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Abstract: In this paper, the formulation of time-fractional (TF) electrodynamics is derived based on
the Riemann-Silberstein (RS) vector. With the use of this vector and fractional-order derivatives, one
can write TF Maxwell’s equations in a compact form, which allows for modelling of energy dissipation
and dynamics of electromagnetic systems with memory. Therefore, we formulate TF Maxwell’s
equations using the RS vector and analyse their properties from the point of view of classical
electrodynamics, i.e., energy and momentum conservation, reciprocity, causality. Afterwards, we
derive classical solutions for wave-propagation problems, assuming helical, spherical, and cylindrical
symmetries of solutions. The results are supported by numerical simulations and their analysis.
Discussion of relations between the TF Schrödinger equation and TF electrodynamics is included
as well.

Keywords: Maxwell’s equations; fractional derivatives; Riemann-Silberstein vector

1. Introduction

Recently, the problem of electrodynamics of fractional order (FO) has been intro-
duced in the literature. Between various approaches, one can notice the generalizations
of Maxwell’s equations involving spatial and temporal FO derivatives [1–5], only spa-
tial derivatives [6–8], and only temporal FO derivatives [9–12]. Such generalizations of
Maxwell’s equations employ FO derivatives in order to describe the dynamics of elec-
tromagnetic systems with memory and energy dissipation [13]. Furthermore, the use of
FO derivatives in electrodynamics allows one to define the electric potential based on the
concept of FO poles [14–16]. Hence, a concept of the fractional multipole is formulated,
which allows for calculating the electric potential at the distance r from the source, which
is proportional to r−α (where α ∈ R is not integer). This approach can be applied to solve
some electrostatic-image problems, involving perfectly conducting wedges and cones.
In [6], the fractionalization of the duality principle in electrodynamics is proposed, making
use of the FO curl operator. This approach can be applied to solve some reflection [17,18]
and diffraction [19] problems. Afterwards, in [20], the FO curl operator is proven to be
useful for the analysis of the transmission of electromagnetic waves through a slab of
reciprocal chiral medium. Hence, the FO curl operator, to some extent, appears to be
mathematically equivalent to a chiral medium. As a consequence, some electromagnetic
characteristics of media can be modelled using the FO derivatives.

In this paper, we extend the formulation of time-fractional (TF) electrodynamics with
the use of the Riemann-Silberstein (RS) vector, i.e., the complex vector which combines
simultaneously the electric and magnetic field. This vector was initially introduced by
Bernhard Riemann in the lectures on partial-differential equations, which were edited
and published in 1901 by Weber [21]. Then, Silberstein studied the RS vector [22,23] and
employed it for the quaternionic formulation of the relativity theory [24]. For the historical
background of the RS vector, one is referred to [25]. In [25–28], it is demonstrated that the
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RS vector provides a uniform and elegant description of electromagnetism, which connects
classical and quantum electrodynamics. In [29,30], it is demonstrated that the RS vector is
useful for the analysis of antenna and propagation problems in engineering.

To the best of Authors’ knowledge, none of formulations of FO electrodynamics has
been extended yet using the RS vector. Furthermore, the existing formulations of electrody-
namics based on the RS vector do not include the energy dissipation, i.e., they are limited to
a homogeneous and static medium, which is usually a vacuum. However, the time-domain
fractionalization of Maxwell’s equations allows for inclusion of energy dissipation, which is
the intrinsic property of media described by fractional-order models (FOMs). Furthermore,
it is possible to demonstrate that the energy density of the electromagnetic field and media
described by FOM, which is spent to create the field and change the momentum of medium,
reflects the entire previous history of the process. Hence, the application of FOM allows
for description of memory effects in electrodynamics. Therefore, we investigate this topic
focusing on classical-physics solutions. Then, we can demonstrate relations between the
TF Schrödinger equation and TF electrodynamics using the proposed formulation based
on the RS vector.

2. Preliminaries

In this section, we introduce the basic notation and terminology, which is used through-
out the paper.

2.1. Basic Notations

The standard engineering notation for the imaginary unit j =
√
−1 is used throughout

the paper. We denote real and imaginary parts of the complex number s by <(s) and =(s),
respectively. Then, the conjugate to the complex number s is denoted as s∗.

The Fourier transformation is defined for the absolutely integrable function of time
f : R→ C (i.e., f (t)) by the formula

F ( f )(ω) = F(ω) =

ˆ +∞

−∞
e−jωt f (t)dt (1)

whilst the inverse Fourier transformation is given by the formula

F−1(F)(t) = f (t) =
1

2π

ˆ +∞

−∞
ejωtF(ω)dω. (2)

For the absolutely integrable function of space g : R3 → C (i.e., g(r)), we define the
spatial Fourier transformation by the formula

F (g)(k) = G(k) =
ˆ
R3

ejk·rg(r)d3r (3)

whilst the inverse spatial Fourier transformation is given by the formula

F−1(G)(r) = g(r) =
1

(2π)3

ˆ
R3

e−jk·rG(k)d3k. (4)

The convention of the Fourier transformation can be changed into to the one applied in
physics and mathematics. For this purpose, the imaginary unit j should be replaced by −i
(where i =

√
−1) in (1)–(4).

Throughout the paper, a branch of logarithm with the domain covering all purely
imaginary numbers of the form jω is taken, where ω ∈ R \ {0}

ln(s) = ln(|s|ejθ) = ln |s|+ jθ (5)
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for s = |s|ejθ , s 6= 0 and θ ∈ (−π, π). From (5), one obtains

ln(jω) = ln |ω|+ j
π

2
sgn(ω). (6)

Then, we define complex-valued function s 7→ sν for ν ∈ R by the selection of an appropri-
ate branch of complex logarithm

sν = eν ln s = eν ln |s|+jνθ = |s|νejνθ (7)

for s = |s|ejθ , s 6= 0 and θ ∈ (−π, π). One can notice that the function s 7→ sν is
holomorphic for s ∈ C+, where C+ = {s ∈ C : <(s) > 0}. Let us consider as a special case
the function G : R \ {0} → C given by

G(ω) = (jω)ν = eν ln(jω) = |ω|νejν π
2 sgn(ω). (8)

Hence, one obtains

<(jω)ν = |ω|ν cos
(

ν
π

2

)
and =(jω)ν = |ω|νsgn(ω) sin

(
ν

π

2

)
(9)

for ω ∈ R \ {0}.

2.2. FO Calculus

The Marchaud derivative of the order β ∈ (0, 1) is defined as

Dβ f (t) =
β

Γ(1− β)

ˆ +∞

0

f (t)− f (t− τ)

τ1+β
dτ = (10)

=
β

Γ(1− β)

ˆ t

−∞

f (t)− f (τ)
(t− τ)1+β

dτ. (11)

Although the Marchaud derivative can be formulated for higher orders β > 1 (see
Section 5.6 in [31]), we do not refer to this more general case in our investigations. In (10)
and (11), the function f is assumed to be smooth enough, e.g., f ∈ C1(R) with | f | bounded
by some function not growing too quickly in ±∞ (more about these assumptions later).
Applicability of the Marchaud derivative in our investigations stems from its advantages,
refer to [32,33]:

• The Marchaud derivative of the order β ∈ (0, 1) of the function f exists, if f ∈ C1(R)
and f ′(t) = O(|t|β−1−ε) as |t| → +∞ for some ε > 0 (see Section 5.4 in [31]). If
additionally f ∈ Lp(R) for p ∈ [1, 1/β), then the Marchaud derivative coincides with
the Riemann-Liouville derivative with a base point a = −∞.

• For the derivative of the order α of the exponent est (where s ∈ C is fixed), one obtains

Dαest = sαest (12)

for <(s) ≥ 0. As discussed in [34] (see (5) therein), this limitation stems from the
memory of derivative, which covers the entire interval (−∞, t). Therefore, allowing
for <(s) < 0 would lead to divergent integrals. In practical terms, it is not a limitation,
because one should consider functions bounded at −∞, or even causal (i.e., equal to
zero for arguments in (−∞, 0).

