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Abstract: Quantum entanglement is not only a fundamental concept in quantum mechanics but
also a special resource for many important quantum information processing tasks. An intuitive way
to understand quantum entanglement is to analyze its geometric parameters which include local
parameters and correlation parameters. The correlation parameters have been extensively studied
while the role of local parameters have not been drawn attention. In this paper, we investigate
the question how local parameters of a two-qubit system affect quantum entanglement in both
quantitative and qualitative perspective. Firstly, we find that the concurrence, a measure of quantum
entanglement, of a general two-qubit state is bounded by the norms of local vectors and correlations
matrix. Then, we derive a sufficient condition for a two-qubit being separable in perspective of
local parameters. Finally, we find that different local parameters could make a state with fixed
correlation matrix separable, entangled or even more qualitatively entangled than the one with
vanished local parameters.

Keywords: quantum entanglement; geometric parameters; two-qubit system

1. Introduction

Entanglement is a fundamental concept in quantum mechanics, which was firstly
recognized by Einstein, Podolsky and Rosen (EPR) [1] and named by Schrödinger [2] in
1935. Since then, quantum entanglement has been extensively studied and it has been
widely accepted that entanglement is one of the most basic characteristics of quantum
mechanics [3]. In recent year, the rising of quantum computation and quantum information
starts the second revolution of quantum technology [4]. Entanglement is not only of
theoretical significance in quantum mechanics but also plays an indispensable role in
quantum computation and quantum information. In the last decades, many novel protocols
for quantum information processing tasks have been proposed, which are applications
of quantum entanglement. For example, this includes quantum key distribution [5],
teleportation [6], quantum dense coding [7], and quantum repeaters [8,9].

In a composite quantum system, there exist quantum states which cannot be inter-
preted as ensembles of product states. This feature of quantum mechanics is known as
quantum entanglement. A quantum state which has this feature is said to be entangled.
Otherwise, the state is separable. Formally, the state ρAB of a bipartite quantum system
A⊗ B is separable if it can be decomposed into the form as follows,

ρAB = ∑
k

pkρA
k ⊗ ρB

k , (1)

where ∑k pk = 1 with each pk ≥ 0, ρA
k and ρB

k are density operators on quantum systems
A and B, respectively. Otherwise, ρAB is entangled. The problem of detecting the entan-
glement of a state is also known as separability problem. The classical determination of
separability problem for a general quantum state has been proved to be NP-hard [10].
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The simplest quantum state that can exhibit quantum entanglement is the state of a
two-qubit system. The general density operator ρAB of a two-qubit quantum system can be
represented by the combination of the identity operator and the generators of the SU(2)
algebra [11] as follows,

ρAB =
1
4
(I ⊗ I +~r ·~σ⊗ I + I ⊗~s ·~σ +

3

∑
j,k=1

Tjkσj ⊗ σk), (2)

where~σ = (σ1, σ2, σ3) is the vector of Pauli matrices,~r and~s are vectors in R3 with norm
less than or equal to 1, and the coefficients Tjk = tr(σj ⊗ σkρAB) compose a 3× 3 real matrix
T. Equation (2) is considered as the geometric representation of quantum state which is
known as the Bloch representation [12]. The Bloch representation can be generalized to
high dimensional and multi-party quantum systems [11].

In the last few decades, a variety of operational approaches and geometric approaches
are investigated to reveal the separability of quantum systems. The first progress for
separability problem was made by Clauser et al. in 1969 [13]. They proposed the well
known CHSH inequality, the violation of which is a sufficient evidence of quantum entan-
glement. Horodecki et al. derived an analytical result for the violation of CHSH inequality.
They proved that the general density operator of a two-qubit system in Equation (2) vi-
olates the CHSH inequality if and only if the sum of the largest two eigenvalues of the
matrix TTT is greater than 1 [14]. The Horodeckis’ further found that the upper bound
of trace norm ‖T‖tr ≤ 1 must hold for any separable state of a two-qubit system [15].
Several necessary conditions for the separable states of more complex quantum systems
have been derived [16–19], which are reduced to the Horodeckis’ result in the case of
two-qubit system.

In perspective of operational approach, Peres found that the partial transposition
of density operators are necessarily positive if they are separable [20]. This criterion for
separability problem is known as positive partial transposition (PPT). It has been proved
that PPT is a sufficient and necessary condition for the separability of 2× 2 and 2× 3
quantum systems [21]. Attempts have been made to generalize the PPT criterion to more
complex scenarios where the quantum systems are of higher dimensions or multiple
participators are involved [22–25]. The entanglement of a bipartite quantum system can
be quantified by the von Neumann entropy of either of the two subsystems, which is also
known as entanglement of formation [26]. The entanglement of formation of a two-qubit
system is analytically related to the corresponding concurrence which can act as another
measure in its own right [27,28]. Our numerical analysis shows that the PPT criterion
and concurrence of a general two-qubit quantum system are qualitatively equivalent for
detecting entanglement.

Consider marginal systems of the two-qubit composite system in Equation (2). The
density operator for the single qubit of system A is ρA = trB(ρAB) =

1
2 (I +~r ·~σ). For the

system B is ρB = trA(ρAB) =
1
2 (I +~s ·~σ). Obviously, the properties of the marginal systems

are completely described by the vectors~r and~s, which are known as local parameters of
the joint quantum system, respectively. Moreover, it is acknowledged that the matrix T
contains all the information about the correlations between the two subsystems A and B [16].
Through numerical analysis, however, we found that there are a large amount of entangled
two-qubit states beyond the capability of the aforementioned analytical conditions which
only consider the correlation matrix T. Our study shows that the local parameters have
unignorable effects on the entanglement. The case where local parameters vanishes has
been completely investigated by Horodeckis [15]. However, there are few literatures that
focus on the cases where local parameters perform an indispensable role.

