
entropy

Article

Improved Local Search with Momentum for Bayesian Networks
Structure Learning

Xiaohan Liu, Xiaoguang Gao *, Zidong Wang and Xinxin Ru

����������
�������

Citation: Liu, X.; Gao, X.; Wang, Z.;

Ru, X. Improved Local Search with

Momentum for Bayesian Networks

Structure Learning. Entropy 2021, 23,

750. https://doi.org/10.3390/

e23060750

Academic Editor: Rafael Rumí

Received: 21 May 2021

Accepted: 10 June 2021

Published: 15 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: c© 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710129, China;
lxhwwey@mail.nwpu.edu.cn (X.L.); nwpu_wzd@mail.nwpu.edu.cn (Z.W.); ru@mail.nwpu.edu.cn (X.R.)
* Correspondence: xggao@nwpu.edu.cn

Abstract: Bayesian Networks structure learning (BNSL) is a troublesome problem that aims to search
for an optimal structure. An exact search tends to sacrifice a significant amount of time and memory
to promote accuracy, while the local search can tackle complex networks with thousands of variables
but commonly gets stuck in a local optimum. In this paper, two novel and practical operators and a
derived operator are proposed to perturb structures and maintain the acyclicity. Then, we design a
framework, incorporating an influential perturbation factor integrated by three proposed operators,
to escape current local optimal and improve the dilemma that outcomes trap in local optimal. The
experimental results illustrate that our algorithm can output competitive results compared with
the state-of-the-art constraint-based method in most cases. Meanwhile, our algorithm reaches an
equivalent or better solution found by the state-of-the-art exact search and hybrid methods.

Keywords: probabilistic graphical models; structure learning; local search

1. Introduction

A crucial matter in artificial intelligence is the development of models learned from
data that can provide a structural representation based on the domain knowledge and have
their own definite semantics. Undoubtedly, Bayesian networks (BNs) [1] have been a prac-
tical and versatile tool for addressing this issue. For example, they have been extensively
used for probabilistic inference in medical decision support [2,3], speech recognition [4],
adaptive robot control [5], gene expression in bioinformatics [6], and so forth.

BN uses a graphed-based representation as the basis for compactly encoding a complex
distribution over a high-dimensional space. Concretely, it is composed of a directed acyclic
graph (DAG) where nodes correspond to the variables, and the directed edges correspond
to direct probabilistic interactions between them. Therefore, the BN learning problem
consists of the DAG recovery and numerical parameters characterizing it, called BN
structure learning (BNSL) and BN parameter learning (BNPL), respectively. The former is
considered more challenging than the latter because searching for an accurate graphical
representation is NP-hard [7]. Existing BNSL methods can be categorized into three types:
constraint-based, score-based, and hybrid approaches. Firstly, constraint-based methods,
such as PC [8,9], use a series of conditional hypothesis tests to learn independence. Hence,
the approaches involve numerous samples and are restricted by the hypothesis test adopted.
On the other hand, score-based methods identify a DAG by optimizing a score function,
typically based on the log-likelihood of statistics. Besides, there are also hybrid approaches,
which first prune the search space using a constraint-based method, followed by a greedy
search for an optimal structure. Max-min hill-climbing (MMHC) [10] is one of the most
well-known of these methods. Unfortunately, hybrid methods are not as fantastic as
the score-based algorithm in the optimization aspect, nor as fast as the constraint-based
algorithm [11]. Thus, this paper focuses on the score-based methods. The score-based
approaches further operate in two different search methods. The first approach tends
to obtain an optimal solution for BNSL, called exact search. Several exact algorithms

Entropy 2021, 23, 750. https://doi.org/10.3390/e23060750 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e23060750
https://doi.org/10.3390/e23060750
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23060750
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23060750?type=check_update&version=2

Entropy 2021, 23, 750 2 of 19

have been developed based on dynamic programming [12–14], branch and bound [15],
linear and integer programming [16–18], shortest-path heuristic [19–21] in the past decades.
However, the exact search is hindered by a burdensome task, the complete exploration of
the space of possible parent sets, whose time and memory usages are growing exponentially.
When the number of variables exceeds 50, the mainstream algorithms become unpractical,
or the algorithm’s parameters need to be changed, which will sacrifice some possibility of
searching higher scores. The second one, called local search, is generally based on heuristics
over the DAG space, such as hill-climbing (HC) [22]. Furthermore, local search has been
carried out over the space of equivalence classes of the network structures [23,24] and the
space of topological sorts (or the ordering space) [25,26]. A drawback of these algorithms is
generally trapped in local optimum solutions, thereby offering an approximate solution to
BNSL. Intuitively, enhancing the performance of the greedy local search by Iterated Local
Search (ILS) [27] can improve this dilemma. Lee and van Beek have used ILS to obtain a
fancy improvement over ordering space [28]. However, the ordering space is a simplified
expression of the DAG space in dimension, which restricts the search space and loses some
probabilities of finding a better solution [29].

In this paper, we apply ILS over the DAG space itself rather than any alternatives of
DAG. In general, it is thought to be tough acting on the structure by complex operators
due to acyclicity. Thus, two novel operators, the Leaf operator and the Root operator
are proposed to make it possible to perturb the structure itself directly and maintain
the acyclic constraint. Moreover, we propose a derivative operator, Swap operator, to
form Momentum factor with the Leaf and Root operators. In contrast to existing primary
perturbation factors, the Momentum factor we propose can affect multiple edges in one
operation, which traverses a more extensive search space and is more conducive to escaping
the local optimum. Then we propose a framework that incorporates the Momentum factor
and ILS to eliminate the limitation of the local optimum partially. As shown by our
experiment results, our algorithm is capable of finding networks that score significantly
better than other state-of-the-art solvers in given instances.

The paper is organized as follows: Section 2 covers the background of BN and some
concepts of BNSL. We introduce our method, the operators proposed and their properties
in Section 3. Then Section 4 presents and discusses the results. Finally, Section 5 provides
our concluding remarks and directions for future research.

2. Background
2.1. Bayesian Networks

We start with some background on Bayesian networks. A Bayesian network is a
probability graph model, which can be expressed as BN{G, P}, where P is the probability
distribution of nodes, representing the intensity of causality between nodes. G is a DAG
whose nodes represent random variables X1, X2, . . . , Xn. In a DAG G, if there is a directed
edge Xi → Xj, then Xi is identified as a parent of Xj and Xj is a child of Xi. Nodes without
children are called leaf nodes, and nodes without parents are named root nodes. Let PaG

Xi
denote the parents of Xi in G, and NondescendantsXi denote the variables in the graph that
are not descendant of Xi. Then G encodes the following set of conditional independence
assumptions, called the local independencies, and denoted by Il(G): for each variable Xi:
(Xi⊥NondescendantsXi | PaG

Xi
). In other words, the local independencies state that each

node Xi is conditionally independent of its nondescendants given its parents [30]. Formally,
BN can be considered as a recipe for factorizing a joint distribution of {X1, X2, . . . , Xn}:

P(X1, X2, . . . , Xn) =
n

∏
i=1

P(Xi | PaG
Xi
). (1)

Additionally, to facilitate further understanding, some common concepts are given:

Entropy 2021, 23, 750 3 of 19

Definition 1. Markov equivalence: Two network structures, G and G’, are Markov equivalent if
the set of distributions represented by one of the DAGs is identical to the set of distributions that
can be represented by the other.

