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Abstract: Deforestation by human activities is a common issue in Amazonian countries. This occurs
at different spatial and temporal scales causing primary forest loss and land fragmentation issues.
During the deforestation process as the forest loses connectivity, the deforested patches create new
intricate connections, which in turn create complex networks. In this study, we analyzed the local
connected fractal dimension (LCFD) of the deforestation process in the Sumaco Biosphere Reserve
(SBR) with two segmentation methods, —CA-wavelet and K-means—to categorize the complexity
of deforested patches’ connections and then relate these with the spatial processes. The results
showed an agreement with both methods, in which LCFD values below 1 corresponded to isolated
patches with simple shapes and those above 1 signified more complex and connected patches. From
CA-wavelet a threshold of 1.57 was detected allowing us to identify and discern low and high land
transformation, while the threshold for K-means was 1.61. Both values represent the region from
which deforestation performs local aggressive expansion networks. The thresholds were used to map
the LCFD in which all spatial processes were visually detected. However, the threshold of 1.6 ± 0.03
was more effective in discerning high land transformation. such as shrinkage and attrition, in the
deforestation process in the SBR.

Keywords: Amazon basin; deforestation process; local connected fractal dimension; fractals; defor-
estation complexity

1. Introduction

Land transformation occurs as a result of natural processes or human activities af-
fecting the landscape, from low to high levels. Human pressure has played an essential
role in the land transformation of the Amazon basin tracing an unprecedented landscape
footprint. Over the last four decades, exacerbated deforestation rates in Amazon have
been increasing without declining [1–4]. Consequently, an increase in landslides because of
rising erosion rates, floods resulting from change to the hydrologic regime, and climate
variability affecting microclimate, among others are the main drivers of Amazon land
transformation and ecosystem services loss.

The loss of primary forest is a significant issue for Amazonian countries, such as
Ecuador, Colombia, Venezuela, Peru, Bolivia, Guyana, Surinam, and Brazil. These countries
have to face economic dilemmas from natural resource exploitation such as mining, oil,
timber extraction, and agricultural expansion [5]. These were major and visible forest
decline factors in the headwaters of the Amazon River basin [6–8]. Recently, since the 2000s
agricultural expansion has been increasing spatially [9,10], becoming of great importance in
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the Ecuadorian Amazon, the Orinoquia region of Colombia, and Venezuela; this expansion
process is strengthening as a belt that advances towards the Amazon lowlands [3]. This
conversion of tropical forests into pastures and agricultural land evolves silently over time,
causing changes in the environment and regional and local consequences.

Deforestation is a process with complex, diverse, and spatially variable features. This
process occurs at different spatial and temporal scales and follows well-known spatial
processes such as perforation, dissection, fragmentation, shrinkage, and attrition [11]. In the
Amazon basin, the spatial processes vary from the basin headwaters to Brazil’s floodplains
because of human activities such as unplanned villages, unauthorized roads, illegal mining
pits, river blockages, drug trafficking, etc. Thus, the ecosystems have fragmented, causing
animal connectivity loss, leading to a worrisome habitat modification with increases the
unnatural forest edges as a result of the dynamics of plot fencing.

One highlighted case of primary forest fragmentation is the Ecuadorian Amazon
which registered a natural forest loss of 19,000 km2 from 2000 to 2008 [12]. This loss was
linked to ecological, social, economic, and cultural aspects at different scales [13], of which
poverty was one of the leading causes [14]. The lack of policies and economic support
in developing countries such as Ecuador contributes to the advance and strengthening
of deforestation by creating new spatial connections between older and new deforested
patches, causing a cumulative and complex effect of the spatial processes over time.

Despite spatial connections of deforestation being dynamic and challenging to mea-
sure quantitatively, they have been captured through LULC mapping at different spatial
and temporal scales. In addition to allowing the monitoring, analysis, and documentation
of land transformations, these maps have allowed the identification of geometric forms of
these transformations at the naked eye, suggesting the existence of complex spatial patterns
that can be studied not from conventional geometry but from fractal geometry.

Studies on the spatial connections of deforestation have been performed using the fractal
dimension concept to describe the deforestation process’s overall behavior [15–17]. However,
it is often difficult to discriminate and describe the spatial processes of deforestation
patterns quantitatively, since these processes include the neighborhood’s influence on the
pattern and how it evolves. Thus, we tested the potential of the fractal analysis, including
the neighborhood concept to: (1) characterize and map the complex connections of the
deforestation process and (2) categorize these connections based on spatial relationships for
a cumulative period. As far as we know, this is the first time that fractal analysis has been
used to characterize forest loss relations using non-linear geometry features associated with
land spatial processes through the concept of local connected fractal dimension (LCFD).
This approach has proven to be of great interest in various studies such as dynamics of
forest fragmentation [15] and forest ecosystems [18,19], urban connectivity [20], fish gills
analysis [21], etc. In this research, we coupled the fractal analysis through LCFD with
landscape ecology concepts for studying the connections between cumulative deforested
patches identified from LULC maps in the Sumaco Biosphere Reserve—(SBR) located in the
Ecuadorian Amazon.