In this paper, we investigate the effects of local parameters on the entanglement of a
two-qubit system. We find a upper bound and a lower bound for concurrence in geometric
parameters. We derive a sufficient condition for being separable in geometric parameters
based on the PPT criterion. By investigating a special case with general diagonal correlation
matrix and nonvanished local vectors, we find that the entanglement of a two-qubit system
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is heavily affected by local parameters. For a state with fixed correlation parameters,
the different local parameters could make the state separable, entangled or even more
qualitatively entangled than the state with vanished local parameters.

The paper is organized as follows. In Section 2, we introduce the tools for qualitatively
detecting and quantitatively measuring quantum entanglement of a two-qubit system. In
Section 3, we systematically analyze the simplification of geometric representation of a
general two-qubit state via local unitary operations. In Section 4, we analyze the upper
bound and lower bound for concurrence in geometric parameters. In Section 5, we exploit
the effect of local parameters on entanglement in both perspective of qualitative analysis
and quantitative measures.

2. The Qualitative and Quantitative Analysis of Quantum Entanglement

In this section, we introduce the PPT criterion and concurrence of two-qubit states.

2.1. Qualitative Detection of Quantum Entanglement

The aforementioned PPT criterion is a sufficient and necessary condition for detecting
separability of 2× 2 and 2× 3 quantum systems. Suppose ρAB = ∑ijkl λijkl |i〉〈j| ⊗ |k〉〈l| is
the density operator of a general two-qubit system expressed in standard basis. The partial
transposition of the second subsystem of the density operator ρAB is ρPT

AB = ∑ijkl λijkl |i〉〈j| ⊗
(|k〉〈l|)T = ∑ijkl λijkl |i〉〈j| ⊗ |l〉〈k|. Peres found that is the partial transposition of either
subsystem, say ρPT

AB, is necessary positive if ρAB is a separable state [20].

2.2. Quantitative Measure of Quantum Entanglement

A widely accepted measure of quantum entanglement is known as entanglement of
formation, which is denoted as E(·) for any bipartite quantum state in this paper. For a
general bipartite state ρAB, its entanglement of formation is defined as follows [26],

E(ρAB) ≡ min ∑
k

pkE(ψk), (3)

where the minimum is over any possible ensemble {pk, |ψk〉} such that ρAB = ∑k pk|ψk〉〈ψk|
and E(ψk) ≡ S(trB(|ψk〉〈ψk|)) = S(trA(|ψk〉〈ψk|)) is the Von Neumann entropy of either
subsystem of the joint state |ψk〉.

Hill and Wootters found an exact formula of E(·) for a general two-qubit quantum
system as follows,

E(·) = h(
1 +

√
1− C(·)2

2
), (4)

where h(·) is the binary entropy of a real number between 0 and 1 and C(·) stands for the
concurrence of a general two-qubit quantum system. Clearly, concurrence can act as a
measure of quantum entanglement for two-qubit quantum system in its own right.

For a general pure state |ψ〉, the corresponding concurrence is C(ψ) = |〈ψ|ψ̃〉| where
|ψ̃〉 = (Y⊗Y)|ψ∗〉 and |ψ∗〉 is the complex conjugate of |ψ〉 [27]. For a general two-qubit
mixed state ρ, Wootters found the corresponding concurrence as follows [28],

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}, (5)

where λk are eigenvalues of the operator
√√

ρρ̃
√

ρ in the decreasing order and ρ̃ =
(Y ⊗ Y)ρ∗(Y ⊗ Y). Wootters derived this analytical result by showing the existence of a
decomposition ρ = ∑i qi|zi〉〈zi| such that qi ≥ 0 and C(zi) = C(ρ) for every pure state |zi〉.
We have reconcluded this fact as a lemma in a recent publication [29].

3. The Equivalent Simplification of Geometric Representation

We consider Equation (2) as geometric representation of a general two-qubit system,
which contains 15 real variables. The analysis of separability problem is very complex
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because of massive variables. It has been showed that local unitary operations could not
affect the separability of joint quantum system [3]. Thus, it is possible to reduce the number
of coefficients in the geometric representation of the quantum system by applying local
unitary operations. In this section, we systematically discuss the simplification of geometric
representations in Equation (2) via local unitary operations.

3.1. Simplified Geometric Representation in Generalized Basis

Recall that a set of operators {µj} on an inner product space V forms a basis of
operators on the space if tr(µjµ

†
k) = λjkδjk for some non-zero parameters λjk. Note that the

identity operator I and Pauli matrices forms a basis of the space of a single qubit system.
In Lemma 1, we find that any density operator of a two-qubit system can be represented in
some basis such that the corresponding correlation matrix is diagonal.

Lemma 1. Suppose ρAB is the general density operator of a two-qubit system. Then, there are two
sets of operators {σ′k} and {σ′′k } such that the density operator ρAB can be presented as follows,

ρAB =
1
4
(I ⊗ I +~r′ · ~σ′ ⊗ I + I ⊗~s′ · ~σ′′ +

3

∑
m=1

dmσ′m ⊗ σ′′m), (6)

where the correlation matrix is diagonal. The operators {σ′k} and {σ′′k } plus the identity operator
can compose two bases of the operators on single qubit system, respectively.

Proof. Recall that any density operator ρAB can be represented as the form in Equation (2).
Suppose the singular value decomposition of the real matrix T is T = SDVT where
D = diag(d1, d2, d3) is diagonal matrix, S and V are real orthogonal matrices. Let σ′m ≡
∑3

j=1 sjmσj and σ′′m ≡ ∑3
j=1 vjmσj. It follows that

3

∑
j,k=1

Tjkσj ⊗ σk =
3

∑
m,j,k=1

sjmdmvkmσj ⊗ σk

=
3

∑
m=1

dmσ′m ⊗ σ′′m.