The Markov equivalence definition designates that two equivalents G and G’ are
statistically indistinguishable in BNs.

Definition 2. V-structure: Three variables X1, X2, and X3 form a v-structure if X2 has two
incoming edges from X1 and X3, forming X1 → X2 ← X3 while X1 is not adjacent to X3.

Two equivalents, G and G’, share a set of v-structures as the same skeleton and partial
structure.

Definition 3. Maximum in-degree: The maximum number of parents allowed for a variable, called
maximum in-degree.

This is a local property in the graph, usually constrained for managing the exploration
complexity in BNSL problem.

Definition 4. Maximum out-degree: The maximum number of children allowed for a variable,
called maximum out-degree.

In contrast to the maximum in-degree, the maximum out-degree is not used as a
constraint. It is suggested here to facilitate discussion on operator effect, proposed in the
next section.

2.2. Scoring Function

The most used approach, score-based, is to find the best DAG according to some
scoring functions, which are available to measure the degree of fitness between BN structure
and the dependencies of variables. Broadly, the Bayesian Dirichlet equivalent uniform
(BDeu) [31], minimum description criterion (MDL) [32], Bayesian information criterion
(BIC) [33], Akaike Information Criterion (AIC) [34] are most adopted in BNSL. Except for
MDL (the lower MDL is, the better BN structure is), when other scoring functions are used,
learning the optimal structure can be expressed as:

G∗ = argmax
G

score(G, D), (2)

where D is the given dataset. All of the scoring functions previously mentioned share the
critical property of decomposability: The score of a DAG is constituted by the sum of the
scores of the subgraphs made by each variable Xi with its parents PaG

Xi
:

score(G,D) = ∑
Xi

score(Xi,PaG
Xi

,D). (3)

Profiting the property, a local change in the structure (such as adding, deleting, or
reversing an edge) does not change the score of other parts of the structure that remained
the same.

In this paper, we adopt BIC to evaluate the posterior probability of the candidate
structures:

BIC(G) = ∑n
i=1 ∑π∈

∣∣∣PaG
Xi

∣∣∣ Nx,π log θ̂x|π −
log N

2
(|Xi| − 1)(

∣∣∣PaG
Xi

∣∣∣), (4)

where n implies the number of variables and N is the instances number of a complete
data set. θ̂x|π is the maximum likelihood estimate of the conditional probability P(Xi =

x|PaG
Xi

= π), and π denote the values of Xi and PaG
Xi

, respectively. Nx,π represents the

Entropy 2021, 23, 750 4 of 19

number of times (X = x ∧ PaG
Xi

= π) appears in the dataset and |·| indicates the number
of states of variables and |∅| = 1.

3. Methodology
3.1. ILS over the DAG Space

As a greedy search over the DAG space, the hill-climbing algorithm is typically stuck
in local optimal or cannot cross the plateau. Fortunately, ILS has historically performed
competitively with other metaheuristic methods by a simple and intuitive extension of
basic hill-climbing [27]. Compared with the random restart HC method, the ILS considers
searching for an improvement close to the local optimum rather than a simple random
restart. More tangibly, a random DAG is chosen as an initial candidate solution, and
subsequently, a local optimum is found based on chosen DAG through local search. It is
the first step and found preparations for consequent iteration. Then the algorithm iterates
in three steps until the termination condition is fulfilled: first, the current local maximum
is perturbed through the perturbation factor. Second, a new local optimal is established
based on the perturb solution through local search. Finally, comparing the two solutions
found before, the best one is chosen as the new one. The algorithm stops when a given
termination condition is fulfilled.

Adopting ILS over DAG space to obtain a structure G, we construct the ILSG algorithm,
and the pseudocode of ILSG is provided in Algorithm 1. Regarding the perturbation factor
of ILSG, p f , it is the number of operators used to perturb G. In detail, we sample an operator
from the Add operator, Delete operator, Reverse operator to impact on G, which is carried
out p f times in each iteration. These operators represent adding an edge for G, deleting
an edge for G, and reversing an edge for G, respectively. For legality of the result, if the
operators break the acyclic constraint, remove the operation or operate it in the opposite
way. For example, if the Add operator breaks the acyclic constraint, the edge added by
Add operator will be reversed. To avoid getting stuck in sluggishness, ILSG will restart
from a new random structure if the soft restart condition is satisfied. A soft restart emerges
when the current solution has not achieved the new one over sr iterations.

Algorithm 1 ILSG algorithm
input: Dataset D
Output: Optimal structure G∗ and its score BIC (G∗)

1: G ← randomDAG(D)
2: G ← localsearch(G)
3: G∗ ← emptygraph(D)
4: while (termination condition is not met) do
5: G′ ← perturb(G)
6: G′ ← localsearch(G′)
7: G ← compare(G, G′)
8: G∗ ← compare(G,G∗)
9: if soft restart condition is met then

10: G ← randomDAG(D)
11: end if
12: end while
13: return G∗, BIC (G∗)

3.2. More Complex Operators

The causal role of the perturbation factor in eliminating the restriction of the local
optimum has been demonstrated above, but the contribution of primary perturbation
factors is inadequate. A high-level intuition is that if a compound perturbation, like the
momentum, applies to the current solution, more opportunities to reach a better solution
will arise. Unfortunately, the acyclic constraint makes it impossible for complex operators to
be applied to DAG due to the fact that seeking a cycle in a DAG involves exponential time.

Entropy 2021, 23, 750 5 of 19

In order to facilitate the operation of DAG, we regard the edges as a matrix composed
of two lists: from-list and to-list. Individually, we view an edge as consisting of a from-node
and a to-node. Then we propose three operators, the Leaf operator, the Root operator and
the Swap operator to complicate DAG. Besides, revealing the effect of the operators to be
introduced more intuitively, all operators are applied to a classic benchmark network Asia,
and the results are shown in Figure 1. Among them, Figure 1a shows the original structure
of the Asia network.

3.2.1. Leaf Operator

Definition 5. Leaf (X) operator: converting the node X into a leaf node.

It is not challenging to implement the Leaf operator, which needs three steps:

1. All leaf nodes of DAG are found to avoid invalid operations.
2. A node X to be processed is sampled without replacement from the remaining nodes.
3. If the from-node of an edge is the selected node X, the edge is reversed by the Reverse

operator.

Figure 1b shows the consequence of the Leaf operator that two edges are reversed, and
node E is converted into a leaf node.

Theorem 1. The Leaf operator satisfies acyclic constraint.

Proof of Theorem 1. Suppose that the operation, Leaf (X), violates the acyclic constraint.
Namely, it generates a cycle in the DAG G. Then there must be a path: X → . . .→ X in G,
which indicates X must be one of the parents of a node. However, it is contradictory that X
has been a leaf node.

Corollary 1. When other operators break the acyclic constraint, the cycle can be eliminated by
acting the Leaf operator on the from-node of the edge generating the cycle.

Proof of Corollary 1. It is obviously true, since the from-node of the edge generating the
cycle, has been transferred as a leaf node, while the leaf node does not change the acyclicity
according to Theorem 1.

If we consider the effect of basic operators: Add, Delete, Reverse on structure as one
unit, a fundamental property of the Leaf operator is:

Property 1. Denote the maximum out-degree of a DAG as u. The interval of the effect on the
structure is (1, u).

