) + (1− q)κ(η)] + q(1− q) (ζ − η)t[π(ζ)− π(η)]

= ln(Aq(ζ, η)) + q(1− q) DJ(ζ, η) , (13)

for ζ, η ∈ Ξ∗ and q ∈ (0, 1).
In particular, setting q = 1/2 gives the geometric Jensen–Shannon distance:

DGJS(ζ, η) = κ

(
ζ + η

2

)
− κ(ζ) + κ(η)

2
+

(ζ − η)t[π(ζ)− π(η)]

4
, ζ, η ∈ Ξ∗ .

For more details and properties as well as related divergence measures, we refer to [19,22].

Formulas for DRq , DCRq , and DH are readily deduced from Lemma 1.

Theorem 2. LetP be as in Section 2 with minimal canonical representation (5). Then, for ζ, η ∈ Ξ∗

and q ∈ (0, 1), we have

DRq(ζ, η) =
1

q(q− 1)

[
κ(qζ + (1− q)η) − [qκ(ζ) + (1− q)κ(η)]

]
,

DCRq(ζ, η) =
1

q(q− 1)

[
exp

{
κ(qζ + (1− q)η) − [qκ(ζ) + (1− q)κ(η)]

}
− 1

]
,

and DH(ζ, η) =

(
2 − 2 exp

{
κ

(
ζ + η

2

)
− κ(ζ) + κ(η)

2

})1/2

.

Proof. Since

DRq =
ln(Aq)

q(q− 1)
, DCRq =

Aq − 1
q(q− 1)

, and DH = (2− 2A1/2)
1/2 ,

the assertions are directly obtained from Lemma 1.

It is well-known that

lim
q→1

DRq(P1, P2) = DKL(P1, P2) and lim
q→0

DRq(P1, P2) = DKL(P2, P1) ,

such that Formula (9) results from the representation of the Rényi divergence in Theorem 2
by sending q to 1.

The Sharma–Mittal divergence (see [1]) is closely related to the Rényi divergence as
well and, by Theorem 2, a representation in EFs is available.

Moreover, representations within EFs for so-called local divergences can be derived
as, e.g., the Cressie–Read local divergence, which results from the CR-divergence by
multiplying the integrand with some kernel density function; see [23].
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Remark 3. Inspecting the proof of Theorem 2, DRq and DCRq are seen to be strictly decreasing
functions of Aq for q ∈ (0, 1); for q = 1/2, this is also true for DH . From an inferential point of
view, this finding yields that, for fixed q ∈ (0, 1), test statistics and pivot statistics based on these
divergence measures will lead to the same test and confidence region, respectively. This is not the
case within some divergence families such as DRq , q ∈ (0, 1), where different values of q correspond
to different tests and confidence regions, in general.

A more general form of the Hellinger metric is given by

DH,m(P1, P2) =

(∫
| f 1/m

1 − f 1/m
2 |m dµ

)1/m

for m ∈ N, where DH,2 = DH ; see Formula (8). For m ∈ 2N, i.e., if m is even, the binomial
theorem then yields

[DH,m(P1, P2)]
m =

∫ (
f 1/m
1 − f 1/m

2

)m
dµ

=
m

∑
k=0

(−1)k
(

m
k

) ∫
f k/m
1 f (m−k)/m

2 dµ

=
m

∑
k=0

(−1)k
(

m
k

)
Ak/m(P1, P2) ,

and inserting for Ak/m, k = 1, 1, . . . , m− 1, according to Lemma 1 along with A0 ≡ 1 ≡ A1
gives a formula for DH,m in terms of the cumulant function of the EF P in Section 2. This
representation is stated in [16].

Note that the representation for Aq in Lemma 1 (and thus the formulas for DRq and
DCRq in Theorem 2) are also valid for ζ, η ∈ Ξ∗ and q ∈ R \ [0, 1] as long as qζ + (1− q)η ∈
Ξ∗ is true. This can be used, e.g., to find formulas for DCR2 and DCR−1 , which coincide with
the Pearson χ2-divergence

Dχ2(ζ, η) =
1
2

∫ ( f ∗ζ − f ∗η )2

f ∗η
dµ =

1
2
[A2(ζ, η)− 1]

=
1
2
[exp{κ(2ζ − η) − 2κ(ζ) + κ(η)} − 1]

for ζ, η ∈ Ξ∗ with 2ζ − η ∈ Ξ∗ and the reverse Pearson χ2-divergence (or Neyman χ2-
divergence) D∗

χ2(ζ, η) = Dχ2(η, ζ) for ζ, η ∈ Ξ∗ with 2η− ζ ∈ Ξ∗. Here, the restrictions

on the parameters are obsolete if Ξ∗ = Rk for some k ∈ N, which is the case for the EF of
Poisson distributions and for any EF of discrete distributions with finite support such as
binomial or multinomial distributions (with n ∈ N fixed). Moreover, quantities similar
to Aq such as

∫
f ∗ζ ( f ∗η )γdµ for γ > 0 arise in the so-called γ-divergence, for which some

representations can also be obtained; see [24] (Section 4).