Let ~r′ ≡ S−1~r. It follows that rk = ∑3
j=1 skjr′j and further ~r ·~σ = ∑3

k,j=1 skjr′jσk =

∑3
j=1 r′jσ

′
j ≡ ~r′ · ~σ′. Similarly,~s ·~σ = ~s′ · ~σ′′ where ~s′ ≡ V−1~s. Now, we have derived the

geometric representation with diagonal correlation matrix in Equation (6). It is trivial to
have tr(σ′mσ′†n ) = ∑3

j,k=1 sjmskntr(σjσ
†
k ) = 2 ∑3

j=1 sjmsjn = 2(STS)mn = 2δmn, which means
σ′1, σ′2 and σ′3 are orthogonal to each other. Moreover, it is obviously that tr(σ′j ) = 0. Thus,
the operators {σ′j}3

j=1 plus identity operator form a basis for the operator space of single

qubit system. The similar conclusion applies for the operators {σ′′j }3
j=1. We have proved

the lemma.

There are only nine real parameters in the geometric presentation in Equation (6)
instead of 15 in Equation (2). Note that any measurement observable on a qubit system
can be represented in the new basis as~a · ~σ′. Therefore, presentation in rotated basis can
dramatically simplify analysis procedure in several applications.

3.2. Geometric Transformations of Quantum States by Local Unitary Operations

Firstly, we consider the general state of a qubit system which can be completely
described by a vector~r ∈ R3 with ‖~r‖ ≤ 1 as follows,

ρ =
1
2
(I +~r ·~σ). (7)
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Suppose unitary operator U transforms the state ρ into ρ′ which is described by
a vector ~r′. Then, it follows that ~r′ ·~σ = U~r ·~σU† and further r′k = 1

2 tr(σk~r′ ·~σ) =
1
2 ∑3

j=1 rjtr(σkUσjU†). Let V be a 3× 3 matrix with elements defined as follows,

Vkj ≡
1
2

tr(σkUσjU†). (8)

Then, the unitary evolution of the quantum system can be geometrically presented
as follows,

~r′ = V~r. (9)

Note that V is a real matrix as V∗kj =
1
2 tr((σkUσjU†)†) = Vkj. We call V the geometric

transformation matrix corresponding to unitary operator U.
Now, we consider the local unitary transformation on general two-qubit state. Suppose

UA and UB are arbitrary unitary operators on single qubit system. We apply UA and UB
on the subsystems of the joint system, which is initialized in the state ρAB presented in
Equation (2), respectively. Let~r′,~s′ and T′ be the geometric parameters of the new derived
state ρ′AB ≡ (UA ⊗UB)ρAB(UA ⊗UB)

†. The geometric parameters can be easily obtained
by the relation r′k = tr(ρ′ABσk ⊗ I), s′k = tr(ρ′AB I ⊗ σk) and T′jk = tr(ρ′ABσj ⊗ σk). It can be
concluded that geometric parameters of the new state are as follows,





~r′ = VA~r,
~s′ = VB~s,
T′ = VATVT

B ,
(10)

where VA and VB are geometric transformation matrices of UA and UB defined as in
Equation (8), respectively.

3.3. Simplification of Geometric Representation by Local Unitary Operation

In the following, we investigate the correspondence between unitary operation and
the geometric transformation matrix. Namely, we find what type of 3× 3 matrix that
can correspond to a unitary matrix with respect to Equation (8). Finally, we simplify the
geometric representation of a general two-qubit state.

Note that ‖~r′‖2 = 1
2 tr((~r′ ·~σ)2) = 1

2 tr((U~r ·~σU†)2) = 1
2 tr((~r ·~σ)2) = ‖~r‖2 for any

vector ~r ∈ R3. Thus, the geometric transformation matrix V must be an orthogonal
matrix. However, the converse is not true. For example, there is no unitary matrix on
H2 corresponding to the orthogonal matrix diag(1, 1,−1). Moreover, there are only three
diagonal geometric transformation matrices as follows,





V1 = diag(1,−1,−1),
V2 = diag(−1, 1,−1),
V3 = diag(−1,−1, 1),

(11)

which correspond to Pauli matrices σ1, σ2, σ3, respectively.
We already know that the unitary operation U and the corresponding geometric

transformation matrix V are related by U~r ·~σU† = (V~r) ·~σ for any vector~r ∈ R3, which
can be equivalently written as follows,

UσkU† =
3

∑
j=1

Vjkσj. (12)

Recall that any unitary operator U on a qubit system can be written as U = cos θ I −
i sin θ~µ ·~σ up to some ignorable global phase where ~µ ∈ R3 is a unit vector and θ ∈ [0, π).
Following Equation (12), we have
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tr(Uσk) = tr(∑3
j=1 VjkσjU) (13)

⇒ −i2 sin θµk = ∑3
j=1 Vjk(−i2 sin θµj) (14)

⇒ µk = ∑3
j=1 Vjkµj = (VT~µ)k (15)

⇒ ~µ = VT~µ (16)

⇒ ~µ = V~µ. (17)

Note that the last equation is immediately following from the fact that V is an orthogonal
matrix. When sin θ = 0, U is the identity operator onH2 and the corresponding geometric
transformation matrix is the identity operator on R3. Therefore, the rotation axis of any
unitary operator onH2 is the eigenvector of the corresponding geometric transformation
matrix and the corresponding eigenvalue is 1.

According to Equation (8), we get the diagonal elements of matrix V as follows,

Vkk =
1
2

tr(σkUσkU†)

=
1
2
(2 cos2 θ + sin2 θtr(σk(~µ ·~σ)σk(~µ ·~σ)))

= cos2 θ + sin2 θ(2µ2
k − 1)

= 1 + 2 sin2 θ(µ2
k − 1).

Then, it is trivial to obtain that the trace of the matrix V is tr(V) = 1 + 2 cos 2θ.
Recall that the eigenvalues of any orthogonal matrix are ±1 and pairs of (eiα, e−iα). The
eigenvalues of the geometric transformation matrix V must be 1, eiα and e−iα for some
parameter α ∈ [0, 2π). Further, the trace of V should be tr(V) = 1 + 2 cos α. Therefore, the
rotation angle of unitary operator U that corresponds to geometric transformation matrix
V is 1

2 arccos tr(V)−1
2 . We conclude the above discussion as the following theorem.