Proof of Property 1. Consider two extremes, the worst and the best. The worst condition
is that the node operated by the Leaf operator appears only once in the from-list, which
affects the structure by 1 unit. By contrast, the best one is that the node operated by the Leaf
are root nodes with the maximum out-degree u, which affects the structure in u units.

3.2.2. Root Operator

Definition 6. Root (X) operator: converting the node X into a root node.

The difference in the implementation process between Leaf and Root is that the
operation object of Root changes to the to-node. Figure 1c shows the effect of the root
operator that two edges are reversed, and node E is transformed to a root node. It is similar
to Leaf but Root has the following key feature:

Theorem 2. The Root operator satisfies acyclic constraint.

Entropy 2021, 23, 750 6 of 19

Proof of Theorem 2. Suppose that the operation, Root (X), breaks the acyclic constraint,
namely, generates a cycle in DAG. Then there must be a path: X → . . . → X. In other
words, X must be one of the children of a node. It is contradictory that X has been a
root node.

Then the complexity discussion of the Root operator is provided:

Property 2. Denote the maximum in-degree of a DAG as k. The interval of the effect on the
structure is (1, k).

Proof of Property 2. Still consider two extremes, the worst and the best. The worst condi-
tion is that all nodes operated by the Root operator appear only once in the to-list, which
affects the structure by 1 unit. On the other hand, the best one is that the nodes operated
by the Root are leaf nodes with the maximum in-degree k, which affects the structure in k
units.

Likewise, the Root operator can also eliminate cycles generated by other operators.
However, the maximum out-degree is commonly larger than the maximum in-degree. In
other words, eliminating cycles through the Leaf can explore more extensive space than
the Root. Consequently, we tend to satisfy acyclicity by the Leaf instead of Root.

3.2.3. Swap Operator

Definition 7. Swap (X, Y) operator: swapping two nodes, X and Y, in the to-list.

The Swap operator is considerably different in complexity from the above operators.
The algorithm implementing the Swap operator is provided in three stages:

1. The black and white lists are ascertained according to node X.
2. The node Y to be swapped is sampled from the white list.
3. To guarantee the legality of the result, resample the node Y if it breaks the legitimacy

of DAG.

Figure 1d shows the influence of the Swap operator. It is different from the first two
operators because the Swap operator may break acyclic constraint. Fortunately, the cycle
can be eliminated by addressing the node which generates the cycle through Leaf, according
to Corollary 1. All meaningless and illegal swap operations are shown in Figure 2, which
constructs the foundation of the blacklist of the first step and the legitimacy test of the third
step. In detail, Figure 2a,b are meaningless swaps because the exchanged nodes share the
same child node or parent node; Figure 2c,d are illegal swaps, which leads to the illogical
case that the parent node and the child node are the same; Figure 2e,f represent a prohibited
condition that generates bidirectional edges; Figure 2g,h show a banned situation that
generates existing edges. Then the complexity discussion of the Swap operator is provided:

Property 3. Denote the maximum out-degree of a DAG as u. The interval of the effect on structure
is (4, 4+2*u).

Proof of Property 2. Still consider two extremes, the worst and the best. The worst condi-
tion is that the pair of nodes operated by the Swap does not break the acyclic constraint,
which affects the structure by 4 units. In contrast, the best one is that two nodes operated
by the Swap break acyclic constraint, and every Leaf operator used to eliminate the cycle
has the best impact, which affects the structure by 4+2*u units.

Entropy 2021, 23, 750 7 of 19

(a) Original (b) Leaf

(c) Root (d) Swap

Figure 1. The representation of operators: (a) The original DAG; (b) The DAG after an action: Leaf
(E); (c) The DAG after an action: Root (E); (d) The DAG after an action: Swap (T, B).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. Representations of all meaningless and illegal operations, and the dash line indicates two
nodes to be swapped. (a) meaningless swap: Swap (A, C); (b) meaningless swap: Swap (C, D); (c)
illegal swap: Swap (A, D); (d) illegal swap: Swap (A, B); (e) illegal swap: Swap (A, B); (f) illegal swap:
Swap (A, B); (g) illegal swap: Swap (A, B); (h) illegal swap: Swap (A, B).

In fact, as shown in Figure 3, the proposed three operators can be equivalently re-
garded as a combination of a series of basic operations. Specifically, the Leaf and Root can
be considered to compose some corresponding Reverse operations as shown in Figure 3a
and Figure 3b. Likewise, as shown in Figure 3c, the Swap operator can be viewed as con-
sisting of two Delete operations, two Add operations, and some possible reverse operations

Entropy 2021, 23, 750 8 of 19

(when the acyclic constraint is broken). Although the three operators proposed above
are more complex than fundamental operations, the effect may be weakened by multiple
actions on the same DAG. As a simple example, there is an edge A→ B in a DAG. First,
we convert node A into a leaf node by Leaf (A). Then we use the Leaf operator for the DAG
again. Unfortunately, node B is selected, which leads to all the operations in vain for edge
A→ B. Therefore, we design a factor, integrating the operators to affect the structure more
powerfully and overcome the drawback.

(a) (b)

(c)

Figure 3. Representations of the relationship between the three operators proposed above and three
basic operators. Yellow lines denote Reverse operations; red dash lines indicate Add operations; blue
lines mean Delete operations. (a) Leaf; (b) Root; (c) Swap.

3.3. ILSG with Momentum

On the basis of the more complicated operators, Leaf, Root, Swap, we propose a
compound factor, Momentum, to motivate the algorithm ILSG to reach a better solution
from the local optimum. The implementation of the Momentum is provided in Algorithm 2.
Furthermore, the framework is suggested by combining Momentum with ILSG (ILSM) and
improving some details, and the pseudocode of ILSM is sketched in Algorithm 3.

Algorithm 2 Momentum algorithm
input: A DAG G to be processed, the number m of objects operated by Momentum
Output: The DAG G’ has been processed

1: Snode ← getnodes(G)
2: for i ∈ (1, m) do
3: Xi ← sample(Snode)
4: operator ← sample(Lea f , Root, Swap)
5: G′ ← op(Xi)
6: end for
7: return G’

The algorithm begins with a local optimum generated through ILSG. Then, until
the termination condition is met, ILSM obtain a new solution by ILSG over and over.
When the number of variables increases, a given number of perturbation factors of ILSG
becomes impractical. Hence the parameter, a trade-off between practical and efficiency, is
designed to step with the algorithm ILSM gradually. The stride of perturbation factors is
designed to be an array related to the number of instances. When the stepping condition is
satisfied, the stride will be stepped according to the value in the array. Such as, stride ∈
{n/10, n/5, n/2, n}, objects influenced by perturbation factors of ILSG are n/10 at the
beginning of ILSM. It will step to n/5 to obtain a mightier perturbation if the step condition
is satisfied. ILSM is operated by Momentum to avoid stagnation and restarted from a
new initial graph according to an operation and restart schedule. The Momentum acts

Entropy 2021, 23, 750 9 of 19

on the structure if the objective value has not been improved over rs moving to a new
local optimum. After rh Momentum operations, the restart condition is fulfilled, and ILSM
restarts from a new random graph.