• The Marchaud derivative, the Riemann-Liouville derivative with a base point in −∞
and the Grünwald-Letnikov derivative [31,35] are equivalent for a very broad class
of functions.

• When the Marchaud derivative coincides with the Grünwald-Letnikov derivative for
the function f , then one obtains
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Dα(Dβ f ) = Dβ(Dα f ) = Dα+β f (13)

where α, β > 0.
• In some cases, we would like to assume not only that the Marchaud derivative of the

function f : R→ R exists, but also that this derivative belongs to an appropriate space
Lp(R). It is handled by Theorems 6.1 and 6.5 in [31]. The condition that guarantees that
Dβ

t ( f ) = φ ∈ Lp(R) is that f ∈ Hλ(R) and limt→+∞ f (t) = 0 for λ > max{β, 1/p−
β}. The function space Hλ(R) denotes the space of Hölder continuous functions with
appropriate behaviour in ±∞ (see (1.5) and (1.6) in [31]). One can check that, in order
to belong to Hλ(R), it is enough to assume that f ∈ C1(R) and

ˆ
|t|≥1
| f ′(t)|q|t|2(q−1)dt < +∞ (14)

for q ≥ 1
1−λ . The last condition is satisfied, e.g., when f ′(t) = O(|t|−λ−1−ε) as

|t| → +∞.
• We employ in our considerations some properties of the null space of the Marchaud

derivative. We are not aware of any general result in this area, but we can show some
reasonable behaviour assuming that φ is a Hölder continuous function. That is, if
one assumes that φ ∈ Hλ(R) with exponent λ ∈ (β, 1) and limt→±∞ φ(t) = 0, then
Dαφ = 0 implies φ = 0. This is a consequence of Theorems 6.1 and 6.5 from [31].

• The appropriate Fourier transformation identity can be formulated for the Marchaud
derivative (see formula (7.4) in [31])

F{Dα f } = (jω)αF{ f } (15)

when f ∈ Cn(R), α ∈ (n − 1, n), and f along with derivatives up to the order n
belongs to L1(R).
Due to these properties, the Marchaud derivative is preferable in our investigations

focused on electrodynamics. It occurs that popular definitions of FO derivative, e.g.,
Riemann-Liouville and Caputo [31,35], do not satisfy the properties (12) and (13) in general,
which are necessary for the analysis of the wave propagation in the media described by
FOM (refer to [32,33]).

2.3. Vector Fields

It is necessary to formulate precise assumptions related to functions (i.e., vector fields),
which we use in our considerations. Suppose now that V ⊂ R3 is a compact volume with
the boundary S being the piecewise smooth surface. For the vector field X : V ×R→ R3

(or X : V ×R→ C3), we always assume that this is C2 map in the entire domain and the
functions Xi(x, y, z, ·) (i ∈ {x, y, z}) belong to L1(R) for all (x, y, z) ∈ V. Hence, the Fourier
transformation (1) can be calculated with respect to the time variable

X̃(x, y, z, ω) = F{X(x, y, z, ·)}(ω) (16)

for a fixed (x, y, z) ∈ V. We also assume that the limits as |t| → +∞ of functions Xi(x, y, z, ·)
(i ∈ {x, y, z}) equal to zero and the time derivative D1

t Xi(x, y, z, ·) = O(t−c) as |t| → +∞
for c > 0 big enough. It implies that the derivative Dβ

t X(x, y, z, ·) ∈ L1(R). One should
note that having two functions f , g : R→ R, satisfying the assumptions given above for
which D1−β

t f = D1−β
t g, one obtains f = g.

Hence, the vector fields E, H : V ×R→ R3 are given for which Dβ
t E, Dβ

t H ∈ L1(R). It
means that the functions Ē, H̄ : V ×R→ R3 can be defined such as

Ē(x, y, z, t) =
ˆ t

−∞
Dβ

t E(x, y, z, τ)dτ = I1
t Dβ

t E(x, y, z, t) = I1−β
t E(x, y, z, t) (17)
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H̄(x, y, z, t) =
ˆ t

−∞
Dβ

t H(x, y, z, τ)dτ = I1
t Dβ

t H(x, y, z, t) = I1−β
t H(x, y, z, t) (18)

which are well defined and differentiable. In (17) and (18), I1
t denotes the integral of upper

integration limit
´ t
−∞(·) dτ and I1−β

t = I1
t Dβ

t . Hence, one obtains

D1−β
t Ē(x, y, z, t) = E(x, y, z, t) (19)

D1−β
t H̄(x, y, z, t) = H(x, y, z, t). (20)

In what follows, we often refer to the dot-product notation. For complex vectors
A, B ∈ C3, the product does not refer to the standard dot product over the field of complex
numbers but to the bilinear form ‘borrowed’ from the real-valued case, i.e.,

A · B = AxBx + AyBy + AzBz. (21)

Therefore, to be formal, when we want to refer to the standard dot product of complex
vectors A, B ∈ C3, we write:

A · B∗ = AxB∗x + AyB∗y + AzB∗z . (22)

3. RS Vector

In this section, we propose TF formulation of electrodynamics based on the RS vector.
Our FO approach is consistent with the RS vector formulation of classical electrodynamics
proposed in [25,29].

Let us consider symmetric Maxwell’s equations in free space

∇ ·D = ρe (23)

∇× E = −∂B
∂t
−M (24)

∇ · B = ρm (25)

∇×H =
∂D
∂t

+ J (26)

where E and H are, respectively, the electric- and magnetic-field intensities, D and B are,
respectively, the electric- and magnetic-flux densities, J and M are, respectively, the electric-
and magnetic-current densities, and ρe and ρm are, respectively, the electric- and magnetic-
charge densities. We assume the constitutive relations for the medium described by FOM
in the following form [34,36]:

εβE = D1−β
t D, 0 < β ≤ 1 (27)

µγH = D1−γ
t B, 0 < γ ≤ 1. (28)

In (27) and (28), the parameters εβ and µγ denote, respectively, FO equivalents of permittiv-
ity and permeability, whose SI units are as follows: [εβ] =

F
s1−βm

, [µγ] =
H

s1−γm . In [37], the
constitutive relation (27) is described as an ‘engineering’ model of dielectrics. Such a model
describes memory effects and hereditary properties of electromagnetic field in media. It
results not only from experimental results of Westerlund and Ekstam published in 1994,
but also from the purely empiric Curie’s law formulated in 1889 [38]. Assuming analogous
form of the constitutive relation for the magnetic field, one can write (28). When β = 1 and
γ = 1, the constitutive relations for the linear medium, described by integer-order (IO)
model (IOM) with the permittivity ε1 and the permeability µ1, are obtained

D = ε1E (29)
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B = µ1H. (30)

For a vacuum, we assume that the permittivity and permeability are respectively denoted
by ε0 and µ0. Comparing to the settings considered before [34], we assume the same FO of
all the time derivatives in (23)–(26) in order to formulate TF Maxwell’s equations based on
the RS vector. In our considerations, we assume that 1

2 ≤ β = γ ≤ 1. Therefore, one can
write (23)–(26) as

∇ ·D = ρe (31)

∇× E = −µβDβ
t H−M (32)

∇ · B = ρm (33)

∇×H = εβDβ
t E + J. (34)

Let us now define the parameter

Z f =

√
µβ

εβ
(35)

whose the SI unit is Ohm, so may be considered as a form of the wave impedance. Let us
formulate the RS vector as follows:

F =
1√
2

 E√
Z f

+ jH
√

Z f

. (36)

Our definition of the RS vector is consistent with the definition applied in engineering [29,30],
where the E, H vectors are usually employed to describe electromagnetic systems (e.g.,
antennas and waveguides). In order to write Maxwell’s equations for the RS vector F, we
need to introduce an additional notation. Let us define

cβ =
1

√
µβεβ

(37)