2. Materials and Methods
2.1. Study Area

The Sumaco Biosphere Reserve (SBR) was declared by UNESCO in 2000. It is located
100 km southeast of Quito, in western Napo province covering various Andean and tropical
ecosystems. The SBR’s LULC includes natural forest, disturbed forest, shrub vegetation,
herbaceous vegetation, grasses, and crops. The core zone mainly includes non-intervention
forests and protected areas. The buffer zone contains representative examples of the
country’s tropical rainforest and the Amazon region. The transition zone has intensive
agricultural land use, Figure 1.
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Figure 1. Sumaco Biosphere Reserve (SBR), located in the forest Amazon region of Ecuador. 

The SBR is in the Ecuadorian Amazon which corresponds to the forest region of Ec-
uador. This region is one of the most critical high-lands of the Amazon River basin, pre-
senting the highest volcanos, such as Tungurahua, Cotopaxi Cayambe, Chimborazo, Sangay, 
and Sumaco, among others. All these volcanos providing enormous hydrologic regulation 
services for the Amazon River basin. This area also contains well-preserved habitat corri-
dors and highly diverse fauna with enormous value for world biodiversity. 

The Ecuadorian Amazon is the region in which most of the deforestation has been 
performed in Ecuador during the past few decades. However, this region also preserves 
extensive, intact, tropical moist forests that are endangered by colonists and today are 
hotspots for conservation purposes.  

2.2. Data and Processing 
LULC maps from 1985 to 2018 from the MapBiomas project, collection 4.0 [22,23] 

were, used to perform spatio-temporal analysis of the deforestation process in SBR. These 
were in raster format with a spatial resolution of 30 m, and belonged to five categories: 
forest, non-forest natural formations, agricultural land, non-vegetation areas, and water. 
The MapBiomas project covers the Amazon biome and is fully automated and integrated 
into the Google Earth Engine (GEE) platform [24]. We use the GEE to extract LULC maps 
for the Ecuadorian Amazon (https://mapbiomas.org/ (17 June 2020)). Since MapBiomas 
offers annually products from 1985 to 2018, we performed a deforestation process analysis 
every 5-years, except for the last map. We used the LULC maps of 1985, 1990, 2000, 2005, 
2010, 2015, and 2018. 

Using these maps, we detected LULC transitions using cross-classification images 
and cross-tabulation tables with R software, by applying the overlay and crosstab func-
tions of the Raster package [25]. The first returned a map where the transitions were spa-
tially located, and the second returned a table displaying the frequency distribution of 
LULC transition categories in each period: 1985–1990, 1990–1995, 1995–2000, 2000–2005, 
2005–2010, 2010–2015, and 2015–2018. This study focuses on transitions from primary for-
est to agricultural land as the significant change (Figure 2a). Henceforth, in this work, this 
transition is referred to as deforestation. 

Figure 1. Sumaco Biosphere Reserve (SBR), located in the forest Amazon region of Ecuador.

The SBR is in the Ecuadorian Amazon which corresponds to the forest region of
Ecuador. This region is one of the most critical high-lands of the Amazon River basin,
presenting the highest volcanos, such as Tungurahua, Cotopaxi Cayambe, Chimborazo, Sangay,
and Sumaco, among others. All these volcanos providing enormous hydrologic regula-
tion services for the Amazon River basin. This area also contains well-preserved habitat
corridors and highly diverse fauna with enormous value for world biodiversity.

The Ecuadorian Amazon is the region in which most of the deforestation has been
performed in Ecuador during the past few decades. However, this region also preserves
extensive, intact, tropical moist forests that are endangered by colonists and today are
hotspots for conservation purposes.

2.2. Data and Processing

LULC maps from 1985 to 2018 from the MapBiomas project, collection 4.0 [22,23]
were, used to perform spatio-temporal analysis of the deforestation process in SBR. These
were in raster format with a spatial resolution of 30 m, and belonged to five categories:
forest, non-forest natural formations, agricultural land, non-vegetation areas, and water.
The MapBiomas project covers the Amazon biome and is fully automated and integrated
into the Google Earth Engine (GEE) platform [24]. We use the GEE to extract LULC maps
for the Ecuadorian Amazon (https://mapbiomas.org/ (accessed on 17 June 2020)). Since
MapBiomas offers annually products from 1985 to 2018, we performed a deforestation
process analysis every 5-years, except for the last map. We used the LULC maps of 1985,
1990, 2000, 2005, 2010, 2015, and 2018.

Using these maps, we detected LULC transitions using cross-classification images and
cross-tabulation tables with R software, by applying the overlay and crosstab functions of
the Raster package [25]. The first returned a map where the transitions were spatially located,
and the second returned a table displaying the frequency distribution of LULC transition
categories in each period: 1985–1990, 1990–1995, 1995–2000, 2000–2005, 2005–2010, 2010–2015,
and 2015–2018. This study focuses on transitions from primary forest to agricultural land
as the significant change (Figure 2a). Henceforth, in this work, this transition is referred to
as deforestation.

