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Abstract: Pulseless electrical activity (PEA) is characterized by the disassociation of the mechanical
and electrical activity of the heart and appears as the initial thythm in 20-30% of out-of-hospital car-
diac arrest (OHCA) cases. Predicting whether a patient in PEA will convert to return of spontaneous
circulation (ROSC) is important because different therapeutic strategies are needed depending on
the type of PEA. The aim of this study was to develop a machine learning model to differentiate
PEA with unfavorable (unPEA) and favorable (faPEA) evolution to ROSC. An OHCA dataset of 1921
5s PEA signal segments from defibrillator files was used, 703 faPEA segments from 107 patients
with ROSC and 1218 unPEA segments from 153 patients with no ROSC. The solution consisted of
a signal-processing stage of the ECG and the thoracic impedance (TI) and the extraction of the TI
circulation component (ICC), which is associated with ventricular wall movement. Then, a set of
17 features was obtained from the ECG and ICC signals, and a random forest classifier was used to
differentiate faPEA from unPEA. All models were trained and tested using patientwise and stratified
10-fold cross-validation partitions. The best model showed a median (interquartile range) area under
the curve (AUC) of 85.7 (9.8)% and a balance accuracy of 78.8 (9.8)%, improving the previously
available solutions at more than four points in the AUC and three points in balanced accuracy. It was
demonstrated that the evolution of PEA can be predicted using the ECG and TI signals, opening the
possibility of targeted PEA treatment in OHCA.

Keywords: out-of-hospital cardiac arrest (OHCA); electrocardiogram (ECG); thoracic impedance
(TI); pulseless electrical activity (PEA); return of spontaneous circulation (ROSC)

1. Introduction

Out-of-hospital cardiac arrest (OHCA) is a major public health problem, with an
estimated incidence between 350,000 and 700,000 cases per year in Europe and survival
rates below 10% [1,2]. A patient in cardiac arrest abruptly looses respiratory and cardiovas-
cular functions and, if untreated, dies within minutes. An early recognition of OHCA and
prompt treatment are therefore key for survival. In the prehospital setting, bystander car-
diopulmonary resuscitation (CPR) contributes to maintaining artificial blood flow through
ventilation and chest compressions until more advanced therapy is available. For instance,
when the presenting heart rhythm is ventricular fibrillation (VF), an electrical defibrillation
shock within the first five minutes from OHCA onset raises survival rates by 50-70% [2,3].

The best course of treatment for OHCA depends on the heart rhythm of the patient,
which can be determined using an electrocardiogram (ECG) [4]. In the preshopital setting,
the heart function is monitored by the emergency medical system (EMS) personnel using

Entropy 2021, 23, 847. https:/ /doi.org/10.3390/e23070847

https://www.mdpi.com/journal/entropy


https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-2855-1344
https://orcid.org/0000-0002-6409-1429
https://orcid.org/0000-0003-4401-7376
https://orcid.org/0000-0001-9521-1852
https://doi.org/10.3390/e23070847
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23070847
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23070847?type=check_update&version=2

Entropy 2021, 23, 847

20f16

monitor defibrillators. Unfortunately, by the time the EMS personnel arrives on scene, VF
is the presenting rhythm in only 11-37% of OHCA cases [5,6]. A frequently presenting
rhythm is pulseless electrical activity (PEA), with recorded incidences of 20-30% out
of hospital [7-9] and up to 40-60% in hospital [10,11], as well as much lower survival
rates [7,12-15]. PEA is characterized by the dissociation of the electrical and mechanical
activities of the heart. Therefore, a patient in PEA presents apparent heartbeats in the ECG
with discernible QRS complexes, but without effective ventricular wall movement. Thus,
there is no palpable pulse and an insufficient blood flow [7]. EMS personnel provide CPR
and pharmacological treatment to revert PEA and achieve return of spontaneous circulation
(ROSC), but treatment depends on the characteristics of PEA. Consequently, directions for
understanding the mechanism and stratification of PEA have been addressed by clinical
consortia and efforts to predict, prevent, and manage PEA encouraged [7,13,15,16].

PEA states can grossly be classified into pseudo-PEA or true-PEA [17]. In pseudo-PEA,
the electrical activity of the heart produces a small mechanical activity, albeit insufficient
for a palpable pulse. In true PEA, there is no mechanical cardiac activity [16,18]. The two
stages of PEA have different prognoses and treatments [7,18-20], and their distinction is of
great clinical interest to predict the hemodynamic evolution of PEA, as well as whether the
patient will recover ROSC.