K = − 1√
2

 M√
Z f

− jJ
√

Z f

 (38)

ρ =
1√
2

ρe

√
Z f + j

ρm√
Z f

. (39)

For a vacuum when β = 1, one obtains c1 = c = (µ0ε0)
− 1

2 . With the definitions given
above, FO Maxwell’s Equations (31)–(34) can be written as

∇× F = jc−1
β Dβ

t F + K (40)

∇ · F = cβD1−β
t ρ. (41)

Without sources (K = 0), (40) can be written as the evolution equation analogous to the TF
Schrödinger equation [39–41] with the Hamiltonian Ĥ = cβ(p · Σ), i.e.,

cβ(p · Σ)F = jh̄Dβ
t F (42)

where p = −jh̄∇ and Σ denotes the spin-1 counterparts of the Pauli matrices

Σx =

0 0 0
0 0 −j
0 j 0

, Σy =

 0 0 j
0 0 0
−j 0 0

, Σz =

0 −j 0
j 0 0
0 0 0

.
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The TF Schrödinger equation Ĥψ = jh̄Dβ
t ψ differs from the ordinary Schrödinger equation

due to the TF derivative of the wave function ψ. The ordinary Schrödinger equation Ĥψ =
jh̄ ∂

∂t ψ has a mathematical form of a diffusion equation and can be obtained for a quantum-
mechanical particle by considering a Gaussian-probability distribution in the space of all
possible paths [39,42]. Hence, one can obtain various types of Schrödinger equations for
non-Gaussian distributions. For instance, Feynman’s path-integral approach is employed
in [43] to construct space-fractional quantum mechanics. That is, the Schrödinger equation
is obtained with FO space derivatives due to the application of Levy distributions instead
of Gaussian distributions to the set of possible paths.

Similarly, the TF Schrödinger equation is obtained if one considers non-Markovian
evolution [39,40]. Analogously, the TF Maxwell’s Equations (31)–(34), which can be formu-
lated in the form similar to the TF Schrödinger equation, actually stem from the application
of non-standard memory function in a transport equation in order to include a temporal
dispersion [9].

In general, the FO derivatives stem from relaxation and oscillation processes that
exhibit memory and delay. For instance, the FO derivative in the oscillator equation is
equivalent, to some extent, to the presence of a dissipative term in the standard oscillator
equation [44]. However, this damping represents an intrinsic feature of the motion equation
and does not result from additional dissipation like for a damped harmonic oscillator.
Similar dumping of dynamics is also visible for the harmonic oscillator described by the TF
Schrödinger equation [41]. Analogously, as it is shown later, the application of non-local
formalism of FO derivatives to describe complex electromagnetic systems with memory
also provides the energy dissipation, which is the intrinsic property of such systems.

The TF Schrödinger equation describes a non-relativistic particle [40]. Analogously,
the application of FO constitutive relations (27) and (28) to Maxwell’s equations provides
non-relativistic solutions obtained for the diffusion-wave equation [45–47]. This equation
delivers solutions classified as intermidiate cases between the diffusion and the wave
processes, which are different in terms of response to a localized disturbance. That is,
the diffusion equation models a disturbance which spreads infinitely fast, whereas the
wave equation models a disturbance with constant propagation velocity. Hence, for the TF
diffusion-wave equation, the fundamental solution possesses a maximum that spreads with
a finite velocity and the propagation velocity of a disturbance is infinite [45]. To sum up, the
TF diffusion-wave equation is non-relativistic similarly to the standard diffusion equation.

Using the definition of the RS vector (36), one can find that Poynting’s vector [48,49]

S = E×H (43)

can be written as
S = jF× F∗. (44)

Then, one can find that

|F|2 = F · F∗ = 1
2

(
|E|2
Z f

+ |H|2Z f

)
. (45)

It has the same unit as the Poynting vector, i.e., [F · F∗] = Watt/m2 and can be inter-
preted as the power density of the plane wave propagating in a medium whose the wave
impedance is Z f . Then, using the definition (36), one can formulate inverse formulas for
the electromagnetic-field vectors

E =

√
Z f

2
(F + F∗) (46)

H =
j√
2Z f

(F∗ − F). (47)



Entropy 2021, 23, 987 8 of 25

Furthermore, because of the assumptions (19) and (20), one can define the vector G such as:

F = cβD1−β
t G. (48)

With the use of power-law property (13), (48) can be written as

Dβ
t F = cβD1

t G. (49)

Then, assuming that the inverse operator exists for the FO differentiation, (48) can equiva-
lently be written as

G = c−1
β I1−β

t F. (50)

For assumptions given in Section 2.3, the relation between F and G is unambiguous.
Therefore, one can write Maxwell’s Equations (23)–(26) as follows:

∇× F = j
∂G
∂t

+ K (51)

∇ ·G = ρ. (52)

Hence, based on (50), one can formulate inverse formulas for the electric- and magnetic-flux
densities D and B. That is

D =
1√
2Z f

(G + G∗) (53)

B = j

√
Z f

2
(G∗ −G). (54)

With the use of (53) and (54), one can define the electromagnetic-momentum density based
on Minkowski’s approach [50,51], i.e.,

gM = D× B = jG×G∗. (55)

4. Plane-Wave Propagation

Let us consider the plane-wave propagation in a free space without sources (ρ = 0
and K = 0). Let us employ the spatial Fourier transformation (3) to the RS vector, i.e.,
F(k, t) = F (F(r, t)). For the sake of brevity, the same symbol is employed to denote the
Fourier transform, but with the argument k. Application of the spatial Fourier transforma-
tion (3) to (40) and (41) gives

− k× F(k, t) = c−1
β Dβ

t F(k, t) (56)

k · F(k, t) = 0. (57)

It implies that k ⊥ F(k, t). Let us introduce the polarisation vectors e±(k) such as

k× e±(k) = ∓jke±(k) (58)

where k = |k|. Eigenvectors of the cross-product (58) differ only by the phase factors. Let
us denote e+(k) = e(k) and notice that e−(k) = e(−k) = e∗(k).

In [25], the solution to IO Maxwell’s Equations (56) and (57) is represented in the RS
formalism as follows:

F(k, t) = e+(k) f+(k)ejωt + e−(k) f ∗−(−k)e−jωt. (59)

Unfortunately, this is not the case for the considered FO generalization, because components
of (59) lead to

e+(k) f+(k)ejωt(−jk + c−1
β (jω)β) = 0 (60)
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and
e−(k) f ∗−(k)e

−jωt(jk + c−1
β (−jω)β) = 0. (61)

It implies that f+(k) = f ∗−(k) = 0, because none of the complex numbers (jω)β nor
(−jω)β is purely imaginary for β ∈ (0, 1).

Hence, the general solution to (56) and (57) is written in a more general form

F(k, t) = e+(k) f+(k, t) + e−(k) f ∗−(−k, t). (62)

The complex conjugate and the minus sign in the second term of (62) stem from our
requirement of consistency with the classical theory of the RS vector [25].