LULC map transitions identified as deforestation were converted into binary images
using the reclassify function of the Raster package. These transitions were classified as
0 (white) indicating primary forest loss in SBR and background with 1 (black) (Figure 2b).
In this step, we obtained seven binary images—one for each period. Then, these images
were accumulated, obtaining six binary images of the deforestation process: from 1985– 1995,
1985–2000, 1985–2005, 1985–2010, 1985–2015, and 1985–2018 (Figure 2c). The extent of these
images was 4027 × 4669 pixels.

https://mapbiomas.org/
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Figure 2. Methodological framework to characterize the deforestation process through local con-
nected fractal dimension (LCFD) and spatial processes in the Sumaco Biosphere Reserve (SBR).

2.3. Spatial Metrics and Spatial Processes of Deforested Patches

We used the cumulative binary images of the deforestation to assess its behavior
over time (Figure 2c) and calculated the deforested area and ratio in each cumulative time
period. Morover, some other spatial metrics were calculated at patch level (Figure 2d),
including patch density (PD), the number of patches (NP), edge density (ED), Euclidean-
nearest-neighbor mean distance (ENN_MN), and clumpiness index (CLUMPY) (Table 1).
These metrics were selected because of their importance concerning the spatial processes
in land transformation [11] (Figure 3).

Table 1. Description of the spatial metrics used in the characterization of deforested patches.

Spatial Metrics Description Unit References *

DA Deforested area: the sum of the areas of all deforested patches. ha [26–29]

Ratio Ratio: the proportion between the actual (n) landscape class change
with respect to time n-1. proportion [27]

NP Number of patches: the number of patches for each landscape class. Unit (N) [28,30–34]

PD

Patch density: the density of the patches for each landscape class
(number of patches per unit of area), representing an aspect of

fragmentation—dissection of patches. Higher values represent a more
fragmented landscape.

N/100 ha [26,27,29,30,35]

ED Edge density: the amount of edge relative to the total landscape area.
This metric facilitates comparison at different extent sizes. m [26,29,32,35–38]

ENN_MN

Euclidean nearest neighbor mean distance: the mean distance between
patches of the same landscape class, which could represent another

aspect of fragmentation—connectivity between patches. Values range
from 0 (adjacent patches) to infinity.

m [27,28,30,38–40]

CLUMPY

Clumpiness index: measures the degree to which the landscape class is
aggregated or clumped given its total area. This is the measure of patch
aggregation. Values of the clumpiness index close to -1 are a measure
of a maximally disaggregated landscape class, whereas values of the

clumpiness index close to 0 are indicative of distributed random
patches and when the clumpiness index approaches 1, the

deforestation patch type is maximally aggregated.

none [37,39–42]

* Authors using the given metric for the characterization of the deforestation process in the Amazon region.
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When fragmentation is reached, the subsequent forest loss is susceptible, and the connec-
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then to the bottom (pixel in light blue). Each scan step included a rigorous zoomed-out 
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4). Scanning only considers the pixels within the largest box that belongs to the cluster 
connected to the pixel on which the box is centered [20]. 
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Figure 3. Graphical representation of the spatial processes in deforestation. The first row indicates
the initial forest state and the second indicates the spatial processes. Adapted from [11].

Two of the five spatial processes are defined as low-impact land transformation:
(1) perforation, which is related to the dispersed agricultural plots, houses, and orchards of
colonists inside the primary forest patches, and (2) dissection, which is a process charac-
terized by spatial objects such as roads, power lines, irrigation infrastructure, and open
channels, among another objects that dissect primary forest, with a constant width of the
deforested strip. The third spatial process—fragmentation— is a spatial breaking point that
differentiates the low-impact from the high-impact land transformation: shrinkage and
attrition. Fragmentation is a critical process for landscape mosaics’ configuration. When
fragmentation is reached, the subsequent forest loss is susceptible, and the connectivity
between patches is fragile. Shrinkage is when the size of the remaining primary forest
decreases, but patches can remain stable without disappearing. Attrition is the last stage,
in which the primary forest patch disappears.

2.4. LCFD Calculation of the Deforestation Process

Using cumulative binary images of the deforestation process, we calculated the local
connected fractal dimension (LCFD) [43], taking advantage of the FracLac tool [44] of
ImageJ software [45] (Figure 2e). Figure 4 shows the scanning image procedure, which starts
sampling every deforested pixel (in bold blue) from the upper left corner to the right, and
then to the bottom (pixel in light blue). Each scan step included a rigorous zoomed-out scan of
the pixel neighborhood, calculating the LCFD in each box size (red box in Figure 4). Scanning
only considers the pixels within the largest box that belongs to the cluster connected to the
pixel on which the box is centered [20].
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Figure 4. Scanning pixel procedure to calculate the local connected fractal dimension (LCFD). White pixels represent
deforested patches, pixels in bold blue represent the currently scanned pixel, and the light blue pixels represent those
scanned, from the first to the mth pixel. Red boxes indicate the scanning extent by n box sizes.