Remark 4. If the assumption of the EF P to be regular is weakened to P being steep, Lemma 1
and Theorem 2 remain true; moreover, the formulas in Theorem 1 are valid for ζ lying in the
interior of Ξ∗. Steep EFs are full EFs in which boundary points of Ξ∗ that belong to Ξ∗ satisfy a
certain property. A prominent example is provided by the full EF of inverse normal distributions.
For details, see, e.g., [13].
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The quantity Aq in Formula (12) is the two-dimensional case of the weighted Ma-
tusita affinity

ρw1,...,wn(P1, . . . , Pn) =
∫ ( n

∏
i=1

fi

)wi

dµ (14)

for distributions P1, . . . , Pn with µ-densities f1, . . . , fn, weights w1, . . . , wn > 0 satisfying
∑n

i=1 wi = 1, and n ≥ 2; see [4] (p. 49) and [6]. ρw1,...,wn , in turn, is a generalization of the
Matusita affinity

ρn(P1, . . . , Pn) =
∫ ( n

∏
i=1

fi

)1/n

dµ

introduced in [25,26]. Along the lines of the proof of Lemma 1, we find the representation

ρw1,...,wn(ζ
(1), . . . , ζ(n)) = exp

{
κ

(
n

∑
i=1

wiζ
(i)

)
−

n

∑
i=1

wiκ(ζ
(i))

}
, ζ(1), . . . , ζ(n) ∈ Ξ∗ ,

for the EF P in Section 2; cf. [27]. In [4], the quantity in Formula (14) is termed Hellinger
transform, and a representation within EFs is stated in Example 1.88.

ρw1,...,wn can be used, for instance, as the basis of a homogeneity test (with null hypoth-
esis H0 : ζ(1) = · · · = ζ(n)) or in discriminant problems.

For a representation of an extension of the Jeffrey distance to more than two distribu-
tions in an EF, the so-called Toussaint divergence, along with statistical applications, we
refer to [8].

4. Entropy Measures

The literature on entropy measures, their applications, and their relations to diver-
gence measures is broad. We focus on some selected results and state several simple
representations of entropy measures within EFs.

Let the EF in Section 2 be given with h ≡ 1, which is the case, e.g., for the one-
parameter EFs of geometric distributions and exponential distributions as well as for the
two-parameter EF of univariate normal distributions. Formula (5) then yields that∫ (

f ∗ζ
)r

dµ =
∫

erζtT−rκ(ζ) dµ = eκ(rζ)−rκ(ζ) = Jr(ζ) , say,

for r > 0 and ζ ∈ Ξ∗ with rζ ∈ Ξ∗. Note that the latter condition is not that restrictive,
since the natural parameter space of a regular EF is usually a cartesian product of the form
A1 × · · · × Ak with Ai ∈ {R, (−∞, 0), (0, ∞)} for 1 ≤ i ≤ k.

The Taneja entropy is then obtained as

HT(ζ) = − 2r−1
∫ (

f ∗ζ
)r

ln
(

f ∗ζ
)

dµ = − 2r−1
(

ζt
∫

T erζtT−rκ(ζ) dµ − κ(ζ) Jr(ζ)

)

= − 2r−1 Jr(ζ)

(
ζt
∫

T f ∗rζ dµ − κ(ζ)

)
= −2r−1 eκ(rζ)−rκ(ζ)

(
ζtπ(rζ)− κ(ζ)

)
for r > 0 and ζ ∈ Ξ∗ with rζ ∈ Ξ∗, which includes the Shannon entropy

HS(ζ) = −
∫

f ∗ζ ln
(

f ∗ζ
)

dµ = κ(ζ)− ζtπ(ζ) , ζ ∈ Ξ∗ ,

by setting r = 1; see [7,28].
Several other important entropy measures are functions of Jr and therefore admit

respective representations in terms of the cumulant function of the EF. Two examples are
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provided by the Rényi entropy and the Havrda–Charvát entropy (or Tsallis entropy), which
are given by

HRr (ζ) =
1

1− r
ln(Jr(ζ)) =

κ(rζ)− rκ(ζ)