Let us consider the first component in (62), i.e., e+(k) f+(k, t). It satisfies (56); hence,
using the relation k× e+(k) = −jke+(k), one obtains

Dβ
t f+(k, t)− jcβk f+(k, t) = 0. (63)

Similarly, for the component corresponding to the vector e−(k), one obtains

Dβ
t f ∗−(−k, t) + jcβk f ∗−(−k, t) = 0. (64)

By taking the complex conjugate, the last equation can be written as

Dβ
t f−(−k, t)− jcβk f−(−k, t) = 0. (65)

One should note that for both polarization vectors e+(k), e−(k) and the fixed vector k, a
FO differential equation is obtained

Dβ
t y(t)− λy(t) = 0 (66)

where λ = λ(k) = jcβk. Among the solutions to (66), one may find non-zero functions
that are zero on the interval (−∞, a) and which satisfy the Equation (63) on the interval
[a,+∞), when Dβ

t denotes the Riemann-Lioville derivative of the order β with a base point
a ∈ R. By Theorem 4.1 in [35] (see also (7.2.10) in [52]), the solutions to (66) for λ ∈ R and
t ∈ [a,+∞), are given by

y(t) = A(t− a)β−1Eβ,β(λ(t− a)β) (67)

where A ∈ C is a constant. In (67), Eβ,β denotes the Mittag-Leffler function of the second
type, i.e., it is the entire complex function given by (see, e.g., (4.1.1) in [52])

Eβ,β(z) =
∞

∑
n=0

zn

Γ(βn + β)
. (68)

One should note that in [35,52], the problem with a real value of λ is concerned, but the
method of the proof works in the same way also for a complex value of λ. Looking for a
causal solution, which is bounded in any set [δ,+∞) ⊂ R, one has to take the solution for
a = 0, i.e.,

f+(k, t) = f̃+(k)tβ−1Eβ,β(jcβktβ). (69)

To keep the notation shorter, when writing Eβ,β(jcβktβ), it is assumed to be equal to 0 for
t ≤ 0.

Analogously, the component e−(k) f ∗−(−k, t) with

f−(−k, t) = f̃−(−k)tβ−1Eβ,β(jcβktβ) (70)

also satisfies (56).
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Therefore, the general solution to (40) for K = 0 is given by

F(r, t) =
1

(2π)3

ˆ
R3

(
e−jk·re+(k) f̃+(k)tβ−1Eβ,β(jcβktβ) (71)

+e−jk·re−(k) f̃ ∗−(−k)tβ−1E∗β,β(jcβktβ)
)

d3k.

Taking into consideration that
´
R3 g(−x) d3x =

´
R3 g(x) d3x, e+(k) = e(k) and e−(k) =

e(−k), one can write (71) as follows:

F(r, t) =
1

(2π)3

ˆ
R3

e(k)tβ−1
(

e−jk·r f̃+(k)Eβ,β(jcβktβ) (72)

+ejk·r f̃ ∗−(k)E∗β,β(−jcβktβ)
)

d3k.

Let us consider the propagation of attenuated waves along the z-direction, i.e.,
k = k iz and

e(k) =
1√
2

1
j
0

. (73)

Then, for fixed functions f+(k) and f−(k), one can write (71) as follows (remembering that
now the spatial Fourier transformation is applied in one dimension only):

F(z, t) =
1

4π

ˆ
R

tβ−1e−jkz

 f+(k)Eβ,β(jcβktβ)

1
j
0

+ f ∗−(−k)E∗β,β(jcβktβ)

 1
−j
0

dk. (74)

Taking the special case of f+(k) = 1√
2

and f−(k) = f ∗−(k) = − 1√
2
, one obtains from (74)

for the x coordinate

(F(z, t))x =
1

2π

ˆ
R

tβ−1(cos(kz)j=(Eβ,β(jcβktβ)) + sin(kz)=(Eβ,β(jcβktβ))dk. (75)

Let us now consider real and imaginary parts of tβ−1Eβ,β(jcβktβ). As one can see, these
may be represented as

tβ−1<(Eβ,β(jcβktβ) = tβ−1E2β,β(−c2
βk2t2β) (76)

tβ−1=(Eβ,β(jcβktβ) = t2β−1cβkE2β,2β(−c2
βk2t2β). (77)

Hence, the real part of (F(z, t))x, i.e., the electric-field component, can be written as

Ex(z, t) =
1

2π
t2β−1cβ

ˆ
R

kE2β,2β(−c2
βk2t2β) sin(kz)dk. (78)

This is Green’s function, which is given in [53] for, so called, signalling problem for the
diffusion-wave equation

D2β
t u(x, t)− c2

βD2
xu(x, t) = 0 (79)

with an appropriate boundary condition (cf. formula (17) in [53], where the normalized
problem with cβ = 1 is concerned). In [53], Green’s function is given by

Gs(x, t) =
2t2β−1

π

ˆ ∞

0
kE2β,2β(−k2c2

βt2β) sin(kx)dk (80)

and differs from (78) by a multiplicative constant only.
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The formula (80) is one of many equivalent representations including the Formula (72)
from [54], which is taken from [45,47], and used in our numerical simulations. These two
formulations are actually closely related through the integration by parts formula.

Let us also consider the solution (71), which is the boundary case for β = 1 and cβ = c.
Let us take f+(k) = f−(−k) = f ∗−(−k) = 1√

2
. Hence, one obtains classical unattenuated

solutions in the form:

F(z, t) =
1

4π

ˆ
R

e−jkzejckt

1
j
0

+ e−jkze−jckt

 1
−j
0

 dk = (81)

1
2

δ(z− ct)

1
j
0

+ δ(z + ct)

 1
−j
0

.

Consistency with solutions for IO Maxwell’s equations confirms correctness of our derivations.
Now, one can identify the left- and right-handed circularly polarized attenuated

waves propagating in the z-direction, which are related with f+ and f− functions within
the general solution (72), respectively. In Figure 1, the rotating polarisation vectors
e(k)tβ−1e−jk·rEβ,β(jcβktβ) and e(k)tβ−1ejk·rE∗β,β(−jcβktβ) (where k = kiz) are presented
for these components, which create helical surfaces. As seen, for both components re-
lated to f+ and f− functions, the wave amplitude is attenuated and helices rotate in
opposite directions.

Figure 1. Rotating polarisation vectors (k = kiz) related to f+ (on left) and f− (on right) components
for β = 0.6.

5. Fundamental Solutions

Maxwell’s Equations (40) and (41) lead to the following equation

∇(∇ · F)−∇2F = −c−2
β D2β

t F + jc−1
β Dβ

t K +∇×K (82)

and eventually

∇2F− c−2
β D2β

t F = cβD1−β
t ∇ρ− jc−1

β Dβ
t K−∇×K. (83)
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Let us consider the TF diffusion-wave equation in free space without sources

∇2F− c−2
β D2β

t F = 0. (84)

Let us solve (84) by separating the variables, i.e., assuming that

F = (Fx, Fy, Fz) (85)

and
Fi = Ψi(r)Ti(t) (86)

where i ∈ {x, y, z} for the Cartesian coordinate system. Each of the components Ψi(r)Ti(t)
satisfies the scalar equation as follows:

c2
β

∇2Ψi(r)
Ψi(r)

=
D2β

t Ti(t)
Ti(t)

. (87)

Naturally, it is assumed that Ψi(r) 6= 0 and Ti(t) 6= 0 in (87). Since both sides of (87)
are functions of different variables, then both sides of (87) are equal to the constant q2

i .
Hence, (84) is equivalent to the following set of equations

∇2Ψi −
q2

i
c2

β

Ψi = 0 (88)

D2β
t Ti(t)− q2

i Ti(t) = 0. (89)

Equation (89) is satisfied by the functions ejωit when q2
i = (jωi)

2β and e−jωit when q2
i =

(−jωi)
2β; hence, the general solution to the i-th coordinate of (84) can be written as

Fi = F̃i,−ejωit + F̃i,+e−jωit. (90)

To obtain the solution to the vector Equation (84) from (90), the same frequency (i.e.,
ω = ωx = ωy = ωz) for all coordinate components has to be assumed. Then, one obtains

F = F̃−ejωt + F̃+e−jωt (91)

where F̃− = F̃−(r) and F̃+ = F̃+(r). Assuming that ω ∈ R, the solution (91) can be reduced
to the phasor representation of the RS vector, i.e., F = F̃ejωt where F̃ = F̃(r) is a complex
vector. Then, one obtains the following stationary equation, which depends on the angular
frequency ω only:

∇2F̃− c−2
β (jω)2βF̃ = 0. (92)

In the case of plane wave propagating in R3, one can assume that the propagation takes
place along the z-direction. It corresponds to the vector field F̃ given by

F̃(r) = F̃(z)ez (93)

where F̃(z) is the scalar complex-valued function and ez is the corresponding unit vector
given by (73). Then, inserting (93) into (92), one obtains the corresponding 1-D equation
for an unknown complex-valued function F̃(z)

d2 F̃(z)
dz2 − c−2

β (jω)2β F̃(z) = 0 (94)

whose the solution is given by

F̃(z) = F̃+e−zξ + F̃−ezξ (95)
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where ξ = c−1
β (jω)β and F+ and F− are certain complex constants. Hence, for a fixed z, one

obtains the scalar transfer function in the frequency domain

Gz(ω) = F̃+e−zc−1
β (jω)β

(96)

where F̃+ ∈ C is a certain complex constant. Its value does not influence the causality

of the transform, i.e., it can be demonstrated that the transform e−zc−1
β (jω)β

is causal iff
β ∈ (0, 1) [55]. However, this transform is not relativistically causal, i.e., when t < 0 then

the inverse Fourier transform of e−zc−1
β (jω)β

is equal to zero, whilst it is different then zero

for e−zc−1
β (jω)β

ejωzc−1
.