Algorithm 3 ILSM algorithm
input: Dataset D, the number m of objects operated by Momentum
Output: Optimal structure G∗ and its score BIC (G∗)

1: G ← randomDAG(D)
2: G ← ILSG(G)
3: G∗ ← emptygraph(D)
4: while termination condition is not met do
5: G′ ← ILSG(G, stride)
6: G ← compare(G, G′)
7: G∗ ← compare(G,G∗)
8: if the condition of changing stride is met then
9: stride ++

10: end if
11: if the condition of using Momentum is met then
12: G ← Momentum(G, m)
13: end if
14: if the restart condition is met then
15: G ← randomDAG(D)
16: end if
17: end while
18: return G∗, BIC (G∗

4. Experimental Evaluation

In this section, we first introduce the score criteria, other algorithms, and cases that will
be experimented for comparison. Then, we perform experiments to show the effect of three
powerful operators, Leaf, Root, Swap, and the compound factor Momentum combined
by them, compared to the primary operators, Add, Delete, Reverse. Later, we compare
our method ILSM to other existing BNSL algorithms on eight classical BNs. The operators
proposed by us and ILSM were implemented in R language, and the experiments were run
on a computer with Windows 10, an Intel Core i5-8300H (2.30 GHz) processor with four
cores, eight threads, and 8GB of RAM.

4.1. Scoring Metrics

BIC and two structural metrics are considered to evaluate the accuracy of the learned
graph. The introduction of BIC has been provided in Section 2.2. The two structural metrics
use varying combinations of the following parameters [35]:

• True Positives (TP): the number of edges in the learned graph also present in the
true graph.

• True Negatives (TN): the number of direct independencies discovered in the learned
graph exist in the true graph.

• False Positives (FP): the number of edges in the learned graph not present in the
true graph.

• False Negatives (FN): the number of edges not in the learned graph but present in the
true graph.

The first structural metric, called the Structural Hamming Distance (SHD) [10], com-
pares the structure of the learned and the original networks. It represents the number of
steps required to transform the learned graph into the original graph, namely,

SHD = missingedges + extraedges + incorrectlyorientededges (5)

where a score of 0 indicates a perfect fitting between the learned and the true graph.

Entropy 2021, 23, 750 10 of 19

The second metric, called the Balanced Scoring Function (BSF) [36], is a recent metric
that considers all four parameters and returns a fully balanced score. Formally,

BSF = 0.5× (
TP
a

+
TN

i
-
FP
i

-
FN
a

), (6)

where a is the number of edges, and i is the number of direct independences in the
actual graph:

i =
|V|(|V| − 1)

2
− a, (7)

where |V| is the size of the variable set V. The score ranges from −1 to 1, where a score of
−1 corresponds to the least accurate graph, a score of 1 to a graph that is a perfect match of
the ground-truth graph, and 0 to an empty or a fully connected baseline graph.

4.2. Benchmark Data Sets of Experiments

In order to embody the performance of algorithms in networks with the different
number of variables, we choose two small networks (<20 variables), two medium networks
(20–50 variables), two large networks (50–100 variables), very large networks (>100 vari-
ables). The sources and the judgement criteria of these benchmarks’ scale are from the BN
repository [35]. They are all well-known benchmark data sets, and Table 1 summarizes the
characteristics of the true networks for them.

Table 1. The characteristics of BN benchmarks data sets *.

Benchmark
Data Sets D Nodes n Edges e Parameters θ

Max
In-Degree k

Max
Out-Degree u

Asia 8 8 18 2 2
Sachs 11 17 178 3 6

Insurance 27 52 984 3 6
Alarm 37 46 509 4 5

Hailfinder 56 66 2656 4 16
Win95pts 76 112 574 7 10

Pathfinder 109 195 77155 5 106
Andes 223 338 1175 6 12

* The true networks of all eight data sets are known, and they are publicly available (http://www.bnlearn.com/
bnrepository, accessed on 15 June 2021).

4.3. BNSL Algorithms Considered

In Section 4.4.2, the performance of ILSM is assessed with reference to seven algorithms
that have been applied to the same data. The algorithms selected represent state-of-the-art
in the overview [37] or well-established implementation. Specifically,

1. PC-stable [9]: a modern and stable implementation of the state-of-the-art constraint-
based algorithm called PC.

2. IAMB-FDR [38]: a variant of IAMB, a constraint-based algorithm based on discovering
Markov Blanket, adjusts the tests significance threshold with FDR. In the following it
is abbreviated as IAMB.

3. HC: the most popular local search algorithm adopted over the DAG space. As the
results of HC are consistently unstable and not enough to compare with other solvers,
we choose HC with restart but still abbreviate it as HC.

4. MMHC: perhaps the most popular hybrid learning algorithm that combines the
Max-Min Parents and Children algorithm and HC.

5. Hybrid HPC (H2PC) [39]: a hybrid algorithm combines the HPC (to restrict the search
space) and the HC (to find the optimal network structure in the restricted space).

6. SaiyanH [40,41]: a recent novel and state-of-the-art hybrid algorithm combines a
constraint-based phase with an associational score Mean/Max/MeanMax marginal
Discrepancy and HC. In the following it is abbreviated as Saiyan.

http://www.bnlearn.com/bnrepository
http://www.bnlearn.com/bnrepository

Entropy 2021, 23, 750 11 of 19

7. GOBNILP: it is a current state-of-the-art exact search approach based on integer linear
programming. In the following it is abbreviated as ILP.

The bnlearn R package version 4.6.1 (https://www.bnlearn.com, accessed on 15 June 2021)
was used to test algorithms 1 to 5. The SaiyanH algorithm was tested using the Bayesys
open-source BNSL system version 2.42 (http://bayesian-ai.eecs.qmul.ac.uk/bayesys, ac-
cessed on 15 June 2021). Finally, ILP was tested using the GOBNILP software version 1.6.3
(https://www.cs.york.ac.uk/aig/sw/gobnilp, accessed on 15 June 2021).

4.4. Experimental Results and Discussion
4.4.1. Comparisons of Operators

As the structures of Asia and Sachs were elementary, we compared the proposed
operators with three basic operators on the virtual networks of the other six benchmark
datasets. Although BSF was more balanced than SHD, the latter corresponded to the proposed
quantitative estimation of the effects of operators in Section 3.2. Consequently, we chose
SHD as the criterion to estimate the impact between operators in this section. Moreover, the
purpose of this section was to find which operator or factor had the most powerful influence
on the structure instead of comparing accuracy, thus we thirsted for a higher SHD.

Every operator experimented with 5*n times in each true network for guaranteeing to
get as many states as possible, where n was the number of nodes. The maximum, minimum,
and mean values of SHD are shown in Table 2. No matter how many calculations were
made, the influence of the three basic operators (Add, Delete, Reverse) on the structure
was 1.00, so their results are listed in one column in Table 2.

Table 2. The impact of operators. Add/Delete/Reverse is abbreviated as A/D/R. The results had
been quoted in two decimal places. Unit: 1 SHD.