1− r
, r > 0 , r 6= 1 ,

and HHCr (ζ) =
1

1− r
(Jr(ζ)− 1) =

1
1− r

(
eκ(rζ)−rκ(ζ) − 1

)
, r > 0, r 6= 1 ,

for ζ ∈ Ξ∗ with rζ ∈ Ξ∗; for the definitions, see, e.g., [1]. More generally, the Sharma–Mittal
entropy is seen to be

HSMr,s(ζ) =
1

1− s

[
(Jr(ζ))

1−s
1−r − 1

]
=

1
1− s

[(
eκ(rζ)−rκ(ζ)

) 1−s
1−r − 1

]
, r > 0 , r 6= 1 , s ∈ R , s 6= 1 ,

for ζ ∈ Ξ∗ with rζ ∈ Ξ∗, which yields the representation for HS as r = s → 1, for HRr as
s→ 1, and for HHCr as s→ r; see [29].

If the assumption h ≡ 1 is not met, the calculus of the entropies becomes more
involved. The Shannon entropy, for instance, is then given by

HS(ζ) = κ(ζ)− ζtπ(ζ) + Eζ [ln(h)] , ζ ∈ Ξ∗ ,

where the additional additive term Eζ [ln(h)], as it is the mean of ln(h) under P∗ζ , will also
depend on ζ, in general; see, e.g., [17]. Since∫ (

f ∗ζ
)r

dµ = eκ(rζ)−rκ(ζ) Erζ

[
hr−1

]
for r > 0 and ζ ∈ Ξ∗ with rζ ∈ Ξ∗ (cf. [29]), more complicated expressions result for other
entropies and require to compute respective moments of h. Of course, we arrive at the
same expressions as for the case h ≡ 1 if the entropies are introduced with respect to the
dominating measure ν, which is neither a counting nor a Lebesgue measure, in general;
see Section 2. However, in contrast to divergence measures, entropies usually depend on
the dominating measure, such that the resulting entropy values of the distributions will
be different.

Representations of Rényi and Shannon entropies for various multivariate distributions
including several EFs can be found in [30].

5. Application

As aforementioned, applications of divergence measures in statistical inference have
been extensively discussed; see the references in the introduction. As an example, we
make use of the representations of the symmetric divergences (distances) in Section 3 to
construct confidence regions that are different from the standard rectangles for exponential
parameters in a multi-sample situation.

Let n1, . . . , nk ∈ N and Xij, 1 ≤ i ≤ k, 1 ≤ j ≤ ni, be independent random variables,
where Xi1, . . . , Xini follow an exponential distribution with (unknown) mean 1/αi for
1 ≤ i ≤ k. The overall joint distribution Pα, say, has the density function

fα(x) = eαtT(x)−κ(α) , (15)

with the k-dimensional statistic

T(x) = − (x1•, . . . , xk•)
t , where xi• =

ni

∑
j=1

xij , 1 ≤ i ≤ k ,
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for x = (x11, . . . , x1n1 , . . . , xk1, . . . , xknk
) ∈ (0, ∞)n, the cumulant function

κ(α) = −
k

∑
i=1

ni ln(αi) , α = (α1, . . . , αk)
t ∈ (0, ∞)k ,

and n = ∑k
i=1 ni. It is easily verified that P = {Pα : α ∈ (0, ∞)k} forms a regular EF with

minimal canonical representation (15). The corresponding mean value function is given by

π(α) = −
(

n1

α1
, . . . ,

nk
αk

)t
, α = (α1, . . . , αk)

t ∈ (0, ∞)k .

To construct confidence regions for α based on the Jeffrey distance DJ , the resistor-
average distance DRA, the distance DGA, the Hellinger metric DH , and the geometric
Jensen–Shannon distance DGJS, we first compute the KL-divergence DKL and the affinity
A1/2. Note that, by Remark 3, constructing a confidence region based on DH is equivalent
to constructing a confidence region based on either A1/2, DR1/2 , or DCR1/2 .

For α = (α1, . . . , αk)
t, β = (β1, . . . , βk)

t ∈ (0, ∞)k, we obtain from Theorem 1 that

DKL(α, β) = −
k

∑
i=1

ni ln(βi) +
k

∑
i=1

ni ln(αi)−
k

∑
i=1

ni
αi
(αi − βi)

=
k

∑
i=1

ni

[
βi
αi
− ln

(
βi
αi

)
− 1
]

,

such that

DJ(α, β) = DKL(α, β) + DKL(β, α)

=
k

∑
i=1

ni

(
αi
βi

+
βi
αi
− 2
)

.