One may also consider the radially symmetric solutions to (92). Hence, let us assume
that the solution F̃ is given by

F̃(x, y, z) = f (
√

x2 + y2 + z2)eR = f (R)eR (97)

where eR is the corresponding unit vector in spherical system. Then, one obtains

∆F̃(x, y, z) = f ′′(R) +
2
R

f ′(R) =
1
R

d
dR
(

R f ′(R) + f (R)
)
=

1
R

d2

dR2 (R f (R)) (98)

where R =
√

x2 + y2 + z2. Then, the 3-D Equation (92) takes the form

d2

dR2 (R f (R))− c−2
β (jω)2β(R f (R)) = 0 (99)

and the solution R f (R) is given by

R f (R) = F̃+e−Rc−1
β (jω)β

. (100)

It gives

f (R) =
1
R

F̃+e−Rc−1
β (jω)β

. (101)

For a fixed R > 0, one can write the transfer function as

GR(ω) =
1

4π

1
R

F̃+e−Rc−1
β (jω)β

(102)

where the normalizing factor appears following Section 2.3.1 of [56] and the dependence
on ω has the same form as before. Hence, it is a causal transform iff β ∈ (0, 1).

One may also consider the solution F̃ with cylindrical symmetry, i.e., given by

F̃(x, y, z) = f (
√

x2 + y2, z)er = f (r, z)er, (103)

where er is the correspoding unit vector in cylindrical system. With the assumption that
the wave propagates in the xy plane (i.e., with z = const), one obtains

∆F̃(x, y, z) = f ′′(r) +
1
r

f ′(r) (104)

where r =
√

x2 + y2. Then, the 3-D Equation (92) takes the form

f ′′(r) +
1
r

f ′(r)− c−2
β (jω)2β f (r) = 0 (105)

which can be written as

r2 f ′′(r) + r f ′(r)− c−2
β (jω)2βr2 f (r) = 0. (106)
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Equation (106) is known as the Bessel equation of the order α = 0. Its solutions are known
as cylinder or Bessel functions (see Section 3.9 in [57] for a recursive definition of cylinder
functions and Section 4.3, Equations (3) and (4), for solutions of the Bessel Equation (105) as
well as Sections 8.4 and 8.5 in [58]). As one can notice, (105) corresponds to the Equation (3)
in Section 4.3 in Watson’s book [57] with c = (jω)β/cβ and p = −1/2. Hence, the solutions
to (105) are functions given by

f (r) = Z0(j(jω)βr/cβ) (107)

where Z0 is any Bessel function of the order ν = 0 (as in Sections 8.4 and 8.5 of [58], or
the cylinder function C0 from Watson’s book [57]). As a special case of cylinder functions,
one can consider (see 8.401 in [58]) the Bessel functions of the first kind J0(z), the Bessel
functions of the second kind Y0(z) and the Hankel functions H(1)

0 (z), H(2)
0 (z) (also called

the Bessel functions of the third kind). Each of the pairs (J0(j(jω)βr/cβ), Y0(j(jω)βr/cβ))

or (H(1)
0 (j(jω)βr/cβ), H(2)

0 (j(jω)βr/cβ)) forms a fundamental system of solutions to (105).
In the considered case, we take a function that tends to 0 as r → +∞. We assume that
f (r) = J0(j(jω)βr/cβ), where Bessel function J0 is given by the series

J0(x) =
+∞

∑
k=0

(−1)k 1
Γ(k + 1)2

( x
2

)2k
. (108)

Hence, for a fixed r > 0, the transfer function is given by

Gr(ω) = − j
4

F̃+ J0(j(jω)βr/cβ). (109)

The Bessel function is multiplied by a factor − j
4 , which comes from the normalization as

in Section 2.3.2 in [56] (Hankel functions are used in [56], but one should remember that
J0(z) = 1

2 (H(1)
0 (z) + H(2)

0 (z)) which makes the condition valid for J0 as well).
To illustrate differences between solutions for plane wave, radial, and cylindrical

symmetries, we performed simulations showing the electric field observed at certain
moments in time at spatial points of varying distance from the source. Three transfer
functions (96), (102) and (109) are considered. The algorithm of computations is described
in Section 5 of [34] and verified against accurate solutions [59]. The simulation shows
the system response to the unit-impulse excitation (which approximates Dirac’s delta
distribution) in two time moments t1 = 1 f s and t2 = 2 f s at the distance varying from
0.1–1 µm. The simulations are performed assuming the sampling period Ts =

1
50·750 10−12s.

It is assumed that the value of cβ is equal to c, but expressed in appropriate units, i.e.,
m
sβ . The simulations are performed for β ∈ {1, 0.995, 0.99}. Figure 2 corresponds to the
plane-wave propagation, Figure 3 corresponds to the radial-symmetry case, while Figure 4
corresponds to the cylindrical symmetry case. In each figure, for β < 1, an inclined
wavefront is observed with the maximum of a pulse propagating with finite velocity.
For the radial-symmetry case, the values of the plotted function are much larger due to
singularity in the formula (102) for R = 0. As one can notice, the electric-field intensity is
different than zero before the arrival of the wavefront maximum. This feature means that
fundamental solutions significantly differ from Green’s functions in IO electrodynamics.
The disturbance spreads infinitely fast, which makes the solutions similar to the ones
known for the TF diffusion-wave equation being non-relativistic, similarly to the standard
diffusion equation. As one can see in all the cases, the decreasing derivative order (i.e.,
when systems become ‘more fractional’), the amplitude of the system response decreases
but the pulse width is increasing. Furthermore, the ‘tails’ of pulses are increasing, which
represent the memory effects of FOMs.
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Figure 2. System response depending on distance from source for plane-wave propagation along z direction in FOM, signal
measured at time points t1 = 1 f s and t2 = 2 f s. (a) β = 1, t = t1. (b) β = 1, t = t2. (c) β = 0.995, t = t1. (d) β = 0.995, t = t2.
(e) β = 0.99, t = t1. (f) β = 0.99, t = t2.
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Figure 3. System response depending on distance from source for radial symmetry in FOM, signal measured at time points
t1 = 1 f s and t2 = 2 f s. (a) β = 1, t = t1. (b) β = 1, t = t2. (c) β = 0.995, t = t1. (d) β = 0.995, t = t2. (e) β = 0.99, t = t1.
(f) β = 0.99, t = t2.
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Figure 4. System response depending on distance from source for cylindrical symmetry in FOM, signal measured at time
points t1 = 1 f s and t2 = 2 f s. (a) β = 1, t = t1. (b) β = 1, t = t2. (c) β = 0.995, t = t1. (d) β = 0.995, t = t2. (e) β = 0.99,
t = t1. (f) β = 0.99, t = t2.