Network A/D/R Leaf Root Swap

Max/Min/Mean Max Min Mean Max Min Mean Max Min Mean

Insurance 1.00 7.00 1.00 2.36 3.00 1.00 2.10 11.00 4.00 4.69
Alarm 1.00 5.00 1.00 1.86 4.00 1.00 1.84 7.00 4.00 4.30
Hailfinder 1.00 16.00 1.00 1.74 4.00 1.00 1.68 20.00 4.00 4.40
Win95pts 1.00 10.00 1.00 1.74 7.00 1.00 2.66 5.00 4.00 4.00
Pathfinder 1.00 106.00 1.00 6.15 5.00 1.00 1.81 15.00 4.00 4.06
Andes 1.00 12.00 1.00 1.76 6.00 1.00 2.39 9.00 4.00 4.54

Obviously, the influence interval of Leaf and Root on the structure was consistent with
that derived in Section 3.2, and the result of Swap did not reach the extreme situation of
theoretical derivation in Section 3.2. Nevertheless, it was still within the range of theoretical
derivation. Further, Swap’s mean effect was usually more potent than that of Leaf and
Root, which was due to its min SHD of 4.00. However, the structure became more and more
complex with the increase of variables, and the max effect of Swap was poorer than that of
Leaf. Such as, in Win95pts, Pathfinder, Andes networks (the three most complex networks
in our experiments) Swap’s max values of SHD were worse than that of Leaf. It was not
complicated to understand in theoretical aspects because the more complex the structure
was, the more laborious it was to violate the acyclic constraint by a simple swap. Each
of the three operators had its advantages, but they could not be dominant in all aspects,
which was one of the reasons why we aspired to propose the integrated factor: Momentum.

Testing the performance of the Momentum, we carried out four groups of comparisons,
and the number of objects affected by the operators in each group was n/5, n/2, n, 2*n,
respectively. Namely, operator(round(m))m=n/5,n/2,n,2∗n, where m was the number of
objects and n was the number of variables, round() indicated rounding off all of non-integer.
For instance, Add(n/5) denoted adding n/5 edges for structures, Leaf(n/2) indicated
converting n/2 nodes into leaf nodes, Swap(n) signified exchanging n pairs of nodes,
Momentum(2*n) meant operating 2*n object through Momentum. The comparison results
are shown in Table 3.

https://www.bnlearn.com
http://bayesian-ai.eecs.qmul.ac.uk/bayesys
https://www.cs.york.ac.uk/aig/sw/gobnilp

Entropy 2021, 23, 750 12 of 19

Table 3. The comparison of operators for the given number of objects. The column labels represent
operators, and bold indicate the effect on the structure was the most powerful. Unlike Table 2, three
basic operators are listed in Table 3 for comparison. Units: 1 SHD.

m Network Add Delete Reverse Leaf Root Swap Momentum

n/5

Insurance 5 5 5 6 8 14 27
Alarm 7 7 7 9 11 29 42

Hailfinder 11 11 11 9 18 30 58
Win95pts 15 15 15 14 32 52 86

Pathfinder 22 22 22 41 44 60 58
Andes 45 45 45 61 100 164 252

n/2

Insurance 14 14 14 25 24 45 57
Alarm 19 19 19 15 24 42 66

Hailfinder 28 28 28 32 32 64 89
Win95pts 38 38 38 44 77 97 149

Pathfinder 55 55 55 70 87 84 192
Andes 112 112 112 116 201 340 422

n

Insurance 27 27 27 28 38 61 72
Alarm 37 37 37 28 36 70 78

Hailfinder 56 56 56 32 50 104 113
Win95pts 76 76 76 63 88 164 178

Pathfinder 109 109 109 175 140 140 216
Andes 223 223 223 165 263 500 541

2*n

Insurance 54 52 52 29 47 73 83
Alarm 74 46 46 30 38 89 90

Hailfinder 112 66 66 44 61 110 125
Win95pts 152 112 112 66 108 191 204

Pathfinder 218 195 195 179 174 157 253
Andes 446 338 338 199 317 613 632

As in Table 3, the integrated factor, Momentum, naturally had the most significant
effect on the structure of almost all benchmarks. A closer look at the experimental data
revealed that Momentum played a dominant role in affecting the structure when the
number of objects was few, such as m = n/5, n/2, though it was tied with Swap for m = n,
2*n. As analyzed in Section 3.2, the influence of Leaf and Root were hardly more potent with
increasing m in benchmarks with an uncomplicated structure. For example, Leaf(n/5) even
was poorer than basic operators in the Hailfinder network. Moreover, the effect of Leaf(n/2),
Leaf(n), Leaf(2*n) were nearly equal in the Insurance network. Therefore, by alternating
the three proposed operators, we could eliminate the limitation of a single operator’s
drawback, which was also one of the reasons we desired to propose Momentum. It shall
be noticed that the results of Swap were competitive, which indicated the performance
of Swap did not significantly weaken with increasing m. Nevertheless, there was a gap
between Swap and Momentum, which was reflected in the average distance between the
results of Momentum and Swap, which was 32.5. As shown in Table 3, though Momentum
indeed improved the performance of operators with multi-objects, it was dispensable to
increase objects to 2*n. Therefore, the subsequent experiments adopted Momentum(n)
rather than Momentum(2*n), a trade-off between time complexity and actual effect.

Furthermore, comparing Momentum’s robustness and exhibiting Momentum’s supe-
riority more intuitively, we performed many groups on Momentum and three proposed
operators with n objects based on the classical Alarm and Pathfinder, the representative
of the complex and medium complex network. Figure 4 shows the performance of three
proposed operators and Momentum.

Entropy 2021, 23, 750 13 of 19

Figure 4. The comparisons of operators for two benchmarks. The time of experiments: 50.

Intuitively, Momentum was dominant in both less complex and complex networks. In
detail, the median SHD metric based on Momentum was about 17.9% and 39.7% higher
than that of the suboptimal operator, and about 71.9% and 155.5% higher than that the most
inefficient operator for two benchmarks, respectively. Moreover, for the Alarm network,
some extreme values existed in the Swap and Root results, whereas Momentum’s results
were very compact. Overall, Momentum could steadily affect the structure in a potent way.

4.4.2. Comparisons of Algorithms

We varied the size of dataset N ∈ {1000, 10,000, 50,000, 100,000} in the benchmark
networks mentioned in Section 4.3. Besides, we set the maximum in-degree to k = 6, a high
value that allows learning even complex structures. It shall be noticed that our approach
did not involve a maximum in-degree. Evaluating the best performance of algorithms, we
ran each solver for 6 hours in all following experiments. The parameters of ILSM were
tuned and their optimal values are listed in Table 4.

To qualitatively analyze which algorithm could learn a DAG closer to the ground-truth
structure, we compared ILSM and algorithms mentioned in Section 4.3. Figures 5 and 6
displayed the BSF and SHD metric of ILSM with reference to the scores produced by the
other seven algorithms, respectively. Each of the 16 graphs corresponded to a case study
and a metric. Unlike the experiments in Section 4.4.1, which measured the effect of the
operators, a lower SHD score showed a better performance in this section. It was important
to note that, in contrast to SHD, a higher BSF score demonstrated better performance. Some

Entropy 2021, 23, 750 14 of 19

lines were incomplete or missing, which illustrated that the corresponding algorithm failed
to learn a structure in the time limitation or memory limitation.