Theorem 1. Any matrix V is the geometric transformation matrix of a unitary operator on
H2 if and only if V is a 3× 3 real orthogonal matrix with eigenvalues 1, e2iθ and e−2iθ . The
unitary operator corresponding to V is U = cos θ I − i sin θ~µ ·~σ where ~µ is the eigenvector of V
corresponding to eigenvalue 1.

The Equation (12) holds for any k ∈ {1, 2, 3}. Suppose (k, j, t) is a permutation of
(1, 2, 3) such that σjσt = iσk. Namely, (k, j, t) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}. Then, we
can get tr(U) = tr((∑3

j=1 Vjkσj)Uσk), which is finally reduced to the relation 2 cos θ =

2 cos θVkk + 2 sin θ(Vjkµt −Vtkµj). Thus, we can get the rotation angle θ via the equation
as follows,

cot θ =
Vjkµt −Vtkµj

1−Vkk
, (18)

where the diagonal element Vkk 6= 1.
Now we investigate the simplification of the general two-qubit state ρAB presented

in Equation (2). Suppose the singular value decomposition of the correlation matrix is
T = SΣDT where Σ is a real diagonal matrix, S and D are 3× 3 real orthogonal matrices.
Note that ST is also an orthogonal matrix and has at least one eigenvalue being +1 or −1.
Firstly, we consider the case that 1 is an eigenvalue of ST . According Theorem 1, ST is the
geometric transformation matrix of the unitary operator UA = cos θ I − i sin θ~µ ·~σ where
θ = 1

2 arccos tr(S)−1
2 and ~µ is the eigenvector of ST corresponding to the eigenvalue 1. If ST

has an eigenvalue -1, then the orthogonal matrix −S has an eigenvalue 1 and we can view
the singular value decomposition of T as T = (−S)(−Σ)DT where −ST is a geometric
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transformation matrix. Similarly, we can find a unitary operator UB that corresponding to
the geometric transformation matrix D or −D. Applying UA and UB on subsystems A and
B, respectively, the correlation matrix of the joint system will become the diagonal matrix
Σ. Therefore, we can always find local unitary operations to transform any two-qubit
state into the one with diagonal correlation matrix. By applying geometric transformation
matrices of Puali matrices in Equation (11), there are at least two positive elements in the
diagonal correlation matrix.

We have proved the following lemma.

Lemma 2. By applying local unitary operations, any two-qubit state can be transformed into the
one with diagonal correlation matrix as follows,

ρAB =
1
4
(I ⊗ I +~r ·~σ⊗ I + I ⊗~s ·~σ +∑3

k=1 tkσ⊗2
k ), (19)

where at least two of the diagonal elements {t1, t2, t3} are non-negative.

4. Geometric Bounds for Concurrence

Although we can analytically measure quantum entanglement by concurrence, it is
difficult to understand entanglement in perspective of geometric approach. In this section,
we find both upper bound and lower bound for concurrence in geometric parameters.

Theorem 2. Suppose ρ is a general two-qubit state with geometric parameters (T,~r,~s). Then, the
concurrence of ρ is bounded as follows,

1
2
(‖T‖KF − 1) ≤ C(ρ) ≤

√
1−max{‖~r‖2, ‖~s‖2}, (20)

where ‖T‖KF ≡ tr(
√

TTT) is the Ky Fan matrix norm of T.

Proof. According to the discussion in Section 2.2, we can assume that ρ = ∑k pk|ψk〉〈ψk| is
a decomposition such that

C(ψk) = C(ρ) (21)

for all pure state |ψk〉. Further suppose the geometric parameters for the pure state
|ψk〉 are (Tk, ~rk, ~sk).

Note that any pure state of a two-qubit system can be transformed into |Φθ〉 = cos θ|00〉+
sin θ|11〉 for some θ ∈ [−π

2 , π
2 ] by local unitary operations. It is trivial to find that the geo-

metric parameters of |Φθ〉 are ~rθ = ~sθ = (0, 0, cos 2θ) and Tθ = diag(sin 2θ, −sin 2θ, 1). The
concurrence of |Φθ〉 is C(Φθ) = | sin 2θ|. The correlation matrix is related to concurrence
by the equation

C(Φθ) =
1
2
(‖Tθ‖KF − 1) (22)

and the local parameter is related to the concurrence by the equations

C(Φθ) =
√

1− ‖~rθ‖2 =
√

1− ‖~sθ‖2. (23)
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Combing Equations (21) and (22), it follows that

C(ρ) = ∑
k

pkC(ψk) (24)

=
1
2
(∑

k
pk‖Tk‖KF − 1) (25)

≥ 1
2
(‖∑

k
pkTk‖KF − 1) (26)

=
1
2
(‖T‖KF − 1). (27)

where the inequality (26) follows from the subadditivity of norm. We have proved the
lower bound of concurrence.

The Equations (21) and (23) implies that ‖~rk‖ = ‖~rj‖ for all component states |ψk〉 and
|ψj〉. Then, it follows that

‖~r‖ = ‖∑
j

pj~rj‖ (28)

≤ ∑
j

pj‖~rj‖ (29)

= ‖~rk‖ (30)

for pure state |ψk〉. Further, we can get

C(ρ) = ∑
k

pk

√
1− ‖~rk‖2 (31)

≤ ∑
k

pk

√
1− ‖~r‖2 (32)

=
√

1− ‖~r‖2. (33)

Similarly, we can get C(ρ) ≤
√

1− ‖~s‖2. Therefore, we have proved the following
upper bound

C(ρ) ≤
√

1−max{‖~r‖2, ‖~s‖2}. (34)

Clearly, the upper bound and lower bound can be achieved when ρ is a pure state.