This method was applied to all of the deforested pixels of each cumulative binary
image. The LCFD was calculated by the linear regression of the logarithm of the mass
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(pixels), M(ε) in a box of size ε on the logarithm of ε. This scaling relation is expressed in
the following equation:

LCFD =
Log [M(ε)]

Log ε
(1)

where M(ε) is the number of locally connected pixels (eight-neighborhood connection) in a
box of side size ε [43]. From equation 1, the LCFD = 2 when the object is completely filled,
and therefore the object is two-dimensional. On the other hand, if the object is a straight
line (one-dimensional), then the LCFD = 1. The LCFD results are more useful for values
in the range 1.0 < LCFD ≤ 2.00, because these describe the local complexity of the set.
Although the former concept of LCFD refers to how the fractal fills the space, the fractal
dimension of forest loss can be understood as a measure of “emptying” and not “filling”,
as the traditional concept states. From this point of view, an LCFD close to 2 for forest loss
analysis measures the lack of forest, which implies that other land uses, such as agriculture
and grassland, can occupy these gaps.

Previous work in the SBR showed that the deforestation process exhibited lacunar
scaling properties, achieving a minimum box size length of 46 pixels [46]. We chose
the maximum limit of this box size length in order to keep the analysis at a local scale.
Another work, aiming to characterize local retinal vessel abnormalities, used 31 pixels
as the maximum local connected set size [43]. Therefore, in this study, the range of the
scales selected for the locally connected set was from 3 to 31 pixels with a 2-pixel increment
step, giving a total of 8 box sizes (n); that is, box side lengths of 3, 7, 11, 15, 19, 23, 27, and
31 pixels. That means a side length range from 90 to 930 m. During the scanning process,
the box slid one pixel both horizontally and vertically.

Once the entire image was scanned, we obtained two results: (1) LCFD frequency
distribution, and (2) an LCFD text file with LCFD values for each pixel as (X, Y) list. These
were used to define thresholds, map the local connections, and identify spatial processes.

2.5. LCFD Thresholding and Mapping

Figure 5 shows a procedure for segmentation and mapping of LCFD (Figure 2e,f).
LCFD frequency distribution was used to define several LCFD categories or thresholds,
which assist in characterizing the spatial processes of deforestation by coloring the LCFD
into maps. To set LCFD thresholds we use two methods: CA-wavelet, and K-means. Both
present reliable and satisfactory procedures to classify spatial structural patterns. CA-wavelet
was used in other research for segmenting soil images using fractal features [47,48], and
K-means was used similarly to discern urban sprawl patterns [49] and vessel complexity
in patients with cerebral arteriovenous malformations [50], to mention some diverse
application cases.
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Figure 5. The local connected fractal dimension (LCFD) segmentation procedure and mapping.

Mapping of the LCFD was performed from the LCFD text file. This file was converted
into a georeferenced LCFD raster with a pixel resolution of 30 m using R software. This
raster is a grayscale image that contains LCFD values in each pixel. Based on thresholds
defined by CA-wavelet and K-means, we classified and colored the image in order to
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characterize the connectivity of deforestation as a network of the LCFD, as shown in the
last panel of Figure 5.

2.5.1. Concentration-Area (CA) and Wavelet -Transform Modulus -Maxima (WTMM) Methods

Fractals have the property of self-similarity, in which the spatial variability of the
studied variable is scale-independent. Therefore, fractal models commonly result in power-
law relationships between the variables of interest.

The CA method [51] establishes power-law relationships between the concentration
of a variable and the area enclosed by this concentration:

A(ρ ≥ C) ∝ Cβ (2)

where A is the area constituted by concentrations (ρ-values) greater than a given value C
and β is the characteristic exponent of the CA method.

When the studied variable’s spatial variability follows a fractal model, this power-law
relation has only one exponent. The CA method occasionally does not meet the simple
fractal model, because different power laws apply to the studied variable. In this case,
we can assume that the spatial variability is multifractal instead of fractal. Thus, different
slope-change values in the log-log plot can be considered to be separations among different
sets of the variable.

The continuous wavelet transform (CWT) of a function f (t) ∈ L2(R) is a space–scale
transformation defined by the inner product:

W f (u, s) = f , ψu,s =
∫ ∞

−∞
f (t)

1√
s

ψ∗
(

t− u
s

)
dt (3)

where t, u ∈ R and s (scale) ∈ R+. The family of functions ψu,s(t) ∈ L2(R) is called
“wavelets”, which are scaled and translated versions of a particular function ψ(t). The
function ψ(t) is called the “mother wavelet”:

W f (u, s) = f , ψu,s =
∫ ∞

−∞
f (t)

1√
s

ψ∗
(

t− u
s

)
dt (4)

ψ(t) often satisfies the zero-mean and fast-decay properties, assuring the existence of
the Inverse CWT (ICWT).