Several contributions have proposed the use of ECG features to differentiate PEA
with favorable evolution to ROSC (faPEA) from PEA with unfavorable evolution to ROSC
(unPEA). The heart rate (HR) and the width of the QRS complex during PEA have been ex-
tensively investigated in both in- and out-of-hospital cardiac arrest, but with contradictory
conclusions [12-15]. In these studies, ECG data were manually annotated, and no auto-
matic method has been proposed yet to discriminate faPEA from unPEA. Additionally, the
thoracic impedance (TI) measured through the defibrillation pads reflects changes in tissue
density and fluid content in the thoracic region and thus presents a small, but discernible
component associated with blood flow [21]. TT has been successfully used to discriminate
PEA from rhythms associated with ROSC, by extracting the impedance circulation compo-
nent (ICC), which reflects blood flow during ROSC [22,23]. In fact, models combining ECG
and TI have been proposed to predict immediate rhythm transitions during OHCA [24]
and to discriminate rhythms in OHCA [25], and in a preliminary study, a model combining
an ECG and a TI feature showed promising results for the discrimination of faPEA and
unPEA on a limited dataset [26].

This study introduced a new model to discriminate faPEA from unPEA based on
comprehensive automatic feature extraction from the ECG and TI signals using various
signal analysis domains. An advanced random forest (RF) classifier was then used to
efficiently combine those features and improve the accuracy of the diagnosis. A compre-
hensive dataset of OHCA episodes was used for the analysis. The results showed that a
combination of ECG and TI features substantially improved the accuracy of the models,
which could be used to assist EMS personnel in evaluating the hemodynamic state of the
patient and deciding the optimum resuscitation treatment.

2. Data Collection

The dataset used in this study was a subset of a larger dataset of OHCA episodes
recorded by the Dallas-Fortworth Center for Resuscitation Research (Dallas, TX, USA).
Every episode had concurrent ECG (250 Hz, resolution = 1.03 mV) and TI signals (200 Hz,
resolution = 0.74 mQ) recorded by the defibrillation pads of a HeartStart MRx defibrillator
(Philips Healthcare, Andover, MA, USA).

The dataset consisted of 260 episodes of patients in PEA, of which 107 recovered ROSC
and 153 did not. ROSC recovery was certified by clinicians on site and further revised
by visual inspection of the episodes. Cases ending in ROSC had confirmed long periods
without CPR after recovery of pulse, while cases without ROSC had CPR until the end of
the episode. PEA onset was identified in the episodes as the first occurrence of an organized
rhythm (QRS complexes) during CPR. PEA segments of 5s in duration, separated by at
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least 15, and including the ECG and the TI were identified during the first 10 min after
PEA onset. Segments were extracted in the pauses of chest compressions, identified in the
TI[27,28], with no artifacts due to compressions in the signals. Figure 1 shows an example
of an episode in which PEA evolved to ROSC (in green). Chest compression activity is
visible in the TI signal, and PEA segments (in blue) were only selected during the intervals
without chest compressions to avoid artifacts in the ECG.

ROSC onset,

—
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Figure 1. ECG and TI signals of an episode with favorable evolution to ROSC (in green). The 5s PEA segments extracted
from the ECG and the TI are colored in blue.

A total of 1921 PEAs were extracted, a median (interquartile range, IQR) of 4 (6.5) seg-
ments per episode. The segments in the ROSC episodes were labeled as faPEA and those
in the non-ROSC episodes as unPEA. There were a total of 703 faPEA segments, 4 (5.8)
per episode; and 1218 unPEA segments, 5 (7) per episode. Figure 2 shows examples of
the faPEA and unPEA segments. As shown in the figure, the faPEA segment presents a
more regular ECG with narrower QRS complexes of larger amplitude and a higher heart
rate. Moreover, it also presents TI components and an ICC waveform correlated with
the heartbeats.