Via numerical experiment, we find another upper bound as follows,

C(ρ) ≤ 1
2

√
1 + ‖T‖2

F − ‖~r‖2 − ‖~s‖2, (35)

where we denote ‖T‖F ≡
√

tr(TTT) =
√

∑j,k T2
jk. Note that this is a tighter upper bound

than the one C(ρ) ≤
√

1− 1
2 (‖~r‖2 + ‖~s‖2), which can be derived by the constraint of

geometric parameters in Equation (36).

5. The Local Parameters and Separability

In this section, we investigate how the local parameters affect the separability of a
two-qubit state. Because of the equivalence of local unitary operations in the separabil-
ity problem, our analysis only focus on the states with diagonal correlation matrix in
Equation (19).

Note that we denote the vector~t = (t1, t2, t3) instead of a diagonal correlation matrix
T. Let the local parameters be represented by~r = (r1, r2, r3) and~s = (s1, s2, s3). We are
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unable to depict the analytical conditions for the general parameters~r,~s and~t such that
ρAB is a density operator. However, a necessary condition is tr(ρ2

AB) ≤ 1, which can be
equivalently written as

‖~r‖2 + ‖~s‖2 + ‖~t‖2 ≤ 3. (36)

Meanwhile, the local parameters must satisfy ‖~r‖ ≤ 1 and ‖~s‖ ≤ 1. Further, we
suppose ρAB = ∑4

k=1 λk|ψk〉〈ψk| is the spectral decomposition of the density operator ρAB.

5.1. Permutation of Pauli Matrices by Local Unitary

We have showed that any two-qubit state can be local unitary equivalently trans-
formed to a state with diagonal correlation matrix, say T = diag(t1, t2, t3). To investigate
the role that each parameters tk played in the separability of the state, we want to ask the
question whether there is any local unitary that can permutate Pauli matrices. We assume
that there is a unitary operator Ujkt on a single qubit system such that





Ujktσ1U†
jkt = σj,

Ujktσ2U†
jkt = σk,

Ujktσ3U†
jkt = σt,

(37)

where (j, k, t) is a permutation of (1, 2, 3). Note that the permutation (j, k, t) has six possible
choices, namely {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}. It is trivial to see that
U123 = I as it keeps every Pauli operator invariant. Suppose that the geometric rotation
matrix corresponding to Ujkt is Vjkt. According to Equation (37), the (j, 1)th element of
matrix Vjkt is (Vjkt)j1 = 1

2 tr(σjUjktσ1U†
jkt) = 1

2 tr(σjσj) = 1. Similarly, we get (Vjkt)k2 =

(Vjkt)t3 = 1 and the other elements are 0. Note that the matrix Vjkt is a 3× 3 orthonormal
matrix. Thus, there must be an unitary matrix Ujkt corresponding to Vjkt. The nontrivial
permutations can be classified into two classes. The first class are full permutations which
include (2, 3, 1) and (3, 1, 2). The corresponding unitary operators are as follows,

U231 =
1
2

I − i
1
2
(X + Y + Z), (38)

U312 =
1
2

I + i
1
2
(X + Y + Z). (39)

The second class partially permutates the Pauli matrices where only one Pauli matrix
is kept invariant and the other two are exchanged. Suppose unitary Uk corresponds to the
permutation that keeps σk invariant. Then, the unitary operator Uk is of the form as follows,

Uk =
1√
2
(I − iσk). (40)

To be consistent with the aforementioned definitions, we have U132 = U1, U321 = U2
and U213 = U3. Note that if (k, j, t) is in the order such that σkσj = iσt, Uk transforms σt
into σj up to a phase −1. Otherwise, it takes σj into σt up to a phase −1.

5.2. Two Classes of Separable States

In this subsection, we show two classes of separable states based on special geomet-
ric parameters.

First, we look at the two-qubit state with vanished correlation parameters~t = (0, 0, 0)
and general local parameters~r and~s. In this case, the eigenvalues of the operator ρAB are
1
4 (1± |‖~r‖ ± ‖~s‖|). Thus, ρAB is positive if and only if ‖~r‖+ ‖~s‖| ≤ 1. Further, we find that
the eigenvalues of the operator ρAB is exactly the same as that of its partial transposition
ρPT

AB. Thus, the positivity of ρPT
AB is equivalent to the condition that the operator ρAB is
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a density operator. Therefore, the two-qubit state with vanished correlation matrix is
separable. We have proved the following lemma.

Lemma 3. The operator ρAB = 1
4 (I ⊗ I +~r ·~σ⊗ I + I ⊗~s ·~σ) is a density operator if and only if

‖~r‖+ ‖~s‖ ≤ 1. Any density operator of this form is separable.

As a trivial application of partial transposition criterion, Theorem 3 reveals a class of
separable two-qubit states with respect to local parameters.

Theorem 3. The density operator in Equation (19) is separable if tk = 0 and rksk = 0 for any
k = 1, 2, 3.

Proof. According to the PPT criterion [20] and its extended research [21], the density
operator ρAB is separable if and only if the partial transposition ρPT

AB is positive. As the
density operator ρAB is positive, the operator ρPT

AB is positive if ρPT
AB = ρAB, which is

equivalent to t2 = r2 = 0. Similarly, the operator ρAB is separable if ρPT
BA = ρBA, which is

equivalent to t2 = s2 = 0. Thus, the state ρAB is separable if t2 = 0 and r2s2 = 0.
Applying local unitary operators U213 ⊗U213 defined in Equation (40) on state ρAB,

the geometric parameters of the derived state ρ′AB = (U213 ⊗U213)ρAB(U213 ⊗U213)
† are

~t′ = (t2, t1, t3), ~r′ = (r2, r1, r3) and ~s′ = (s2, s1, s3). The condition t2 = 0 and r2s2 = 0 is
equivalent to t′1 = 0 and r′1s′1 = 0. As local unitary operations do not affect separability,
the separability of states ρ′AB and ρAB are same. Thus, t′1 = 0 and r′1s′1 = 0 is a sufficient
condition that ρ′AB is a separable state. As ρ′AB is a general state, we can also say that ρAB is
separable if t1 = 0 and r1s1 = 0. Similarly, it is trivial to show that the state ρAB is separable
if t3 = 0 and r3s3 = 0.