6. Power Conservation

Let us consider the energy-balance equation (i.e., Poynting’s theorem) in TF electrody-
namics formulated in the time domain (without electric and magnetic currents and Joule’s
heating, i.e., J = 0 and M = 0, for the sake of brevity) [60]

∇ · (E×H) + εβE · Dβ
t E + µβH · Dβ

t H = 0. (110)

Then, using (46) and (47), one obtains this theorem formulated based on the RS vector

j∇ · (F× F∗) + c−1
β

(
F · Dβ

t F∗ + F∗ · Dβ
t F
)
= 0. (111)

Equation (111) can be rewritten as

∇ · S +
∂u
∂t

= 0 (112)

where
∂u
∂t

= c−1
β

(
F · Dβ

t F∗ + F∗ · Dβ
t F
)

(113)

is the density of accumulated and dissipated power of the field and the medium described
by FOM. Hence,

u = c−1
β I1

t

(
F · Dβ

t F∗ + F∗ · Dβ
t F
)

(114)

denotes the density of electromagnetic-field energy, which is spent to create the field
and change the momentum of medium. This integral exists because F is continuous and
bounded as well as Dβ

t F belongs to L1(R). It depends upon the entire history of the process,
which is typical for the TF electrodynamics of media with memory but unnecessary for a
vacuum [61]. Important is to notice that we cannot distinguish in (113) and (114) power
and energy components, respectively, which are conserved in the field and dissipated in
the medium described by FOM.
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For a vacuum when β = 1, (114) gives the standard formula for the energy density in
classical IO electrodynamics

u = c−1F · F∗ = cG ·G∗ = 1
2
(ε0|E|2 + µ0|H|2). (115)

As one can notice, the energy density formula (115) is local in time for β = 1. The case of
β ∈ (0, 1) is totally different. The formula (114) is nonlocal in time not only because of the
integral I1

t , but also due to nonlocality of fractional derivatives Dβ
t . Let us demonstrate

that nonlocal nature of the derivative Dβ
t introduces appropriate memory effects into the

energy-density formula (114). Consider now a local in time RS vector as an ‘input signal’
to (114), which approximates Dirac’s delta distribution

FT =
1
T

{
v t ∈ [0, T]
0 t 6∈ [0, T]

(116)

where v is a fixed vector such as v · v∗ = |v|2 = 1 and T denotes an approximation
parameter. One should note that although FT is not a solution to the diffusion-wave
Equation (84), it allows to analyse (114) in terms of memory effects. Let us show that FT
influences the right-hand side of (114) not only for t ∈ [0, T] but for all times t > 0, when
β ∈ (0, 1). It means that memory effects can be observed in this case for t > T. One can
see that

Dβ
t FT =

1
TΓ(1− β)

t−βv (117)

and
Dβ

t F∗T =
1

TΓ(1− β)
t−βv∗ (118)

for t ∈ [0, T]. Hence, for t ≥ T,

ˆ t

−∞

(
FT · D

β
τ F∗T + F∗T · D

β
τ FT

)
dτ =

ˆ T

0

2τ−β

T2Γ(1− β)
dτ =

2
(1− β)Γ(1− β)T1+β

. (119)

It shows that the effect of ‘input signal’ FT with compact support is accumulated in the
density of electromagnetic-field energy up to t→ +∞. Memory effects, for T = 0.1 s, are
presented in Figure 5.

As one can see, for β = 1, the energy density u is nonzero only for t ∈ [0, T], when the
RS vector FT is nonzero as well. However, for β ∈ (0, 1), the energy density u saturates
when nonzero FT appears. The amplitude of saturation decreases when β is decreased.
One should note that for β = 1 and the discontinuous function FT , we may not use the
formula (115), because we may not apply the Leibniz product rule to the non-differentiable
functions. Hence, we need to directly apply the formula (114) in a distributional sense.

Suppose now that V ⊂ R3 is a compact volume with the boundary S being the piece-
wise smooth surface. Hence, with the use of Gauss’s theorem and (44), the theorem (111)
can be written in the integral form as

˛
S=∂V

S · da + c−1
β

ˆ
V

(
F · Dβ

t F∗ + F∗ · Dβ
t F
)

dv = 0. (120)

Equation (120) describes the balance of the power dissipated and stored in the electromag-
netic field in the considered volume V. Since S ∈ R3, then one obtains

˛
S=∂V

S · da + c−1
β <

ˆ
V

(
F · Dβ

t F∗ + F∗ · Dβ
t F
)

dv = 0 (121)

=
ˆ

V

(
F · Dβ

t F∗ + F∗ · Dβ
t F
)

dv = 0. (122)
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Equation (122) is always valid for S ∈ R3, because

Dβ
t F =

1√
2

 Dβ
t E√
Z f

+ j(Dβ
t H)

√
Z f

. (123)

Hence, the imaginary part of expression under the integral (122) is identically equal to
zero. In (121), the volume integral involves dot products between E/H fields and their FO
derivatives. On the other hand, one can notice in (122) that the volume integral involves
dot products between E/H fields and FO derivatives of H/E fields, respectively. It can be
treated, to some extent, as the orthogonality condition between the components of the RS
vector and their FO derivatives.
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Figure 5. Memory effect in energy density u (multiplied by cβ). (a) Local in time effect corresponding
to β = 1. (b) β = 0.995. (c) β = 0.95. (d) β = 0.9.

With the use of (114), one can calculate the total electromagnetic-field energy (i.e.,
Hamiltonian of the field and the medium) as follows:

H =

ˆ
V

u dv. (124)

7. Momentum Conservation

Let us formulate the momentum-conservation theorem [48,49] in TF electrodynam-
ics. Let us assume that M = 0 and ρm = 0 in (23)–(26). Then, one can formulate the
momentum-balance equation without using the definition of Lorentz force and the consti-
tutive relations [62,63]:

∇ ·
(

DE− 1
2
(D · E)I + BH− 1

2
(B ·H)I

)
− ∂

∂t
(D× B) = (125)

ρeE + J× B− 1
2
((∇D) · E− (∇E) ·D + (∇B) ·H− (∇H) · B).

Lack of symbol between vectors denotes a tensor or dyadic product. The right-hand side
of (125) represents the force density which includes, besides the Lorentz force with total
fields, other force densities, e.g., Helmholtz’s for gases [62]. Above equation can be written
using the RS vector as follows:

∇ · T− j
∂

∂t
G×G∗ = f. (126)
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In (126), T denotes the stress tensor, i.e.,

T = DE− 1
2
(D · E)I + BH− 1

2
(B ·H)I (127)

and f denotes the force density, i.e.,

f = ρeE + J× B (128)

−1
2

(
εβ[(∇I1−β

t E) · E− (∇E) · I1−β
t E] + µβ[(∇I1−β

t H) ·H− (∇H) · I1−β
t H]

)
.

For β = 1, (128) reduces to the standard formula for the Lorentz force, i.e.,

f = ρeE + J× B. (129)

For β 6= 1, if (∇I1−β
t E) · E 6= (∇E) · I1−β

t E or (∇I1−β
t H) ·H 6= (∇H) · I1−β

t H, then addi-
tional contribution to the force density is obtained due to the application of FOM.

Suppose now that V ⊂ R3 is a compact volume with the boundary S being the
piecewise smooth surface. Then, using Gauss’s theorem, the formula (126) can be written
in the integral form as

ˆ
V

(
f + j

∂

∂t
(G×G∗)

)
dv =

˛
S=∂V

T · da. (130)

Equation (130) describes the momentum conservation in the electromagnetic field in the
considered volume V, i.e., the total change of the mechanical (i.e., related with an elec-
tromagnetic medium) and electromagnetic-field momentum is equal to the momentum
flowing into and out of the volume V.

Finally, one can calculate the total electromagnetic-field momentum GM and the total
angular momentum LM as follows:

GM =

ˆ
V

gM dv (131)

LM =

ˆ
V

r× gM dv. (132)

Although the stress tensor (127) is asymmetric, one can formulate the balance equation of
angular momentum using the approach proposed in [64].