I ECG
suls AWt

NV )

Figure 2. Examples of the signals and components for a 5s faPEA segment (left) and unPEA segment
(right). From top to bottom: ECG, TI, ICC, and three detail components from the stationary wavelet
decomposition of the ICC, dS,ICC , d6,ICC ,and d7,ICC
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3. Methods

The algorithm to discriminate faPEA from unPEA consisted of the three stages shown
in Figure 3. The first stage was an ECG and TI signal-processing stage, where the ECG and
TI signals were resampled to a common sampling rate of f; = 250 Hz and then denoised to
obtain $gcg (1) and $t1y(n). The impedance ICC component, sjcc(n), was then extracted
from $t11(n) by applying adaptive filtering and denoised to obtain $jcc (). In the second
stage, a set of waveform features was computed from the denoised ECG and ICC signals.
Finally, in the third stage, these features were fed to an RF classifier to discriminate faPEA
from unPEA segments.

Stage 1 Stage 11 Stage I11
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1
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1
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|
! Feature . PEA
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' extraction faPEA
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Figure 3. Overview of the faPEA /unPEA classification algorithm. The algorithm consists of three
stages: a signal-processing stage, a feature-extraction stage, and a classification stage. The RF classifier
uses features from the denoised ECG, 3gcg (1), and impedance circulation component, §jcc(1).

3.1. Processing of ECG and TI Signals
3.1.1. ECG Processing

The ECG signal was denoised using the stationary wavelet transform (SWT) as pro-
posed by Isasi et al. for OHCA rhythms [29,30]. An 8-level SWT decomposition was used
with a Daubechies-4 mother wavelet and soft thresholding. Detail coefficients dj3 to dg
were used to reconstruct the denoised ECG, which corresponds to an analysis band of
0.5-31.25Hz, a typical band for ECG analysis in OHCA [23,29].

3.1.2. TI Processing and ICC Extraction

The TI measured through the defibrillation pads may show different components
due to: baseline wandering, chest compressions and ventilation during CPR, the circu-
lation component in the pulsed rhythm, additional noise/artifacts due to movement,
electrode—skin contact, etc. [31]. The segments of the database were extracted during
pauses of chest compressions, so the TI signal was bandpass filtered (0.8-10 Hz) to remove
baseline fluctuations, respiration artifacts, and other high-frequency noise [22,32]. Then,
the ICC component was extracted, that is the TI component correlated with the ECG
heartbeats. Heartbeats were detected in the denoised ECG using the Hamilton-Tompkins
algorithm [33], and the instantaneous HR was computed as:

B 1
EAGCEES!

where r; is the time instant of the i-th QRS complex (R-peak). Using this information, the
ICC can be modeled as a Fourier series of K harmonics [22,31]:

f(n) Vn € [ri, 1iy1) 1

K
sicc(n) = 3 a(n)cos(k2ef (n) ) + i) sink 27 ) ) @
=1
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The time-varying Fourier coefficients, ai(n) and by (1), were estimated using a Kalman
smoother [23]. The Kalman observation and state vectors are then [23,34]:

xp = a1 (n),...,ak(n),by(n),..., be(n)]" ©)]
H, = [cos(27tf(n)n),...,cos(K2mf(n)n),sin(2rf(n)n),..., sin(K2rf(n)n)] (4)

The time-varying Fourier coefficients were assumed to be Gaussian processes with
update equations [23,34]:
ar(n) = Ppag(n — 1) + wp ()

br(n) = Pubr(n — 1) + wy (6)
A

where ¢, = exp(—ﬁ) and w; is a zero-mean Gaussian process with ¢ the standard
deviation. The update equations are thus:

xn — Tnxn_]_ + Qn (7)

where ¥, = ¢, - Lx, Oy = 0 - I and Iy is the identity matrix of dimension 2K.

The Fourier coefficients (state vector), a; and by, were computed applying the Rauch—
Tung-Striebel smoother, with K = 5 harmonics, A = 0.05 and ¢ = 0.01, as suggested by
Elola et al. [23].

Finally, sjcc(n) was denoised using an 8-level SWT (Daubechies-4) with soft thresh-
olding. The ds—dy detail coefficients were used to reconstruct the denoised $icc (1), which
corresponds to the bandwidth 1-8 Hz. Figure 2 shows the TI, ICC, and ds-d7 detail coeffi-
cients for faPEA and unPEA.