Therefore, we can conclude that the density operator ρAB defined in Equation (19) is
separable if tk = 0 and rksk = 0 for any k ∈ {1, 2, 3}.

5.3. Local Parameters as an Indispensable Role for Entanglement

In this subsection, we investigate the separability of a two-quibt system that can be
affected by local parameters. We consider the class of two-qubit states with geometric
parameters~r = (0, r2, 0),~s = (0, s2, 0) and~t = (t1, t2, t3). Because of unitary operators for
permutating Pauli matrices discussed in Section 5.1, the above results can be generalized
for two-qubit states where non-vanished local parameters are rk and sk for any k = 1, 2, 3.

The eigenvalues of the corresponding density operator ρ = 1
4 (I ⊗ I + r2σ2 ⊗ I + s2 I ⊗

σ2 + ∑3
k=1 tkσk ⊗ σk) are as follows,





λ1 = 1
4 (1− t2 −

√
(r2 − s2)2 + (t1 + t3)2),

λ2 = 1
4 (1 + t2 +

√
(r2 + s2)2 + (t1 − t3)2),

λ3 = 1
4 (1 + t2 −

√
(r2 + s2)2 + (t1 − t3)2),

λ4 = 1
4 (1− t2 +

√
(r2 − s2)2 + (t1 + t3)2).

(41)

The positivity of density operator ρ requires λk ≥ 0 for every k = 1, 2, 3, 4, which is
equivalently constrained by the inequalities as follows,

(r2 − s2)
2 + (t1 + t3)

2 ≤ (1− t2)
2, and (42)

(r2 + s2)
2 + (t1 − t3)

2 ≤ (1 + t2)
2. (43)

From above restrictions, it is obvious to get a necessary condition for being a density
operator as follows,

r2
2 + s2

2 ≤ 1 + t2
2 − t2

1 − t2
3. (44)
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Suppose {µk}4
k=1 are eigenvalues of the operator

√
ρρ̃ where ρ̃ ≡ (Y ⊗ Y)ρ∗(Y ⊗

Y) and ρ∗ is the complex conjugate of ρ. Let C(ρ) ≡ maxk(2µk − ∑4
j=1 µj). Then, the

concurrence of ρ is max{0, C(ρ)} and ρ is entangled if and only if C(ρ) > 0 [28]. Via trivial
calculation, we get the eigenvalues of

√
ρρ̃ as follows,





µ1 = 1
4 (
√
(1 + t2)2 − (r2 + s2)2 − (t1 − t3)),

µ2 = 1
4 (
√
(1 + t2)2 − (r2 + s2)2 + (t1 − t3)),

µ3 = 1
4 (
√
(1− t2)2 − (r2 − s2)2 − (t1 + t3)),

µ4 = 1
4 (
√
(1− t2)2 − (r2 − s2)2 + (t1 + t3)).

(45)

It is trivial to see that the state is separable if and only if 2µk − ∑4
j=1 µj ≤ 0 for all

k = 1, 2, 3, 4, which is equivalent to the conditions as follows,

(r2 − s2)
2 + (t1 − t3)

2 ≤ (1− t2)
2, and (46)

(r2 + s2)
2 + (t1 + t3)

2 ≤ (1 + t2)
2. (47)

Obviously, the state is entangled if |t1 − t3| > |1− t2| or |t1 + t3| > |1 + t2|, which
is equivalent to the entanglement condition showed by Horodeckis for the states with
vanished local variables [15].

To investigate the role of local parameters for entanglement, we suppose the density
operator ρ(r2, s2) is a function of local parameters r2 and s2 with t1, t2 and t3 being fixed
correlation parameters. Then, the state is entangled if C(ρ(r2, s2)) > 0, namely either
Equation (46) or Equation (47) is violated. In the case Equation (46) is violated, the con-
currence is C(ρ(r2, s2)) = 1

2 (|t1 − t3| −
√
(1− t2)2 − (r2 − s2)2), which is an increasing

function in |r2 − s2|. The positivity conditions for density operators can be equivalently
written as follows,

(r2 − s2)
2 ≤ (1− t2)

2 − (t1 + t3)
2 ≡ ε0, and (48)

(r2 − s2)
2 ≤ (1 + t2)

2 − (t1 − t3)
2 − 4r2s2 ≡ ε1. (49)

Suppose the equality in Equation (48) holds. We can get r2
2 + s2

2 − (1 + t2
2 − t2

1 − t2
3) =

2(r2s2 − t2 − t1t3) ≤ 0 which is immediate following from Equation (44). Then, ε1 − ε0 =
−4(r2s2− t2− t1t3) ≥ 0, which indicates that the positivity condition of density operator in
Equation (49) naturally holds when |r2− s2| takes the upper bound in Equation (48). There-
fore, the concurrence takes the maximum value when |r2 − s2| =

√
(1− t2)2 − (t1 + t3)2,

namely C(ρ(r2, s2)) ≤ 1
2 (|t1 − t3| − |t1 + t3|). Combining Equations (42-43) and the viola-

tion of Equation (46), it is sufficient to have t1t3 < 0 and r2s2 < t2. A trivial calculation
shows that C(ρ(r2, s2)) ≤ min{|t1|, |t2|}.

The similar result can be obtained for the case that the second inequality is violated.
Suppose the state is entangled because of the violation of Equation (47). The concurrence of
the system is C(ρ(r2, s2)) =

1
2 (|t1 + t3| −

√
(1 + t2)2 − (r2 + s2)2), which is an increasing

in |r2 + s2|. The maximum of C(ρ(r2, s2)) is also min{|t1|, |t2|}, which can be obtained
when |r2 + s2| =

√
(1 + t2)2 − (t1 − t3)2. It is also trivial to find that t1t3 > 0 and r2s2 > t2.