Table 4. Parameters of ILSM

Parameter Description Value

stride The stride array of perturbation factors of ILSG {n/10, n/5, n/2, n}
mo Objects operated by the factor, Momentum n
rs Number of non-improving steps until acting by Momentum 20
rh Number of Momentum factors until a restart 5

pathfinder andes

hailfinder win95pts

insurance alarm

asia sachs

1000 10,000 50,000 100,000 1000 10,000 50,000 100,000

1000 10,000 50,000 100,000 1000 10,000 50,000 100,000

1000 10,000 50,000 100,000 1000 10,000 50,000 100,000

1000 10,000 50,000 100,000 1000 10,000 50,000 100,000

0

5

10

15

10

20

40

80

120

160

0

100

200

300

400

0

1

2

3

4

5

10

20

30

40

10

20

30

40

50

60

150

200

250

300

algorithms

pc

iamb

hc

mmhc

h2pc

saiyan

ilp

ILSM

comparisons of SHD scores

Figure 5. Comparisons of SHD scores.The x-axis of each graph denotes sample sizes of the input
data, whereas the y-axis represents SHD scores (lower is better).

Entropy 2021, 23, 750 15 of 19

pathfinder andes

hailfinder win95pts

insurance alarm

asia sachs

1000 10,000 50,000 100,000 1000 10,000 50,000 100,000

1000 10,000 50,000 100,000 1000 10,000 50,000 100,000

1000 10,000 50,000 100,000 1000 10,000 50,000 100,000

1000 10,000 50,000 100,000 1000 10,000 50,000 100,000
−0.75

−0.50

−0.25

0.00

0.25

−0.1

0.0

0.1

0.2

0.3

0.4

−0.2

0.0

0.2

0.4

−0.6

−0.3

0.0

0.3

−0.25

0.00

0.25

0.50

−0.2

−0.1

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

algorithms

pc

iamb

hc

mmhc

h2pc

saiyan

ilp

ILSM

comparisons of BSF scores

Figure 6. Comparisons of BSF scores.The x-axis of each graph denotes sample sizes of the input data,
whereas the y-axis represents BSF scores (higher is better).

A rather interesting outcome in Figures 5 and 6 is that ILP could not handle the n > 50
networks with given parameters. Except for ILP, PC, IAMB and ILSM outperformed other
methods in most cases. In detail, PC carried out conditional independent tests on the
variables, then identified the v-structure and equivalent classes to learn an optimal BN
structure, which focused on exploring the distribution of data with respect to the causal
relationships between the variables. Similarly, IAMB pursued to detect the Markov Blanket.
Thus, it was a matter of course to learn a result with the lower SHD scores for constrained-
based algorithms. Unfortunately, it only indicated that the skeleton of their results got
closer to that of target networks rather than the results themselves. As a result, PC and
IAMB significantly scored worse outcomes in comparing BSF scores in Figure 6. On the
contrary, ILP (in processable conditions) and ILSM performed well regardless of comparing

Entropy 2021, 23, 750 16 of 19

SHD or BSF scores. As a score-and-search method, ILSM indeed obtained a somewhat
worse evaluation occasionally, such as the Sachs case and Pathfinder case. That was because
the network with the highest score did not always match the real network, and it was
hard to guarantee the ground-truth network entirely fall into the global optimum solution
with the given training data. Further, an actual path did not always acquire a high score,
although the training data were generated from the standard network. As a greedy local
search method, HC was more unstable despite combining the restart, which was shown as
it performed best in 2/8 cases and worst in 3/8 cases. Concerning hybrid methods, their
performance was distinctly worse than ILSM, ILP, and two constrained-based algorithms,
as shown in Figures 5 and 6.

Aiming to weigh the performance of optimization, namely, which algorithm could
achieve the optimal solution or closer to the optimal solution, Table 5 provides an overview
of comparing the BIC scores of learned networks by eight networks. It was noted that PC
and IAMB might return a Partial Directed Acyclic Graph, which contained undirected edges.
However, only when the dependence relations were definitely direct the decomposable
score could be calculated.

The most striking result to emerge from Table 5 was that ILSM achieved the highest
scores in all 32 cases. More concretely, as an exact solver, ILP could find a global optimum
when the maximum in-degree k was set as the default value. However, to guarantee ILP
could get a result, we set k to the default value in Asia and Sachs cases and k = 6 for other
networks, otherwise ILP could only tackle the two networks in our experimental conditions.
Therefore, as it could be seen from Table 5, ILP achieved the optimal global solution in Asia
and Sachs benchmarks but reached a local optimal lower than results of ILSM in Insurance
and Alarm cases, and failed to obtain an outcome in Hailfinder, Win95pts, Pathfinder
and Andes cases. Regarding hybrid approaches, it was similar to comparisons of SHD
and BSF where the results of MMHC and H2PC were not as outstanding as score-based
methods. In detail, the score gap between the results of ILSM and MMHC was 53.7%, and
it was 35.0% for ILSM and H2PC, whereas it was 1.9% for ILP. Although Saiyan performed
worse in comparisons of SHD and BSF, it commonly could find a competitive structure
in small, medium, and large networks, which was revealed in Table 5 as a bit of gap
between Saiyan’s results and ILSM’s results, whereas the gap sharply increased to 18.9%
and 27.6% for Pathfinder and Andes benchmarks. Saiyan solver could not output a learned
network even if it ran out of the time limitation in Pathfinder100000 and Andes100000
cases. Incorporating the Momentum factor, ILSM distinctly improved the condition that
local search ordinarily got stuck in local optimal by comparing ILSM and HC with the
restart. It was presented in Table 5 as ILSM found better structures than HC for 28/32
instances. It was noticed that the structures found by ILSM and HC were equivalent or
tied in Asia and Andes cases, which indicated the impact produced by Momentum was
redundant in the simplest network, while it was inadequate in the networks with a sheer
number of variables. Fortunately, such networks generally were rare.

Entropy 2021, 23, 750 17 of 19

Table 5. Comparisons of the capability of each algorithm to search for the optimal solution. “–”
means that the score of the corresponding result could not be calculated. Besides, “OM” indicates
the solver runs out of memory before any solution was output. “OT” representes that the solver
could not output a solution within the time limitation. Bold denotes the score that was the best found
amongst all methods. Metric: BIC score (higher is better).