3.2. Feature Extraction

Since faPEA evolves to ROSC, while unPEA does not, the hypothesis was that faPEA
would be more similar to cardiac rhythms with pulse than unPEA. Therefore, faPEA
should present more regular interbeat intervals and heart rates, larger ECG amplitudes,
wider spectra (narrower QRS complexes), and an ICC with a greater correlation to the
heartbeats than unPEA. Therefore, the features used to detect pulse during cardiac arrest
were added [23,35,36], as well as the features to quantify signal regularity and spectral
dispersion [37,38]. A total of 17 features were computed, 9 from the denoised ECG (5gcG)
and 8 from the denoised ICC ($1c¢).

3.2.1. ECG Features
The ECG features were (for the detailed calculations, consult [4,29,35,37,38]):

¢ The AMSA, the amplitude spectrum area, which is the weighted sum of the amplitudes
of the ECG in the spectral domain, and it quantifies the variability and spectral
dispersion of the signal. The AMSA was computed as described in [35];

*  Highpower, the power of the ECG in the higher frequency bands; a 17.5-40 Hz band-
width was used [35,38];

e FuzzEn, fuzzy entropy, which measures the regularity of the signal, computed as
described in [35];

®  The SNEO, the smoothed nonlinear energy operator, as described in [37], which
measures the local energy content of the ECG;

¢ The IQR values of the denoised ECG and its SWT detail coefficients ds—dy, which are
denoted by dy gcg for k = 5,6,7 [29];

*  Burggcg, the variance of the white noise term of an order-four autoregressive (AR)
model estimation of the ECG power spectral density. It measures the goodness-of-fit
of the power spectral density to that of spectra concentrated around the fundamental
component (HR) and its harmonics [4,39].
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3.2.2. ICC Features
The ICC features were (for the detailed calculations, consult[4,22,29,36,37]):

*  Logpower, the logarithmic energy (time domain) of the denoised ICC, which has been
shown to correlate with ventricular wall movement [22];

e  The SNEO, the smoothed nonlinear energy operator, as described in [37], which
measures the local energy content of the ICC;

e The IQR values of the denoised ICC and its SWT detail coefficients ds—d7, which are
denoted by dy 1cc for k = 5,6,7 [29];

*  Burgcc, the variance of the white noise term of the AR(4) estimation of the power
spectral density of the denoised ICC [4,39];

®  Crosspower, the cross-power between the denoised ECG and ICC signals, as described
in[36].

3.3. Building the Classifier

An RF classifier was used, both for feature selection and binary classification of the
5s segments into faPEA /unPEA. RF classifiers have demonstrated good performance and
robustness with unbalanced datasets and have the advantage of having an embedded
feature ranking/selection through feature importance [40,41].

An RF is an ensemble of B decision trees (weak learners), trained using a different
bootstrap replica of the original training dataset. The trees are grown using recursive
binary splitting, and at each node, D’ features are randomly selected from the available
D features for the split. The splitting process is carried out until the tree’s terminal nodes
are fed with less than I;;,, observations [40,42]. The final decision of the RF classifier is
obtained through a majority vote of those B trees.

For this study, an RF classifier with B = 500 trees was trained and forced the growth
of uncorrelated trees by using a 10% bootstrap replica (with replacement) of the training
set for each tree. The number of predictors per node was set to the default D’ = /D,
and the minimum number of observations per terminal node was fixed to lgj,e = 5, as
recommended in [23]. To avoid class imbalance, uniform priors were assigned.

For baseline comparisons, other machine learning classifiers were also trained and
evaluated. The RF was compared to a logistic regression (LR) classifier and to two sup-
port vector machine classifiers with polynomial kernels of second (SVM2) and third or-
der (SVM3). In these models, class imbalance was addressed by weighting the least preva-
lent class (faPEA) by a factor of 1.5.

3.4. Evaluation of the Models

All classifiers were trained and tested using 10-fold cross-validation (CV) with patient-
wise and stratified data partitions. In this way, training/test data leakage was avoided, and
the class imbalance in each fold reflected that of the whole dataset. The CV evaluation of the
models was repeated 10 times to statistically characterize the performance of the classifiers.

The classifiers were evaluated using the typical performance metrics for binary classi-
fiers, taking faPEA as the positive class. The following performance metrics were consid-
ered: sensitivity (Se), specificity (Sp), balanced accuracy (BAC, the average of Se and Sp),
and the area under the receiver operating characteristic curve (AUC).