8. Uniqueness of Solutions

Let us consider the boundary S of the volume V ⊂ R3, which is the piecewise smooth
surface. Then, let us define either the tangential electric- or magnetic-field intensity. Now,
suppose that two solutions F1 and F2 of TF Maxwell’s equations exist in V. Hence, the
solution Fd = F1 − F2 of TF Maxwell’s Equations (40) and (41) is obtained assuming that
either the tangential electric or magnetic field is equal to zero at the boundary S . The
function Fd satisfies homogeneous Equations (40) and (41)

∇× Fd = jc−1
β Dβ

t Fd (133)

∇ · Fd = 0. (134)

By applying the Fourier transformation to both sides of (133), one obtains

∇× F̃d = jc−1
β (jω)βF̃d (135)
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where F̃d(r, ω) = F (Fd(r, t)). Taking the complex conjugates, one obtains

∇× F̃∗d = −jc−1
β (−jω)βF̃∗d . (136)

When the operators (F̃∗d ·) and (F̃d·) are respectively applied to (135) and (136), and then
these equations are subtracted, one obtains

∇ · (F̃d × F̃∗d) = jc−1
β

(
(jω)β + (−jω)β

)
|F̃d|2. (137)

Now, using Gauss’s theorem, one obtains

0 = jc−1
β

(
(jω)β + (−jω)β

) ˆ
V
|F̃d|2dv. (138)

Since ((jω)β + (−jω)β) = 2|ω|β cos(β π
2 sgn(ω)), there is

0 = 2jc−1
β |ω|

β cos(β
π

2
sgn(ω))

ˆ
V
|F̃d|2dv. (139)

Hence, for β ∈ (0, 1), there is
´

V |F̃d|2dv = 0 and consequently F̃d = 0. Finally, one obtains
that F̃1 = F̃2. As one can expect, it means that also for TF Maxwell’s equations in the RS
representation, the solutions are unique for assumed boundary conditions.

9. Reciprocity

Reciprocity describes an electromagnetic system, whose a response to a source is
unchanged when the source and the measurer are interchanged [65]. We extend this
property hereby towards the FO electrodynamics, defined based on the RS vector, by
deriving the Lorentz reciprocity theorem [54].

Let us consider a volume V of the medium described by FOM, which includes sources
K. Then, taking the Fourier transformation with respect to the variable t, curl Maxwell’s
Equation (40) can be written as

∇× F̃ = jc−1
β (jω)βF̃ + K̃ (140)

where F̃(r, ω) = F (F(r, t)) and K̃(r, ω) = F (K(r, t)). Let us consider two solutions of FO
Maxwell’s equations F̃i existing for current sources K̃i in the volume V (i = 1, 2). Then,
one obtains

∇× F̃1 = jc−1
β (jω)βF̃1 + K̃1 (141)

∇× F̃2 = jc−1
β (jω)βF̃2 + K̃2. (142)

Taking into consideration that

∇ · (F̃1 × F̃2) = F̃2 · (∇× F̃1)− F̃1 · (∇× F̃2) (143)

one obtains
∇ · (F̃1 × F̃2) = F̃2 · K̃1 − F̃1 · K̃2. (144)

Equation (144) is a differential form of the Lorentz reciprocity theorem in TF electrody-
namics, formulated making use of the RS vector. Applying Gauss’s theorem to (144), one
obtains the integral form of the Lorentz reciprocity theorem

˛
S=∂V

(F̃1 × F̃2) · da =

ˆ
V

(
F̃2 · K̃1 − F̃1 · K̃2

)
dv. (145)

Let us assume that the surface integral in (145) vanishes. It is a realistic assumption, because
the surface of integration can be extended to infinity from the sources. Then, for β = 1, the
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electric and magnetic fields are related by the plane-wave formulas Z f H̃1/2 = n× Ẽ1/2

and n · Ẽ1/2 = 0, where n is the unit vector normal to the integration surface S pointing
outwards. However, for 0 < β < 1, the electromagnetic field is exponentially attenuated
towards zero, when the surface of integration is extended to infinity from the sources.
Hence, one obtains ˆ

V
(F̃2 · K̃1) dv =

ˆ
V
(F̃1 · K̃2) dv. (146)

This means that volume integrals of the dot products of the electromagnetic fields F̃1/2
(resulting from the excitations K̃1/2 and measured in their positions) and the current
sources K̃2/1 are the same.

10. Causality

Now let us quickly review the causality. The complex-valued transfer function/distribution
in the frequency domain G : R→ C is considered, which is the Fourier transform of a certain
time-domain function/distribution g : R → C. One should note that we do not assume that
g(t) is real-valued; hence, we are not be able to use any simplification that results from the
assumption that g(t) is real valued.

The classical perspective is provided by the Titchmarsh theorem, which works for the
function g ∈ L2(R).

Theorem 1 (see Theorem 1.6.1 in [66] and Theorem 2 in [55]). If a square-integrable function
G(ω) fulfills one of the four conditions below, then it fulfills all four of them:

(i) The inverse Fourier transform g(t) of G(ω) vanishes for t < 0:

g(t) = 0 (t < 0).

(ii) G(v) is, for almost all v, the limit as u → 0+ of an analytic function G̃(u + jv) that
is holomorphic in the right half-plane and square integrable over any line parallel to the
imaginary axis: ˆ ∞

−∞
|G̃(u + jv)|2dv < C (u > 0).

(iii) <G and =G verify the first Plemelj formula:

<G(ω) = − 1
π

 +∞

−∞

=G(ω′)

ω′ −ω
dω′. (147)

(iv) <G and =G verify the second Plemelj formula:

=G(ω) =
1
π

 +∞

−∞

<G(ω′)

ω′ −ω
dω′. (148)

This theorem suggests two different methods of proving the causality, i.e., one requires
searching for an appropriate holomorphic extension to the right-half plane, and the other
requires to prove the validity of the Kramers-Krönig (K–K) relations (147) and (148).

One should note that for both functions Gz and GR given by (96) and (102), respectively,
the appropriate holomorphic extensions exist for β ∈ (0, 1), given by

Gz(σ + jω) = Gz(s) = F̃+e−zc−1
β sβ

(149)

GR(σ + jω) = GR(s) =
1
R

F̃+e−Rc−1
β sβ

. (150)

Since all the assumptions given in point (ii) of the Titchmarsh Theorem 1 are satisfied, it
directly proves the causality.
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On the other hand, the case of transfer function with the cylindrical symmetry is
different. The function Gr, given in (109), does not belong to L2(R) due to the asymptotics
of the Bessel function J0 given by

J0(z) =

√
2

πz
cos(z− π

4
) + e|=z|O(|z|−3/2) (151)

valid for z ∈ C such that arg z ∈ (−π, π) as |z| → +∞ (see formula 9.2.1 in [67], more
details are given in Chapter VII in [57]). The function Gr(ω) has a natural holomorphic
extension to the right half-plane given by

Gr(σ + jω) = Gr(s) = F̃+ J0(jsβr/cβ). (152)

However, since we operate outside L2(R), we may not directly apply classical methods
and we should treat the function Gr(ω) as a tempered distribution. Fortunately, there are
tools that may be applied here as well: we are going to refer to the theorem proved in [68]
and rephrased as Theorem 7 and discussed in [55].

Theorem 2 (see Theorem 3.8 in [68]). Suppose that F ∈ H(C+) satisfies:

(i) for each ρ0 > 0 function F restricted to the set {s ∈ C : <s > ρ0} is of order/type ≤ (2, 0)
(ii) b = lim supy→+∞ y−1 ln |(F(y)| is finite
(iii) there exists R > 0 such that for all ρ ∈ (0, R] the function Fρ(ω) = F(ρ + iω) satisfies

Fρ ∈ S ′.
Then, there exists such a distribution f ∈ D′ that supp( f ) ⊂ [−b,+∞) and F is the Laplace

transform of f .

The condition (i) is equivalent to saying that for any ε > 0, C = C(ε, ρ0) > 0 exists
such that

ln |F(s)| ≤ ln C + ε|s|2. (153)

The function (152) satisfies (due to the estimate (151)) all the assumptions of Theorem 2, so it
is also a causal transform.