In order to study the local regularity of a function to find singular points, it is neces-
sary to use a wavelet with vanishing moments, i.e., ψ(t) must be orthogonal to n-order
polynomials. In this case, the CWT can be interpreted as a multiscale differential operator
of order n. Mallat’s theory [52] establishes that the CWT redundancy can be eliminated
only by using the WTMM method to detect singular points in a function. These maxima
are defined as the local maxima of |Wf(u, s)| at each scale s and are located on connected
lines in the space–scale plane. Thus, these lines are named “maxima lines”. An important
characteristic of these maxima lines, in the context of singularity detection, is that at least
one maximum line converges toward each singular point.

The WTMM method has been demonstrated to be an effective method for locating
singular points in 1D and 2D functions [53]. If the wavelet has only one vanishing moment,
these maxima lines are used to locate discontinuities associated with edges in images. If the
wavelet has two vanishing moments —e.g., the Mexican hat wavelet— then the maxima
lines converge toward maximum curvature points. In this study, we applied CA-wavelet
to LCFD list values for the whole cumulative period 1985–2018.

2.5.2. K-Means

Since the LCFD is calculated based on its relationship with the neighborhood from
the box-counting sampling, clustering the LCFD is desirable in order to map deforestation
complexity. The K-means algorithm [54] was used to segment LCFD grayscale images and
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to identify and visualize the five main spatial processes in deforestation using a fractal
approach. This algorithm is one of the most valuable and reliable methods for unsupervised
classification, highlighted by its simplicity when using a relatively low number of iterations.

K-means was also implemented to segment LCFD images, because of the high spatial
correlation performance of the algorithm, and to minimize the group differences from
the cluster centroid. Previous to performing the K-means, the NbClust package in R [55]
was used to determine the optimal number of clusters to initialize the K-means. The K-
means was applied over the LCFD map in QGIS using the Semi-Automatic Classification
Plugin [56]. The algorithm rule used 0.001 as the minimum distance between classes, and
20 iterations were performed for the grayscale LCFD images from 1985 to 2018. From the
resulting classes, minimum and maximum values per class were extracted in order to define
LCFD thresholds. These thresholds were selected and applied for the other cumulative images.

3. Results
3.1. Cumulative Evolution of Deforestation

Figure 6 shows an increase in deforestation from 1985 to 2018. The accelerated de-
forestation process mainly occurred during the period 1995–2000, because of agricultural
expansion. This time point was well known in Ecuador as the “inclusive agriculture” and
“inclusive business” programs period, supported by public and private institutions [57].
The forest loss was accentuated for this period in the southeast and southwest of the
transition zone of the SBR. The primary steps of deforestation from 1985 to 2000 settled the
base of deforestation expansion until 2018. This result suggests that the clearances from
the primary forest in the SBR strengthened the process from the initial patches, and then
developed, following spatial processes over time. The cumulative deforestation, from 1985
to 2005, started to define some visible paths at the SBR. In 2010 these paths started to connect
deforested areas from the east to the west. This process indicates that white pixels started
to promote an isolation structure of black patches, especially around the core area in the
southern part of the SBR. The evolution until 2015 started to define a dendritic structure well
defined and strengthened in dense black spots in the southeastern part of the SBR. Until 2018
deforested patches showed high connections extended throughout the biosphere reserve.
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Spatial metrics of the deforestation process by cumulative periods are shown in
Table 2. There is a clear breaking point in deforestation rates in the third cumulative period,
increasing the DA 5.65 times in only 5-years. This fact can also be reflected in the NP,
indicating that the DA increases around old deforested patches and fosters new clearances
inside the primary forest patches. Then, the NP started to decrease at the same time that
the DA increased until 2018. This indicates that deforestation was consolidated, and the
patches developed by 2000 started to grow until 2018. The PD showed a peak during the
period 1995–2000 and then the PD decreased until 2018. This is similar to the NP, since the
PD is the number of patches per km2, and both are correlated. The ED in the SBR increased
until 2015, then in 2018 decreased when connections between the forest patches started to
disappear. This was because of the removal of residual, isolated primary forest patches and
the consolidation of more homogeneous patches of deforested land. The larger deforested
patches from 2015 to 2018 were characterized by larger sizes and regular shapes, resulting
in a diminution of the ED.
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Table 2. Spatial metrics of deforested patches in the Sumaco Biosphere Reserve (SBR) by cumulative
periods from 1985 to 2018. CP: cumulative period; DA (ha): deforested area (ha); NP: number of
patches; PD: patch density; ED: edge density; ENN_MN: euclidean-nearest-neighbor distance mean
and CLUMPY: clumpiness index.