4. Results

Table 1 shows a summary of the statistical distribution of the 17 features for the
faPEA and unPEA segments of the complete dataset. The features are ranked by the AUC
obtained by using a single-feature LR classifier (evaluated in the 10-fold CV partitions). All
features except FuzzyEn showed significant differences for the distributions of the faPEA
and unPEA segments (p < 0.001, Wilcoxon test), and moderate to good AUC values in the
range of 52.9 to 81.6%.
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Table 1. Median (IQR) values of the features for faPEA and unPEA segments grouped by ECG (left) and ICC (right) features.
Features are ranked within each group by the AUC (median, IQR) of a single-feature LR classifier.

ECG Features ICC Features
Feature faPEA unPEA AUC (%) Feature faPEA unPEA AUC (%)
—6 -7

Burg é:g . }8*6) (i’? : }876) 81.6(56)  Crosspower ~ 1310(2151)  425(1083)  71.6(3.4)

AMSA 31.2(22.3) 13.1(14.1) 81.3(4.9) IQR(ds) 22.1(36.3) 10.5(30.2) 66.5 (1.6)

Highpower 74.3 (166.0) 8.3(24.8) 80.3(8.1) SNEO 2930(10,001) 445 (4427) 65.7 (7.8)

IQR(dg) 1.1(1.2) 0.5 (0.6) 72.6 (15.0) Logpower 5131(2783)  2822(5259) 64.4(7.5)

IQR(ds) 0.31 (0.65) 0.17(0.29) 71.0(11.1) IQR(dg) 842(136.1)  32.5(88.9) 64.3(5.2)

SNEO 0.21(0.82) 0.06 (0.20) 71.0 (14.4) IQR 18.6(26.9) 7.2(30.5) 61.5(10.3)

IQR 0.17(0.17) 0.10(0.10) 68.8 (14.4) IQR(d7) 150.9(253.8)  66.3(247.5)  54.9(13.0)

IQR(dy) 1.3(L.5) 1.0(1.0) 65.2 (12.6) Burg 0.21(1.9) 0.05(0.8) 54.6 (14.4)
FuzzEn 0.22(0.13) 0.23(0.14) 52.9(20.4)

4.1. Performance of the RF Classifier

The overall performance of the method is reported in Table 2 in terms of AUC, BAC,
and Se/Sp. Two model types were evaluated, those using ECG-only features and those
combining ECG and ICC features. For each model, the complete feature set and a reduced
optimal feature set based on RF feature importance (see Section 4.2) were used. The models
with reduced feature sets showed the best performance, with median (IQR) values of
85.7(9.8)/78.8 (9.8)% for AUC/BAC for the ECG+ICC model and 83.2 (8.5) /75.7 (10.7)%
for the ECG-only model. Adding information derived from the impedance (ICC signal)
improved the AUC and BAC of the ECG-only models at 2.5 and three points, respectively.

Table 2 also shows the performance of all previous proposals in the literature for the
prognosis of the evolution of PEA. All the methods were implemented in MATLAB and
then evaluated using this study’s dataset and data partitions. The previous proposals
included: (1) a preliminary version of the proposed method based on an RF classifier, but
using only one ECG feature (AMSA) and one ICC feature (Logpower) [26]; (2) an LR model
using ECG-only features proposed by Alonso et al. [24] for the immediate prediction of the
evolution of cardiac arrest rhythms, including PEA; (3) single-ECG feature models based on
the heart rate [12] and the width of the QRS complexes [14]. In the original studies [12,14],
the HR and QRS widths were manually measured, but in an automatic system, these values
have to be automatically computed from the ECG. The wavedec wavelet-based algorithm
was applied both for QRS detection and HR calculations, and for ECG delineation and QRS
width calculations [43], and then, we used these features in a single-feature LR classifier.
The best solution outperformed all previous proposals by 4-19 points in the AUC and
by 3-16 points in BAC. Moreover, the ECG-only solution also outperformed all previous
ECG-only solutions by 2-16 points in the AUC and 1.5-14 points in BAC and used a
reduced feature set compared to the second-best ECG only model by Alonso et al. [24] (four
vs. six).

Table 2. Performance of the methods introduced in this study compared to all previous proposals for
faPEA /unPEA discrimination. The table shows the median (IQR) values for AUC, BAC, Se, and Sp.