Instances PC IAMB MMHC H2PC Saiyan HC ILP ILSM

Asia1000 – −2410.4 −2369.3 −2369.3 −2203.5 −2212.4 −2200.6 −2200.6
Asia10000 – −24,678.5 −24,011.0 −24,240.1 −22,394.2 −22,392.1 −22,392.1 −22,392.1
Asia50000 – −122,774.1 −120,324.2 −121,476.3 −111,397.4 −111,397.4 −111,397.4 −111,397.4
Asia100000 – – −242,298.2 −242,345.3 −223,830.3 −223,830.3 −223,830.3 −223,830.3
Sachs1000 – – −8048.8 −7787.6 −7680.0 −7690.7 −7668.8 −7668.8
Sachs10000 – – −74,294.1 −72,665.5 −72,678.6 −72,825.0 −72,665.5 −72,665.5
Sachs50000 – – −363,763.4 −359,445.9 −359,459.9 −359,633.0 −359,445.9 −359,445.9
Sachs100000 – – −718,719.1 −718,719.1 −18,737.0 −718,915.0 −718,719.1 −718,719.1
Insur1000 – – −15,613.8 −15,370.5 −14,476.1 −14,485.4 −14,630.2 −14,370.7
Insur10000 – – −145,705.6 −137,720.0 −135,150.0 −134,404.2 −133,976.6 −133,644.2
Insur50000 – – −715,325.3 −662,998.8 −667,893.0 −658529.1 −657,485.5 −657,234.2
Insur100000 – – −1,460,299.6 −1,326,283.6 −1,332,294.9 −1,314,347.5 −1,311,824 −1,311,582.2
Alarm1000 – – −14,210.2 −14,307.3 −11,675.8 −11,760.8 −11,800.73 −11,576.3
Alarm10000 – – −125,264.2 −127,175.8 −106,235.6 −107,115.9 −106,262.6 −106,194.5
Alarm50000 – – −636,475.3 −529,251.3 −525,259.2 −526,975.0 −525,047.2 −525,033.2
Alarm100000 – – −1,343,931.0 −1,051,838.8 −1,046,071.1 −1,048,645.6 OM −1,045,778.0
Hail1000 – – −58,949.9 −59,485.9 −53,739.2 −53,140.4 OM −53,129.9
Hail10000 – – −574,164.7 −579,448.2 −505,657.5 −498,475.5 OM −498,175.8
Hail50000 – – −2,864,980.1 −2,889,387.7 −2,513,498.6 −2,466,687.4 OM −2,466,261.8
Hail100000 – – −5,695,300.5 −5,775,235.6 −5,015,818.9 −4,923,431.1 OM −4,923,074.2
Win1000 – – −12,789.4 −13,135.8 −10,935.8 −10,089.8 OM −10,009.5
Win10000 – – −114,141.8 −110,574.7 −94,886.9 −92,044.7 OM −91,505.9
Win50000 – – −538,549.6 −530,922.4 −472,611.6 −454,162.3 OM −453,026.7
Win100000 – – −1,086,467.3 −1,066,673.8 −939,455.3 −902,280.4 OM −902,066.0
Path1000 – – −54,335.0 −52,546.5 −43,024.6 −35,421.7 OM −34,899.7
Path10000 – – −561,876.7 −431,256.3 −305,996.3 −285,837.6 OM −280,420.0
Path50000 – – −2,757,244.8 −1,798,515.5 −1,412,298.9 −1,287,241.1 OM −1,276,740.2
Path100000 – – −5,348,864.0 −3,237,761.9 OT −2,504,395.6 OM −2,482,500.9
Andes1000 – – −100,713.3 −98,971.9 −131,976.9 −95,568.9 OM −95,560.6
Andes10000 – – −958,957.8 −954,721.2 −1,013,158.6 −933,735.1 OM −933,719.5
Andes50000 – – −4,817,602.8 −4,738,844.0 −4,823,995.3 −4,645,111.4 OM −4,645,108.9
Andes100000 – – −9,500,828.1 −9,429,374.3 OT −9,291,994.9 OM −9,291,994.9

5. Conclusions

We propose two new operators, Leaf and Root, and a derivative operator, Swap,
which can influence the DAG itself rather than any alternatives or simplified expressions of
structures. Then, a new framework, ILSM, based on ILS, is proposed that incorporates the
Momentum factor integrated by three proposed operators. Experiments have demonstrated
that the ILSM can guide a better solution than state-of-the-art hybrid methods and a local
search solver with the restart, which indicates our method indeed eliminates the limitation
of local optimal to a certain extent. ILSM also reaches a globally optimal solution found by
the state-of-the-art exact solver ILP in terms of the small networks, and outperforms ILP in
any medium-scale and large-scale instances.

ILSM shares a critical problem with other algorithms based on ILS, that is, they involve
many iterations to escape local optimal, which is undoubtedly inefficient. Thus, eliminating
the limitation of local optimum in a more heuristic way is a vital issue to tackle.

Our further works include how to expand the impact on the structure to escape the
local score maximum and search for a metaheuristics method to promote the efficiency of
our method. A memetic search method may be an appropriate choice, but adopting it in
the DAG space will be a thorny topic we need to tackle in the future.

Author Contributions: Conceptualization, X.L.; methodology, X.L.; software, X.L.; validation, X.L.;
formal analysis, X.L. and Z.W.; investigation, X.L.; resources, X.L.; data curation, X.L. and X.R.;
writing—original draft preparation, X.L.; writing—review and editing, X.L. and Z.W.; visualization,
X.L.; supervision, X.G.; project administration, X.L., Z.W., X.R.; funding acquisition, X.G. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (61573285).

Entropy 2021, 23, 750 18 of 19

Data Availability Statement: The true networks of all eight data sets are known, and they are
publicly available (http://www.bnlearn.com/bnrepository, accessed on 15 June 2021).

Acknowledgments: I have benefited from the presence of my supervisor and my classmate. I am
deeply indebted Gao Xiaoguang, my supervisor, who is the corresponding author of this paper. She
guided me throughout our writing of this thesis and provided many valuable advice. I would also
acknowledge my school, who provides the scientific research environment for us. I am very grateful
to Tan Xiangyuan, my senior fellow apprentice, for his guidance.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

BIC Bayesian information criterion
BNPL Bayesian Networks parameter learning
BNs Bayesian Networks
BNSL Bayesian Networks structure learning
BSF Balanced Scoring Function
DAG directed acyclic graph
FN False Negatives
FP False Positives
GOBNILP global optimal Bayesian Networks Integer linear programming
HC Hill-climbing
ILS Iterated local search
ILSG ILS adopted over DAG
ILSM ILSG with Momentum
MMHC Max-Min Hill-climbing algorithm
TN True Negatives
TP True Positives
SHD Structural Hamming Distance

References
1. Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference; Elsevier: Amsterdam, The Netherlands, 2014.
2. Nikovski, D. Constructing Bayesian networks for medical diagnosis from incomplete and partially correct statistics. IEEE Trans.

Knowl. Data Eng. 2000, 12, 509–516. [CrossRef]
3. Aguiar-Pulido, V.; A Seoane, J.; Gestal, M.; Dorado, J. Exploring patterns of epigenetic information with data mining techniques.

Curr. Pharm. Des. 2013, 19, 779–789. [CrossRef] [PubMed]
4. Maas, R.; Huemmer, C.; Hofmann, C.; Kellermann, W. On Bayesian networks in speech signal processing. In Proceedings of the

Speech Communication; 11. ITG Symposium, Erlangen, Germany, 24–26 September 2014; pp. 1–4.
5. Sekmen, A.; Challa, P. Assessment of adaptive human–robot interactions. Knowl.-Based Syst. 2013, 42, 49–59. [CrossRef]
6. Su, C.; Andrew, A.; Karagas, M.R.; Borsuk, M.E. Using Bayesian networks to discover relations between genes, environment, and

disease. Biodata Min. 2013, 6, 1–21. [CrossRef] [PubMed]
7. Chickering, M.; Heckerman, D.; Meek, C. Large-sample learning of Bayesian networks is NP-hard. J. Mach. Learn. Res. 2004, 5,

1287–1330.
8. Spirtes, P.; Glymour, C.N.; Scheines, R.; Heckerman, D. Causation, Prediction, and Search; MIT Press: Cambridge, MA, USA, 2000.
9. Colombo, D.; Maathuis, M.H. Order-independent constraint-based causal structure learning. J. Mach. Learn. Res. 2014,

15, 3741–3782.
10. Tsamardinos, I.; Brown, L.E.; Aliferis, C.F. The max-min hill-climbing Bayesian network structure learning algorithm. Mach.