CP DA [ha] Ratio NP PD ED ENN_MN CLUMPY

1985–1990 15,221 - 32,536 3.26 10.94 112.21 0.45
1985–1995 18,503 1.21 35,962 3.60 12.87 106.75 0.47
1985–2000 103,006 5.57 52,050 5.21 39.89 92.68 0.68
1985–2005 131,649 1.28 51,937 5.20 47.54 91.43 0.69
1985–2010 155,574 1.18 47,119 4.72 52.05 92.06 0.70
1985–2015 185,854 1.19 41,125 4.12 56.28 94.11 0.72
1985–2018 211,555 1.19 38,330 2.27 35.72 96.89 0.76

The ENN_MN metric in the SBR decreased over the entire period, while the DA
increased. The ENN_MN presented a minimum in 2005; then, the metric started to increase
again until 2018. A decrease in an ENN_MN local minimum can be understood as a
point where the deforested area was consolidated in an extended fragmentation with an
irreversible state. This is because of the increasing connections between deforested patches
and the growth of these. The last metric, CLUMPY, increased throughout the periods.
This shows that the deforested patches were clumped, consolidating the deforestation
process. CLUMPY showed a significant increase from 1995 to 2000 and 2015 to 2018, this
was around a 5% in both periods, suggesting a high contagion level.

3.2. The Evolution of Local Fractal Connections

The temporal evolution of LCFD distribution for each of the seven images is shown in
the violins of Figure 7. The most illuminating period is the evolution between 1995 and 2000,
in which the LCFD median increased from 0.94 to 1.57. From 2000, the LCFD increased
until 2018, when the median reached 1.78. The violins show that the frequency distribution
was negatively skewed. This suggests an increase in the deforestation process’ complexity
over time, regarding the initial primary forest of 1985. LCFD frequency distribution tends
toward a skewed effect because of cumulative deforested patches throughout the periods.
The skewed effect is to be expected in violin graphs, in which the deforested area increases
over time. From 2000, LCFD distribution was skewed to the left with higher values of
LCFD, while at the same time, the NP decreased, and the total deforested area increased
(Table 2). This state of the deforestation process suggests a consolidation of forest loss with
a high connectivity network with complex spatial features.
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3.3. LCFD Thresholds with CA-Wavelet and K-Means

The spatial processes’ connections start with perforation and dissection of the pri-
mary forest, but this remains relatively important at the regional scale. Simultaneously,
fragmentation and shrinkage settle deforestation issues at the landscape level, and at-trition
is when forest patches disappear completely. In this case, the LCFD and deforestation
spatial processes were matched using segmentation algorithms. The LCFD was calculated
for each cumulative image of the SBR, and the results subsequently segmented using the
CA-wavelet and K-means methods.

For LCFD segmentation with CA-wavelet (using a Mexican hat wavelet), the results are
shown in Figure 8. In this figure, a singular point was identified in the CA distribution of the
LCFD, corresponding to the slope-change point marked with a red circle in Figure 8a. Then,
the WTMM method was applied in order to locate this anomaly in the CA distribution.
The points where the maxima lines converge denote the locations of anomalies in the
curvature, Figure 8c. The slope-change point was identified corresponding to the LCFD of
1.57 (Figure 8b). This singular point suggests a partitioning threshold to segment LCFD
distribution in the SBR.

Entropy 2021, 23, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 8. CA-wavelet singular point identification in the local connected fractal dimension (LCFD) 
segmentation. 

Figure 9 shows the colored LCFD map results when applying the CA-wavelet thresh-
old. In this, thresholds of 1.0 and 1.57 were used. The CA-wavelet method did not detect 
maxima lines around the value of 1.0. However, a threshold 1.0 was used in this segmen-
tation because of its geometrical meaning: it separates unconnected points into one-di-
mensional clusters. This can be observed in the LCFD progress, from 1985 to 2018, in row 
B. Analyzing these zoomed-in squares reveals that the connections have progressed to a 
complex mosaic. The second zoomed-in squared in row C, indicates at the local scale the 
five spatial deforestation processes (dark blue outline boxes) and the relationships be-
tween them with the color map of the LCFD. Even though these processes are intricate in 
space at different scales, we selected samples for better understanding than the graphical 
interpretation of spatial deforestation processes presented in Figure 3. 

Figure 8. CA-wavelet singular point identification in the local connected fractal dimension
(LCFD) segmentation.



Entropy 2021, 23, 748 11 of 17

Figure 9 shows the colored LCFD map results when applying the CA-wavelet thresh-
old. In this, thresholds of 1.0 and 1.57 were used. The CA-wavelet method did not
detect maxima lines around the value of 1.0. However, a threshold 1.0 was used in this
segmentation because of its geometrical meaning: it separates unconnected points into
one-dimensional clusters. This can be observed in the LCFD progress, from 1985 to 2018, in
row B. Analyzing these zoomed-in squares reveals that the connections have progressed
to a complex mosaic. The second zoomed-in squared in row C, indicates at the local scale
the five spatial deforestation processes (dark blue outline boxes) and the relationships
between them with the color map of the LCFD. Even though these processes are intricate in
space at different scales, we selected samples for better understanding than the graphical
interpretation of spatial deforestation processes presented in Figure 3.
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processes identified.