No. Features AUC(%) BAC(%) Se (%) Sp (%)

This study (ECG+TT) 17 85.7 (8.6) 77.8(8.9) 79.8(11.3) 77.3(12.1)

This study (ECG) 9 82.1(9.7) 735(11.2) 79.7(14.1) 69.0(15.9)
This study,

reduced (ECG+TI) 7 85.7 (9.8) 78.8(9.8) 80.1(12.6) 76.7(13.6)

This study, reduced (ECG) 4 83.2(8.,5) 75.7(10.7) 789(15.9) 75.7(11.4)

Urteaga et al. [26] 2 82.0(10.5) 74.8(11.3) 77.0(13.9) 73.5(14.6)

Alonso et al. [24] 6 81.4(10.3) 74.4(89) 73.2(15.1) 77.8(15.3)

HR [12] 1 67.2(129) 62.1(11.8) 80.2(14.5) 45.1(21.1)

QRS width [14] 1 69.2(129) 67.8(13.3) 74.8(20.2) 61.5(26.6)
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4.2. Feature Selection and Feature Analysis

To analyze how features were ranked, the RF feature importance was used, and
the feature selection probability was estimated by adjusting the models of a decreasing
number of features (N f), from N =17, , 1 The selection probability for each feature
was measured as the percentage of times it was selected. For each 10-fold CV partition,
features were iteratively discarded (in steps of one) by removing the feature with the lowest
importance, and the RF models were retrained to rerank the features for the remaining
Ny features. The process was carried out until a single feature was left. The proportion of
times a feature was included for each value of Ny is shown in Figure 4.

The most frequently selected features included both ECG and ICC features. The
features in the top seven positions were ECG spectral features such as AMSA, Burg,
and Highpgwer and the ICC amplitude/power features such as SNEOjcc, IQR(dg 1cc),
IQR(ICC), and Logpower-

AMSA
SNEOqcc
IQR(dg1cc)

Burgrce

Highpower 0.28 0.48
IQR(ICC) t0.01 0.07 0.16 0.23
Logpower F 0 0.03 0.05 0.07 0.11 0.21

IQR(dsgcc)F0o 0o 0 0 0 O

IQR(d71cc)F0 0 0 0 0 0
IQR(dspcc)Fo 0 o o0 o0 © 001 0.18 0.42
IQR(ECG)-F0o o o0 o0 0 0O 0 0 016 042

Crosspower - 0 0 0 0 0 0 0 0.01 0.06 0.26

IQR(d7gcc)F0 0 o 0 ©0 O 0 001 001 003 007 015
SNEOgcc-0 0o 0 0 O O O 0O 0 0 001 009 037
FuzzZEnt-o0 o o o0 ©0 0 O 0 O 0 002003 031
IQR(dsgcc)F0 0 0o 0 O O O O O O O 002006 010 0.27

Burgice - 0 0 0 0 0 0 0 0 0 0 0 0.03 0.04 0.06 0.14 0.37
1 1 I 1 1 | 1 1

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Figure 4. The selection probability for the 17 features, as a function of N [Z the number of features
included in the RF classifier.

Another important aspect is the performance of the model as a function of Ny, both to
obtain more accurate models by selecting an optimal feature subset, but also to lower the
complexity, improve the interpretability, and lower the computational cost of the model.
Figure 5 shows the performance of all the classification models (baseline models and the
RF classifier) as a function of N¢, the number of features used in the model. The features
included for each Ny were those with a higher selection probability (see Figure 4). The best
results were obtained for the RF classifier, both in the AUC and BAC, and the RF models
showed a stable performance for N =6 As shown in Table 2, the RF classifier with N =7
had the same performance as the RF classifier with the complete set of features.
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Figure 5. Performance of the classifiers, AUC and BAC, in terms of the number of features, N [z
considered in the model.

4.3. Time Interval for a Prediction

The time needed from PEA onset to a reliable prognosis is key for a prompt initiation
of specific therapies. To analyze the time needed for a prognosis, the faPEA /unPEA
classification was performed using only the ECG and TI segments in an interval of t,, (min)
from PEA onset, then changing ¢, from 1 min to 10 min in 1 min steps. Figure 6 shows the
AUC and BAC for the different classifiers as a function of t;,. The RF classifier had the best
performance for all time intervals, with AUC and BAC values above 80% and 75%, even for
the first minute after PEA onset. As expected, as t;, grew as the accuracy of the classifiers
improved, since PEA with favorable evolution is closer to conversion to ROSC; however,
the improvement in the AUC and BAC was only five points and four points when the
interval was extended from 1 min to 10 min; that is, a prompt reliable diagnosis can be
obtained, and a specific therapy can be initiated even in the first minute after PEA onset.