We have proved the following theorem.

Theorem 4. Suppose ρ(r2, s2) = 1
4 (I ⊗ I + r2σ2 ⊗ I + s2 I ⊗ σ2 + ∑3

k=1 tkσk ⊗ σk) is a den-
sity operator of a two-qubit system. The system is entangled if and only if either inequality in
Equation (46) or Equation (47) is violated. The corresponding concurrence is C(ρ(r2, s2)) =
max{ 1

2 (|t1 ± t3| −
√
(1± t2)2 − (r2 ± s2)2)} which is an increasing function in |r2 ± s2|. The

upper bound on concurrence is as follows,

C(ρ(r2, s2)) ≤ min{|t1|, |t2|}, (50)
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where the equality holds when |r2 ± s2| =
√
(1± t2)2 − (t1 ∓ t3)2. t1t3(t2 − r2s2) < 0 is a

necessary condition that ρ(r2, s2) is entangled.

To quantitatively analyze the separability, we have the following theorem.

Theorem 5. Consider two-qubit state with nonvanished local parameters r2, s2 and correlation
parameters t1, t2, t3. The state is separable for any local parameters if and only if t1t3 = 0. We can
always find a local parameter r2 for any valid local parameter s2 such that the state is entangled if
and only if the correlation parameters t1t2t3 < 0.

Proof. Let ∆T ≡ 1 − t2
1 + t2

2 − t2
3, η ≡ 2(t2 + t1t3) and ξ ≡ 2(t2 − t1t3). We suppose

η ≥ 0 with out loss of generality. Then, the operator is a density operator if and only if
|r2 ± s2| ≤

√
∆T ± η while it is separable if and only if |r2 ± s2| ≤

√
∆T ± ξ, which can be

depicted in Figure 1.
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Figure 1. Separability of a two-qubit state affected by local parameters. Here we define ∆T ≡
1 − t2

1 + t2
2 − t2

3, η ≡ 2(t2 + t1t3) and ξ ≡ 2(t2 − t1t3). With out loss of generality, we suppose
t2 + t1t3 ≥ 0.

The state is always separable for any local parameters if and only if the area of
Equations (46) and (47) include the area of valid state, namely ξ ≥ η and −ξ ≥ −η, which
is equivalent to t1t3 = 0. This result is consistent with Theorem 3.

The state is possible to be entangled for any local parameter s2 if and only if −ξ < −η,
which is equivalent to t1t3 < 0. According to the assumption t2 + t1t3 ≥ 0, we further have
t2 > 0. Thus, it is necessary to have t1t2t3 < 0, which also applies for all other possible
cases. Therefore, we conclude that we can always find a local parameter r2 for any valid
local parameter s2 such that the state is entangled if and only if t1t2t3 < 0.

Figure 1. Separability of a two-qubit state affected by local parameters. Here we define ∆T ≡
1 − t2

1 + t2
2 − t2

3, η ≡ 2(t2 + t1t3) and ξ ≡ 2(t2 − t1t3). With out loss of generality, we suppose
t2 + t1t3 ≥ 0.

The state is always separable for any local parameters if and only if the area of
Equations (46) and (47) include the area of valid state, namely ξ ≥ η and −ξ ≥ −η, which
is equivalent to t1t3 = 0. This result is consistent with Theorem 3.

The state is possible to be entangled for any local parameter s2 if and only if −ξ < −η,
which is equivalent to t1t3 < 0. According to the assumption t2 + t1t3 ≥ 0, we further have
t2 > 0. Thus, it is necessary to have t1t2t3 < 0, which also applies for all other possible
cases. Therefore, we conclude that we can always find a local parameter r2 for any valid
local parameter s2 such that the state is entangled if and only if t1t2t3 < 0.
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The same result can be obtained in the case η > 0.

We can also illustrate the separability of the state ρ with respect to free variables t1
and r2 in a two-dimensional Cartesian coordinate system as showed in Figure 2. According
to Lemma 2, we assume t1 and t2 are non-negative. We also assume s2 > 0 with out loss
of generality. Let A = (t1, r2) be a free point and B = (−t3, s2), B′ = (t3,−s2), D = (t3, s2)
and D′ = (−t3,−s2) be fixed points on the plane.

Figure 2. The separability of a two-qubit states with geometric parameters being ~r = (0, r2, 0),
~s = (0, s2, 0) and~t = (t1, t2, t3). The point A(t1, r2) is a free variable. The operator ρAB is a density
operator iff A is in the area with horizontal lines. The state is separable iff A is in the area with vertical
lines. The state is entangled iff A is in the area only with horizontal lines and the corresponding
concurrence is C(ρAB) = |AM| or C(ρAB) = |AN| depending the location of A.

In the following, we also use circle B to denote the circle with the center at point
B and radius 1− t2. Similarly, circle D is a circle with radius 1− t2, and circle B′ and
circle D′ are circles with radius 1 + t2. Then, the operator ρ is a density operator if and
only if |AB| ≤ 1− t2 and |AB′| ≤ 1 + t2, namely the free point A is in the intersection of
circle B and circle B′ which is depicted with horizontal lines. ρ is separable if and only if
|AD| ≤ 1− t2 and |AD′| ≤ 1 + t2, namely the free point A is in the intersection of circle D
and D′ which is depicted with vertical lines. Obviously, the state ρ is entangled if and only
if the free point A is in the area with horizontal lines only.

Now we quantitatively analyze the entanglement of the state ρ. If the free point A is in the
left below entangled area, the concurrence of ρ is C(ρ) = |t1 − t3| −

√
(1− t2)2 − (r2 − s2)2.