The results for the LCFD threshold of K-means are shown in Figure 10. The optimal
number of clusters for K – means was five classes using the NbClust algorithm. The re-
sulting thresholds were 0.2, 0.57, 1.10, and 1.61. These come from the clustering minimum
and maximum values of the classes, as Figure 9 and rows B and C of Figure 10 show
zoomed-in areas where local connections show progress over time, and result in a very
fragmented mosaic of the primary forest in the SBR by 2018. Despite the two algorithms
being different, the thresholds were very close to 1.0 and 1.6, suggesting that these singular
points of the LCFD offer the most significant connection characteristic of the deforestation
process from a fractal approach.

Similarly, in Figure 10, with K-means segmentation, the spatial processes were iden-
tified in dark blue outline boxes. Within these boxes, it is clear to note that classes 4 and
5 correspond to orange and red LCFD clusters, and these represent shrinkage and attri-
tion processes, respectively. While perforation, dissection, and fragmentation were more
challenging to discern from cluster-colored coding all three processes were at least under
1.1 LCFD values. Thus, CA-wavelet rightly groups low-impact forest loss stages under
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LCFD < 1.00 and high-impact forest loss stages higher than 1.57. K- means and CA-wavelet
work together to define accurate thresholds of the local connections of fractal features of
spatial deforestation processes.
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4. Discussion
4.1. Major Spatial Attributes of Deforestation Processes

The deforestation process results from driving factors that interact in time and space,
changing the landscape into a heterogeneous and complex system. Over the last 28 years,
the SBR lost over 2100 km2 of its primary forest because of agricultural and livestock
activities. This drove the SBR into a high-fragmentation landscape, affecting connectivity
within protected and non-protected areas. The main spatial processes involved in this
resulting landscape mosaic were fragmentation and shrinkage. The SBR is not the only
site in which deforestation has affected the landscape configuration; other Ecuadorian
biosphere reserves with similar characteristics and similar landscape fragmentations are
Podocarpus–El Condor [58], and Bosque Seco [46].

In the SBR as time has passed the landscape composition has varied in terms of
deforestation area dynamics since the NP has increased, fragmenting and isolating the
primary forest over time. On the other hand, the landscape configuration through the ED
showed a peak in 2015, and then slowed down up to 2018. This signifies that the patches
have merged and increased their size as the NP decreased. Overall, the fragmentation of
primary forest before 2010 starts to be dominated by high-impact spatial processes, such as
shrinkage and attrition. The resulting landscape is to be expected when the deforestation
process is uncontrolled despite this being a declared biosphere reserve area. A similar
process was also detected in the state of Rondônia in the Brazilian Amazon with a total
deforested area of 2300 km2 [27].

Once the primary forest fragmentation was identified, the ENN_MN metric was im-
portant to distinguish the isolation degree. In this case, the stepped diminution of the
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ENN_MN meant greater proximity between the deforested patches, facilitating their con-
nection and strengthening the shrinkage and attrition processes. In terms of the temporal
analysis of deforestation patches it is desirable that the ENN_MN over time be as higher as
possible, in order to reduce the connectivity between deforestation patches that provokes
isolation of primary forest patches.

CLUMPY is the purest landscape fragmentation index among the landscape metrics,
since it is independent of patch abundance [59]. In the SBR, the CLUMPY was an important
monitoring metric for the deforestation process in which lower values of around 0.4 are
desirable for low-impact deforestation, and values that surpass 0.5 suggest continuous
monitoring of deforestation spatial processes. The characteristics of this metric can be
very useful as a strategy to follow at different scales for spatial planning and monitoring
that would benefit forest connectivity, biodiversity conservation, and local livelihoods in
different ways [60]. Thus, spatial metrics offer a classical view and a quantitative indicator
of deforestation spatial processes elucidating the complex interaction of the factors behind
deforestation [28].

4.2. Improvement of Fractal Characteristics through the Local Connections Approach

The deforestation process in the SBR presented a diversity of deforestation spatial
processes, in which low-impact processes such as perforation and dissection occur at
different scales. These processes showed low LCFD values (< 1.0) in which neighbor
connections were not complex, because of the simple geometric significance of the frac-
tal dimension in regular, dispersed, and small patches. Perforation and dissection were
also characterized with low values for PN, ED, and CLUMPY, but high ENN_MN. Once
the LCFD surpasses the threshold of 1.0, the fragmentation can be easily developed
around these patches at different scales. From LCFD mapping, the color-coding for pixel
values below 1.0 indicated low-impact forest loss with feeble connection, as shown in
Figures 9 and 10. When this condition is persistent over time, it means that the deforesta-
tion was controlled or in a static condition; these areas can be identified from mapping,
and could be designated areas for periodic monitoring. K-means, used as a spatial algo-
rithm, successfully detected these low-impact-forest-loss spatial processes with a fractal
dimension below 1; this geometric representativeness meant low connectivity—something
that is very clear from the fractal approach.