Figure 7 shows a combined analysis of the RF performance as a function of Nf and
tw. As shown in the figure, the AUC and BAC increased as the number of features in the
model and the analysis interval increased, with AUC values above 85% and BAC values
above 78% for t;, > 7min and Ny > 4.
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Figure 6. Performance of classifiers in terms of the AUC and BAC as a function of for analysis
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Figure 7. The AUC and BAC of the RF classifier for different analysis intervals, t,, and number of features, N Iz

4.4. Analysis of the Classification Errors

The classification errors of the best RF model were analyzed to better understand the
limitations and potential future improvements of faPEA /unPEA classification. Figure 8
shows the ECG, TI, and ICC signals for segments with correct classifications and segments
with typical patterns leading to classification errors. The top panels show correctly classified
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segments, despite faPEA having a much lower heart rate than unPEA. In the examples,
the TI/ICC signals showed no evidence of mechanical activity for unPEA and activity
correlated with the heartbeats in faPEA. The bottom panels show examples of misclassified
segments. In the case of faPEA, both the heart rate and the TI/ICC activity were very low,
and they corresponded to an episode in which ROSC occurred 38 min after PEA onset. In
this episode, at the initial stage of PEA, the mechanical activity of the heart was closer to
that of unPEA than faPEA. In the case of unPEA, the ECG had a low amplitude and heart
rate, as expected for unPEA, but there was noise in the ECG and TI signals in the last part of
the segment, which produced a pulse-like ICC signal estimation by the Kalman smoother.
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Figure 8. ECG, TI, and ICC signals for 5 s segments of correctly (top) and incorrectly (bottom)
classified faPEA and unPEA segments.

5. Discussion

To the best of our knowledge, the proposed method is the first automated method to
discriminate PEA rhythms with favorable evolution to ROSC in OHCA data. The algorithm
consisted of the extraction of the ICC component of the TI (associated with mechanical
wall movement), an ECG and ICC feature extraction phase, and an RF classifier. The
solution outperformed previous solutions both in the AUC (four to nineteen points) and
BAC (three to sixteen points) [12,14,23,24,26]. Several aspects of the solution explained the
better performance. First, the ECG and TI feature set was larger than in previous studies,
and the features were carefully selected to reflect or be associated with ventricular wall
movement or ROSC. Second, the features obtained from QRS complex segmentation were
not used. In nonarrest patients, QRS detection and segmentation are very accurate [43], but
their accuracy substantially decreases for cardiac arrest thythms [35]. For instance, it was
observed that the methods based on HR and QRS width presented the lowest performance
in part because of the inaccuracies of the automatic algorithms for cardiac arrest data.
Third, features obtained from the ICC were added, and these features revealed information
on the incipient mechanical activity of the heart in PEA rhythms that converted to ROSC.

The models with reduced the feature sets (seven features for ECG and ICC and four
features for ECG-only) had better or comparable performance to those with the complete
feature set. Moreover, adding ICC features improved the ECG-only methods by 2.5 points
in AUC and 3.1 points in BAC, demonstrating the utility of the TI signal as a surrogate
measure of ventricular wall movement [23,26]. A high correlation between the features from
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the detail components of the ECG and ICC (mean p = 0.9) and between the spectral features
of the ECG (mean p = 0.7) was observed. An effective feature selection process improves
the models, particularly when an exhaustive feature extraction process is carried out [23,29].
More importantly, models with fewer features are computationally less expensive and
more explainable. For the RF classifier, using an embedded feature selection based on RF
feature importance is an efficient way to obtain close-to-optimal feature subsets.