DRA and DGA are then computed by inserting for DKL and DJ in Formulas (10) and (11).
Applying Lemma 1 yields

A1/2(α, β) =

[
k

∏
i=1

(
αi + βi

2

)−ni
](

k

∏
i=1

α
ni/2
i

)(
k

∏
i=1

β
ni/2
i

)

=
k

∏
i=1

[
1
2

(√
αi
βi

+

√
βi
αi

)]−ni

,

which gives DH(α, β) = [2− 2A1/2(α, β)]1/2 by inserting, and, by using Formula (13), also
leads to

DGJS(α, β) = ln(A1/2(α, β)) +
DJ(α, β)

4

=
1
4

k

∑
i=1

ni

[
αi
βi

+
βi
αi
− 4 ln

(
1
2

(√
αi
βi

+

√
βi
αi

))
− 2

]
.

The MLE α̂ = (α̂1, . . . , α̂k)
t of α based on X = (X11, . . . , X1n1 , . . . , Xk1, . . . , Xknk

), is given by

α̂ =

(
n1

X1•
, . . . ,

nk
Xk•

)t
,
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where α̂1, . . . , α̂k are independent. By inserting the random distances DJ(α̂, α), DRA(α̂, α),
DGA(α̂, α), DH(α̂, α), and DGJS(α̂, α) turn out to depend on X only through the vector
(α1/α̂1, . . . , αk/α̂k)

t of component-wise ratios, where αi/α̂i has a gamma distribution with
shape parameter ni, scale parameter 1/ni, and mean 1 for 1 ≤ i ≤ k. Since these ratios are
moreover independent, the above random distances form pivot statistics with distributions
free of α.

Now, confidence regions for α with confidence level p ∈ (0, 1) are given by

C• =
{

α ∈ (0, ∞)k : D•(α̂, α) ≤ c•(p)
}

,

where c•(p) denotes the p-quantile of D•(α̂, α) for • = J, RA, GA, H, GJS, numerical
values of which can readily be obtained via Monte Carlo simulation by sampling from
gamma distributions.

Confidence regions for the mean vector m = (1/α1, . . . , 1/αk)
t with confidence level

p ∈ (0, 1) are then given by

C̃• =

{(
1
α1

, . . . ,
1
αk

)t
∈ (0, ∞)k : (α1, . . . , αk)

t ∈ C•

}

for • = J, RA, GA, H, GJS.
In Figures 1 and 2, realizations of C̃J , C̃RA, C̃GA, C̃H , and C̃GJS are depicted for the

two-sample case (k = 2) and some sample sizes n1, n2 and values of α̂ = (α̂1, α̂2)
t, where

the confidence level is chosen as p = 90%. Additionally, realizations of the standard
confidence region

R =

[
2n1

α̂1χ2
1−q(2n1)

,
2n1

α̂1χ2
q(2n1)

]
×
[

2n2

α̂2χ2
1−q(2n2)

,
2n2

α̂2χ2
q(2n2)

]

with a confidence level of 90% for m = (m1, m2)
t are shown in the figures, where q =

(1−
√

0.9)/2 and χ2
γ(v) denotes the γ-quantile of the chi-square distribution with v degrees

of freedom.
It is found that over the sample sizes and realizations of α̂ considered, the confidence

regions C̃J , C̃RA, C̃GA, C̃H , and C̃GJS are similarly shaped but do not coincide as the plots for
different sample sizes show. In terms of (observed) area, all divergence-based confidence
regions perform considerably better than the standard rectangle. This finding, however,
depends on the parameter of interest, which here is the vector of exponential means; for the
divergence-based confidence regions and the standard rectangle for α itself, the contrary
assertion is true. Although the divergence-based confidence regions have a smaller area
than the standard rectangle, this is not at the cost of large projection lengths with respect
to the m1- and m2-axes, which serve as further characteristics for comparing confidence
regions. Monte Carlo simulations may moreover be applied to compute the expected area
and projection lengths as well as the coverage probabilities of false parameters for a more
rigorous comparison of the performance of the confidence regions, which is beyond the
scope of this article.
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Figure 1. Illustration of the confidence regions C̃J (solid light grey line), C̃RA (solid dark grey
line), C̃GA (solid black line), C̃H (dashed black line), C̃GJS (dotted black line), and R (rectangle)
for the mean vector m = (m1, m2)

t with level 90% and sample sizes n1, n2 based on a realization
α̂ = (0.0045, 0.0055)t, respectively m̂ = (222.2, 181.8)t of the MLE (circle).
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Figure 2. Illustration of the confidence regions C̃J (solid light grey line), C̃RA (solid dark grey line),
C̃GA (solid black line), C̃H (dashed black line), C̃GJS (dotted black line), and R (rectangle) for the mean
vector m = (m1, m2)

t with level 90% and sample sizes n1, n2 based on a realization α̂ = (0.003, 0.007)t,
respectively m̂ = (333.3, 142.9)t of the MLE (circle).
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