Some previous studies using fractal-connected features for spatial forest analysis also
agreed that fractal dimensions below 1.0 were attributed to unconnected patches, while
values above 1.0 corresponded to a mix of connectivity, forming irregularly shaped clus-
ters [15,18]. However, these studies do not deepen the segmentation of fractal connection,
and temporal LCFD quartiles were reported for administrative units. These studies were
applied for forest fragmentation assessment using the LCFD, in which temporal analysis
showed decreasing LCFD values. In the case of the SBR, the LCFD was applied for the
assessment of deforestation patches, showing the increasing trend over time. Both defor-
estation and forest analysis via LCFD offer an understanding of forest fragmentation at a
local scale as one of the main continental land transformation dynamics over in the past
few decades.

The LCFD for deforestation was identified as the fractal capacity of every pixel in the
image to trigger a network of the spread spatial processes. The local connections in the SBR
indicated the complex relations of the fragmentation features in the landscape along stream
networks, transportation, flatlands, transition, and buffer zones, favoring forest patch
isolation from the core area. All of these represent local irregularities of the deforestation
patches’ geometry. We have already reported that the deforestation process in the SBR was
multifractal and multiscale, highlighting the spatial relationship with soil suitability [46].
Thus, the LCFD serves to complement the assessment of landscape connectivity to proximal
objects at a municipal scale, such as routes, protected areas, ecological corridors, etc. We
suggest including the LCFD to ensure the understanding of land transformation dynamics
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at the municipal level. Furthermore, the LCFD could serve as a metric to assess land-use
planning programs, especially in areas that face accelerated changes in the primary forest.

The application of the LCFD was useful for characterize the entire image obtaining
a set of values per pixel, while segmentation methods allowed us to establish thresholds
by which to visually connect clusters of similar LCFD values. LCFD thresholds are very
important for characterize spatial process issues at diverse scales and in different fields,
such as medicine [43,61], urbanism [20], materials [62], etc. For example, in medicine, the
LCFD threshold is useful identifying potential cancer expansion and local connections to
proximal tissues. A threshold of 1.5 was identified for revealing very high intercellular
connectivity to proximal tissues in patients who develop recurrence or metastases after
cancer treatments, and low LCFD values indicate that local complexity in carcinomas is
low [61]. In urban studies, a threshold of 1.5 is useful for characterizing urban connectivity
and complexity. This threshold was used as the breaking point of a transition phase
of the dynamic urban behavior that guarantees historical sites’ continuity, homogeneity,
and coherence [20]. The former results constitute interpretation examples for thresholds’
usefulness in diverse fields. The LCFD in deforestation studies serves as novel complexity
criteria by which to identify and discern low and high land transformation, especially to
georeference local aggressive networks of deforestation processes—in this case assessing
deforestation in the SBR.

Other works have reported general fractal analysis of deforestation in the Amazon
region [16,26,63,64] and in Ecuador [46], but this is the first time that local fractal con-
nections of deforestation process have been quantified and mapped in the Ecuadorian
Amazon region. Something that is always requested for forest conservation programs is
the provision of local solutions to focus on specific zones for restoration activities. Thus,
LCFD mapping provides a feasible solution for decision-making at the local scale, since
maps serve to interact with local stakeholders and to address specific implementation
measures. However, mapping the LCFD in larger areas requires high-quality LULC maps
with at least annual maps. The MapBiomas product for the Amazon biome provides
high-spatial-resolution LULC maps for regional and national studies, but more effort is
needed to improve their spatial accuracy and temporal resolution for local applications.
The scarcity of LULC map sources with accurate spatial and temporal features can limit
the application of LCFD mapping worldwide.

5. Conclusions

This is the first time LCFD mapping and segmentation methods have been used to
evaluate deforestation spatial processes in the Amazon region. This approach provides a
spatio-temporal procedure to assess spatial deforestation processes with accurate results,
facilitating direct usage in a GIS (geographical information system) format essential to
model land use and cover change in biodiverse world hotspots such as biosphere reserves.
The main conclusions achieved in this work are:

• LCFD connections can be understood as a spatial index with which characterize the
intricate connectivity of deforestation patterns.

• CA-wavelet and K-means show consistent segmentation algorithms for the LCFD of
the deforestation process, which is essential for mapping interpretation of deforesta-
tion complexity in land management programs.

• LCFD mapping can be used to define spatial priority settings to tackle deforestation
expansion in the Amazon region.

• This information can detect degradations hotspots based on complex relationships
identified from LULC maps.

As an overall conclusion of this study, LCFD maps can help decision-makers to
efficiently address financial items, knowing that these countries have low budgets for
reforestation programs.
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