The time from PEA onset to an accurate prognosis of its evolution is key for the prompt
implementation of efficient therapies. In the dataset used in this study, the mean time from
PEA onset to outcome (ROSC or no ROSC) was 22 min, and the proposed solution had an
AUC and BAC of 81% and 74% within the first minute from PEA onset. Evidently, as time
evolved, the accuracy of the prognosis improved, and the AUC and BAC rose to 86% and
79% for an analysis interval of 10 min. In cases in which PEA onset was far from ROSC,
errors were more frequent, as shown in Figure 8c for a patient that recovered ROSC 38
min after PEA onset. In any case, there is a clinical tradeoff between the accuracy of the
prognosis and the prompt implementation of specific therapies. An alternative approach
may be to report the probability of conversion to ROSC as a clinical support tool. Such a
probability can be obtained from most machine learning models and in particular in the RF
model by computing the proportion of trees with positive faPEA classification [35,41].

The solutions proposed in this study were based on the ECG only and on combined
features from ECG and TI (the ICC was derived from TI). In both cases, reasonable tradeoffs
between time-to-prognosis and accuracy can be reached. The reason for using these
signals is that they are universally available in defibrillators and monitor defibrillators, the
equipment used by EMS crews to monitor OHCA patients. All these devices have an ECG
channel through the defibrillation pads [35], but not all include a TI signal with sufficient
resolution to implement these algorithms [22,23]. Since the proposed algorithms are fully
automatic, this means they could be integrated into this equipment as decision support
tools for the management of OHCA patients in PEA; that is, they would contribute to a
personalized resuscitation treatment, as proposed in the latest resuscitation guidelines [44].

The availability of signals during resuscitation is key to improve the accuracy of
automatic algorithms. In particular, the prognosis of ROSC during resuscitation (for all
rhythms, not only PEA) is a very active field of research. New and established technologies
such as capnography [23,45], cerebral oximetry [46,47], echocardiography [18,48], or point-
of-care testing (blood gas analysis) [49] have been explored. A complete up-to-date review
is available in[17]. These are, in general, emerging technologies to monitor and guide
treatment during OHCA, and only echocardiography and, more recently, capnography
have been specifically used to stratify PEA during OHCA [18,23]. In the future, combined
algorithms integrating information from all these sources should be explored to improve the
prognosis of the evolution of PEA. However, acquiring multimodal OHCA datasets with
all these sources of information is complex because OHCA is a critical chronodependent
clinical situation treated in a prehospital setting. Therefore, these types of datasets are very
scarce and have a limited amount of patients [23].

This study had some limitations. First, the data came from a single type of device, the
HeartStart MRx defibrillator. Although the ECGs acquired by different commercial devices
have slight differences in bandwidth and resolution, no substantial differences would be
expected in the ECG-based model for other devices. Conversely, the TI is acquired by
proprietary circuitry, with very different amplitude resolutions and sampling rates. The
ICC has a very small amplitude rarely exceeding 100 mQ, so how well the ICC can be
estimated from the TI recorded in other devices needs to be tested. Second, the number
of cases included in the study was substantial, but augmenting the dataset’s size would
allow the development of more accurate models. In particular, advanced solutions based
on deep learning algorithms could also be developed based on features extracted by neural
network architectures [50-52].
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6. Conclusions

This study introduced the first machine learning algorithm that discriminates PEA
rhythms with favorable evolution to ROSC from those with unfavorable evolution. The
proposed algorithm was based on features automatically extracted from the ECG and the
TI signal after PEA onset. The RF model proposed outperformed previous solutions, and it
demonstrated that both ECG and TI signals contain relevant information for the prognosis
of PEA evolution. The results also encourage the development of improved solutions
tested on larger datasets. This may lead to decision support tools that assist rescuers in the
definition of the best resuscitation treatment during PEA in OHCA, increasing the chances
of survival and good neurological outcome. Current commercial defibrillators could benefit
from advances in signal processing and machine learning techniques, improving their
impact in the course of cardiac arrest resuscitation.
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Abbreviations

The following abbreviations are used in this manuscript.

OHCA  out-of-hospital cardiac arrest

ROSC  return of spontaneous circulation

CPR cardiopulmonary resuscitation

EMS emergency medical services

PEA pulseless electrical activity

faPEA  pulseless electrical activity with favorable evolution
unPEA  pulseless electrical activity with unfavorable evolution

VF ventricular fibrillation

ECG electrocardiogram

TI thoracic impedance

ICC impedance circulation component
RF random forest

LR logistic regression

SVM support vector machine

AUC area under the curve

BAC balanced accuracy

Se sensitivity

Sp specificity
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