Learn. 2006, 65, 31–78. [CrossRef]
11. Scutari, M.; Graafland, C.E.; Gutiérrez, J.M. Who learns better Bayesian network structures: Accuracy and speed of structure

learning algorithms. Int. J. Approx. Reason. 2019, 115, 235–253. [CrossRef]
12. Koivisto, M.; Sood, K. Exact Bayesian structure discovery in Bayesian networks. J. Mach. Learn. Res. 2004, 5, 549–573.
13. Silander, T.; Myllymaki, P. A simple approach for finding the globally optimal Bayesian network structure. arXiv 2012,

arXiv:1206.6875.
14. Wang, Z.; Gao, X.; Yang, Y.; Tan, X.; Chen, D. Learning Bayesian networks based on order graph with ancestral constraints.

Knowl.-Based Syst. 2021, 211, 106515. [CrossRef]
15. De Campos, C.P.; Ji, Q. Efficient structure learning of Bayesian networks using constraints. J. Mach. Learn. Res. 2011, 12, 663–689.
16. Cussens, J. Bayesian network learning with cutting planes. arXiv 2012, arXiv:1202.3713.

http://www.bnlearn.com/bnrepository
http://doi.org/10.1109/69.868904
http://dx.doi.org/10.2174/138161213804581936
http://www.ncbi.nlm.nih.gov/pubmed/23016855
http://dx.doi.org/10.1016/j.knosys.2013.01.003
http://dx.doi.org/10.1186/1756-0381-6-6
http://www.ncbi.nlm.nih.gov/pubmed/23514120
http://dx.doi.org/10.1007/s10994-006-6889-7
http://dx.doi.org/10.1016/j.ijar.2019.10.003
http://dx.doi.org/10.1016/j.knosys.2020.106515

Entropy 2021, 23, 750 19 of 19

17. Jaakkola, T.; Sontag, D.; Globerson, A.; Meila, M. Learning Bayesian network structure using LP relaxations. In Proceedings of
the Thirteenth International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010; pp. 358–365.

18. Guo, Z.; Constantinou, A.C. Approximate learning of high dimensional Bayesian network structures via pruning of Candidate
Parent Sets. Entropy 2020, 22, 1142. [CrossRef] [PubMed]

19. Yuan, C.; Malone, B.; Wu, X. Learning optimal Bayesian networks using A* search. In Proceedings of the Twenty-Second
International Joint Conference on Artificial Intelligence, Barcelona, Spain, 16–22 July 2011.

20. Malone, B.; Yuan, C. Evaluating anytime algorithms for learning optimal Bayesian networks. arXiv 2013, arXiv:1309.6844.
21. Tan, X.; Gao, X.; Wang, Z.; He, C. Bidirectional heuristic search to find the optimal Bayesian network structure. Neurocomputing

2021, 426, 35–46. [CrossRef]
22. Heckerman, D. A tutorial on learning with Bayesian networks. In Innovations in Bayesian Networks; Springer: Berlin/Heidelberg,

Germany, 2008; pp. 33–82.
23. Chickering, D.M. A transformational characterization of equivalent Bayesian network structures. arXiv 2013, arXiv:1302.4938.
24. Alonso-Barba, J.I.; Gámez, J.A.; Puerta, J.M. Scaling up the greedy equivalence search algorithm by constraining the search space

of equivalence classes. Int. J. Approx. Reason. 2013, 54, 429–451. [CrossRef]
25. Teyssier, M.; Koller, D. Ordering-based search: A simple and effective algorithm for learning Bayesian networks. arXiv 2012,

arXiv:1207.1429.
26. Scanagatta, M.; Corani, G.; Zaffalon, M. Improved local search in Bayesian networks structure learning. In Proceedings of the 3rd

International Workshop on Advanced Methodologies for Bayesian Networks, Kyoto, Japan, 20–22 September 2017; pp. 45–56.
27. Hoos, H.H.; Stützle, T. Stochastic local search: Foundations and applications; Elsevier: Amsterdam, The Netherlands, 2004.
28. Lee, C.; van Beek, P. Metaheuristics for score-and-search Bayesian network structure learning. In Canadian Conference on Artificial

Intelligence; Springer: Cham, Switzerland, 2017; pp. 129–141.
29. Scanagatta, M.; de Campos, C.P.; Corani, G.; Zaffalon, M. Learning Bayesian Networks with Thousands of Variables. In

Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 7–12 December
2015; pp. 1864–1872.

30. Koller, D.; Friedman, N. Probabilistic Graphical Models: Principles and Techniques; MIT Press: Cambridge, MA, USA, 2009.
31. Buntine, W. Theory refinement on Bayesian networks. In Uncertainty Proceedings 1991; Elsevier: Amsterdam, The Netherlands,

1991; pp. 52–60.
32. Suzuki, J. A construction of Bayesian networks from databases based on an MDL principle. In Uncertainty in Artificial Intelligence;

Elsevier: Amsterdam, The Netherlands, 1993; pp. 266–273.
33. Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [CrossRef]
34. Akaike, H. Information theory and an extension of the maximum likelihood. principle. In Selected Papers of Hirotugu Akaike;

Springer: New York, NY, USA, 1998; pp. 199–213.
35. Scutari, M.; Denis, J.B. Bayesian Networks: With Examples in R; CRC Press: Boca Raton, FL, USA, 2014.
36. Constantinou, A. Evaluating structure learning algorithms with a balanced scoring function. arXiv 2019, arXiv:1905.12666.
37. Scanagatta, M.; Salmerón, A.; Stella, F. A survey on Bayesian network structure learning from data. Prog. Artif. Intell. 2019,

8, 425–439. [CrossRef]
38. Pena, J.M. Learning gaussian graphical models of gene networks with false discovery rate control. In European conference on

evolutionary computation, machine learning and data mining in bioinformatics; Springer: Berlin/Heidelberg, Germany, 2008; pp.
165–176.

39. Gasse, M.; Aussem, A.; Elghazel, H. A hybrid algorithm for Bayesian network structure learning with application to multi-label
learning. Expert Syst. Appl. 2014, 41, 6755–6772. [CrossRef]

40. Constantinou, A.C. Learning Bayesian networks with the Saiyan algorithm. ACM Trans. Knowl. Discov. Data (TKDD) 2020,
14, 1–21. [CrossRef]

41. Constantinou, A.C. Learning Bayesian Networks that enable full propagation of evidence. IEEE Access 2020, 8, 124845–124856.
[CrossRef]

http://dx.doi.org/10.3390/e22101142
http://www.ncbi.nlm.nih.gov/pubmed/33286911
http://dx.doi.org/10.1016/j.neucom.2020.10.049
http://dx.doi.org/10.1016/j.ijar.2012.09.004
http://dx.doi.org/10.1214/aos/1176344136
http://dx.doi.org/10.1007/s13748-019-00194-y
http://dx.doi.org/10.1016/j.eswa.2014.04.032
http://dx.doi.org/10.1145/3385655
http://dx.doi.org/10.1109/ACCESS.2020.3006472

	Introduction
	Background
	Bayesian Networks
	Scoring Function

	Methodology
	ILS over the DAG Space
	More Complex Operators
	Leaf Operator
	Root Operator
	Swap Operator

	ILSG with Momentum

	Experimental Evaluation
	Scoring Metrics
	Benchmark Data Sets of Experiments
	BNSL Algorithms Considered
	Experimental Results and Discussion
	Comparisons of Operators
	Comparisons of Algorithms

	Conclusions
	References