Suppose the projection of A onto the vertical axis is intersected with the circle D with
radius 1− t2 at point M. Then, the concurrence C(ρ) = |AM|. If A is a point in the top right
entangled area, the concurrence of the state ρ is C(ρ) = |t1 + t3| −

√
(1 + t2)2 − (r2 + s2)2.

Suppose the projection of A on to the vertical axis is intersected with the circle D′ with
radius 1 + t2 at point M. Then, the concurrence C(ρ) = |AN|. In both cases, the entangle-
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ment reach the maximum when point A is located at the intersection of circle B and circle
B′, namely when the equations in Equations (42) and (43) hold.

We conclude above discussion as the following lemma.

Lemma 4. Suppose ρ = 1
4 (I ⊗ I + r2σ2 ⊗ I + s2 I ⊗ σ2 + ∑3

k=1 tkσk ⊗ σk) is a two-qubit state as
geometrically depicted in Figure 2 without loss of generality. The state ρ is entangled if and only if
the free point A is only in the circle D or D′. The concurrence of state ρ is C(ρ) = |AM| where
M is the intersection of point A’s projection onto the vertical axis and the other circle which A is
not in.

6. Conclusions and Discussion

We have considered the role of local geometric parameters on the entanglement of
bipartite quantum system. We found that the local parameters of a two-qubit system
have significant impact on its separability. We simplified the analysis by considering an
entanglement equivalent form with reduced number of geometric parameters. We conclude
our contribution in three-fold: (1) we found that the concurrence of a general two-qubit
state is bounded by the norms of local vectors and correlations matrix; (2) we derived a
sufficient condition that the state is separable based on the PPT criterion; (3) we found that
a quantum state with fixed correlation matrix can be entangled or separable depending on
different values of local parameters.

We made the third conclusion by investigating a special state with general correlation
matrix and local parameters r2 and s2. We found that the entanglement of the state is
quantitatively an increasing function in |r2 − s2|. According to the trace norm criterion [15],
the entanglement of state ρ can be detected if |t1| > 1− |t2| − |t3| = |t′1|. However, based on
our analysis, there are always local parameters r2 and s2 such that the state in Equation (19)
is entangled if and only if the correlation parameters t1t3 6= 0. Further, we found that there
are always some local parameters r2 for any valid s2 such that the state is entangled if and
only if the correlation parameters t1t2t3 < 0 .
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23. Chruściński, D.; Jurkowski, J.; Kossakowski, A. Quantum states with strong positive partial transpose. Phys. Rev. A 2008,

77, 022113. [CrossRef]
24. Bohnet-Waldraff, F.; Braun, D.; Giraud, O. Partial transpose criteria for symmetric states. Phys. Rev. A 2016, 94, 042343. [CrossRef]
25. Designolle, S.; Giraud, O.; Martin, J. Genuinely entangled symmetric states with no n-partite correlations. Phys. Rev. A 2017,

96, 032322. [CrossRef]
26. Bennett, C.H.; Bernstein, H.J.; Popescu, S. Benjamin Schumacher Concentrating partial entanglement by local operations. Phys.

Rev. A 1996, 53, 2046–2052. [CrossRef] [PubMed]
27. Hill, S.; Wootters, W.K. Entanglement of a pair of quantum bits. Phys. Rev. Lett. 1997, 78, 5022–5025. [CrossRef]
28. Wootters, W.K. Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 1998, 80, 2245–2248. [CrossRef]
29. Su, Z.; Tan, H.; Li, X. Entanglement as upper bound for the nonlocality of a general two-qubit system. Phys. Rev. A 2018,

101, 042112. [CrossRef]

http://dx.doi.org/10.1103/PhysRevLett.81.5932
http://dx.doi.org/10.1103/PhysRevA.97.012325
http://dx.doi.org/10.1016/j.jcss.2004.06.003
http://dx.doi.org/10.1103/PhysRevLett.47.838
http://dx.doi.org/10.1103/PhysRevA.93.062320
http://dx.doi.org/10.1103/PhysRevLett.23.880
http://dx.doi.org/10.1016/0375-9601(95)00214-N
http://dx.doi.org/10.1103/PhysRevA.54.1838
http://www.ncbi.nlm.nih.gov/pubmed/9913669
http://dx.doi.org/10.1103/PhysRevLett.100.140403
http://dx.doi.org/10.1103/PhysRevA.84.062306
http://dx.doi.org/10.1038/srep28850
http://www.ncbi.nlm.nih.gov/pubmed/27350031
http://dx.doi.org/10.1103/PhysRevLett.77.1413
http://www.ncbi.nlm.nih.gov/pubmed/10063072
http://dx.doi.org/10.1016/S0375-9601(96)00706-2
http://dx.doi.org/10.1016/S0375-9601(02)01538-4
http://dx.doi.org/10.1103/PhysRevA.77.022113
http://dx.doi.org/10.1103/PhysRevA.94.042343
http://dx.doi.org/10.1103/PhysRevA.96.032322
http://dx.doi.org/10.1103/PhysRevA.53.2046
http://www.ncbi.nlm.nih.gov/pubmed/9913106
http://dx.doi.org/10.1103/PhysRevLett.78.5022
http://dx.doi.org/10.1103/PhysRevLett.80.2245
http://dx.doi.org/10.1103/PhysRevA.101.042112

	Introduction
	The Qualitative and Quantitative Analysis of Quantum Entanglement
	Qualitative Detection of Quantum Entanglement
	Quantitative Measure of Quantum Entanglement

	The Equivalent Simplification of Geometric Representation
	Simplified Geometric Representation in Generalized Basis
	Geometric Transformations of Quantum States by Local Unitary Operations
	Simplification of Geometric Representation by Local Unitary Operation

	Geometric Bounds for Concurrence
	The Local Parameters and Separability
	Permutation of Pauli Matrices by Local Unitary
	Two Classes of Separable States
	Local Parameters as an Indispensable Role for Entanglement

	Conclusions and Discussion
	References