11. Conclusions

In this paper, the extension of TF electrodynamics towards the formulation based
on the RS vector is presented. Up to now, the existing formulations of electrodynamics
based on the RS vector do not include the energy dissipation; hence, they are limited
to a homogeneous and static medium, which is usually a vacuum. The time-domain
fractionalization of Maxwell’s equations allows for inclusion of energy dissipation, which is
the intrinsic property of media described by FOMs. TF Maxwell’s equations are formulated
using the RS vector and their properties are analysed from the point of view of classical
electrodynamics, i.e., energy and momentum conservation, reciprocity, causality. Therefore,
it is possible to demonstrate that the energy density of the electromagnetic field and
media described by FOM, which is spent to create the field and change the momentum
of medium, reflects the entire previous history of the process. Hence, the application of
FOM allows for description of memory effects in electrodynamics. Afterwards, classical
solutions are derived for wave-propagation problems, assuming helical, spherical and
cylindrical symmetries of solutions. Furthermore, we demonstrate relations between the
TF Schrödinger equation and TF electrodynamics using the proposed formulation based
on the RS vector.

Author Contributions: Conceptualization, T.P.S.; Investigation, T.P.S. and J.G.; Software, J.G.; Valida-
tion, T.P.S. and J.G.; Writing—original draft, T.P.S. and J.G.; Writing—review and editing, T.P.S. and
J.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.



Entropy 2021, 23, 987 23 of 25

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank Marek Czachor for many useful and stimulat-
ing discussions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Baleanu, D.; Golmankhaneh, A.K.; Golmankhaneh, A.K.; Baleanu, M.C. Fractional Electromagnetic Equations Using Fractional

Forms. Int. J. Theor. Phys. 2009, 48, 3114–3123. [CrossRef]
2. Lazo, M.J. Gauge invariant fractional electromagnetic fields. Phys. Lett. A 2011, 375, 3541–3546. [CrossRef]
3. Jaradat, E.K.; Hijjawi, R.S.; Khalifeh, J.M. Maxwell’s equations and electromagnetic Lagrangian density in fractional form.

J. Math. Phys. 2012, 53, 033505. [CrossRef]
4. Rabei, E.M.; Al-Jamel, A.; Widyan, H.; Baleanu, D. Comment on “Maxwell’s equations and electromagnetic Lagrangian density

in fractional form” [J. Math. Phys. 53, 033505 (2012)]. J. Math. Phys. 2014, 55, 034101. [CrossRef]
5. Ortigueira, M.D.; Rivero, M.; Trujillo, J.J. From a generalised Helmholtz decomposition theorem to fractional Maxwell equations.

Commun. Nonlinear Sci. Numer. Simul. 2015, 22, 1036–1049. [CrossRef]
6. Engheta, N. Fractional curl operator in electromagnetics. Microw. Opt. Technol. Lett. 1998, 17, 86–91. [CrossRef]
7. Naqvi, Q.; Abbas, M. Complex and higher order fractional curl operator in electromagnetics. Opt. Commun. 2004, 241, 349–355.

[CrossRef]
8. Tarasov, V.E. Fractional vector calculus and fractional Maxwell’s equations. Ann. Phys. 2008, 323, 2756–2778. [CrossRef]
9. Bogolyubov, A.N.; Potapov, A.A.; Rehviashvili, S.S. An approach to introducing fractional integro-differentiation in classical

electrodynamics. Mosc. Univ. Phys. Bull. 2009, 64, 365–368. [CrossRef]
10. Tarasov, V.E. Fractional integro-differential equations for electromagnetic waves in dielectric media. Theor. Math. Phys. 2009,

158, 355–359. [CrossRef]
11. Tarasov, V. Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media; Springer: Berlin/Heidelberg,

Germany, 2011.
12. Nasrolahpour, H. A note on fractional electrodynamics. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 2589–2593. [CrossRef]
13. Westerlund, S. Dead matter has memory! Phys. Scr. 1991, 43, 174–179. [CrossRef]
14. Engheta, N. On fractional calculus and fractional multipoles in electromagnetism. IEEE Trans. Antennas Propag. 1996, 44, 554–566.

[CrossRef]
15. Engheta, N. On the role of fractional calculus in electromagnetic theory. IEEE Antennas Propag. Mag. 1997, 39, 35–46. [CrossRef]
16. Machado, J.T.; Jesus, I.S.; Galhano, A.; Cunha, J.B. Fractional order electromagnetics. Signal Process. 2006, 86, 2637–2644.

[CrossRef]
17. Veliev, E.I.; Engheta, N. Fractional curl operator in reflection problems. In Proceedings of the 10th International Conference on

Mathematical Methods in Electromagnetic Theory, Dniepropetrovsk, Ukraine, 14–17 September 2004; pp. 228–230. [CrossRef]
18. Ivakhnychenko, M.V.; Veliev, E.I.; Ahmedov, T.M. Fractional Operators Approach in Electromagnetic Wave Reflection Problems.

J. Electromagn. Waves Appl. 2007, 21, 1787–1802. [CrossRef]
19. Veliev, E.I.; Ivakhnychenko, M.V.; Ahmedov, T.M. Fractional boundary conditions in plane waves diffraction on a strip.

Prog. Electromagn. Res. 2008, 79, 443–462. [CrossRef]
20. Naqvi, S.; Naqvi, Q.; Hussain, A. Modelling of transmission through a chiral slab using fractional curl operator. Opt. Commun.

2006, 266, 404–406. [CrossRef]
21. Weber, H. Die Partiellen Differential-Gleichungen Der Mathematischen Physik: Nach Riemann’s Vorlesungen Bearbeitet von Heinrich

Weber; Friedrich Vieweg und Sohn: Braunschweig, Germany, 1901.
22. Silberstein, L. Elektromagnetische Grundgleichungen in bivektorieller Behandlung. Ann. Phys. 1907, 327, 579–586. [CrossRef]
23. Silberstein, L. Nachtrag zur Abhandlung uber “Elektromagnetische Grundgleichungen in bivektorieller Behandlung”. Ann. Phys.

1907, 329, 783–784. [CrossRef]
24. Silberstein, L. LXXVI. Quaternionic form of relativity. Lond. Edinburgh Dublin Philos. Mag. J. Sci. 1912, 23, 790–809. [CrossRef]
25. Bialynicki-Birula, I.; Bialynicka-Birula, Z. The role of the Riemann–Silberstein vector in classical and quantum theories of

electromagnetism. J. Phys. Math. Theor. 2013, 46, 053001. [CrossRef]
26. Bialynicki-Birula, I. V Photon Wave Function. Prog. Opt. 1996, 36, 245–294. [CrossRef]
27. Bialynicki-Birula, I. Exponential Localization of Photons. Phys. Rev. Lett. 1998, 80, 5247–5250. [CrossRef]
28. Bialynicki-Birula, I.; Bialynicka-Birula, Z. Beams of electromagnetic radiation carrying angular momentum: The Riemann-

Silberstein vector and the classical-quantum correspondence. Opt. Commun. 2006, 264, 342–351. [CrossRef]
29. Belkovich, I.V.; Kogan, B.L. Utilization of Riemann-Silberstein Vectors in Electromagnetics. Prog. Electromagn. Res. B 2016,

69, 103–116. [CrossRef]
30. Belkovich, I.V.; Kogan, B.L. The Riemann-Silberstein vectors theory and vector spherical expansion. In Proceedings of the 2017

Progress in Electromagnetics Research Symposium—Spring (PIERS), Singapore, 19–22 November 2017; pp. 2346–2355. [CrossRef]
31. Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach: New York,

NY, USA, 1993.

http://doi.org/10.1007/s10773-009-0109-8
http://dx.doi.org/10.1016/j.physleta.2011.08.033
http://dx.doi.org/10.1063/1.3670375
http://dx.doi.org/10.1063/1.4868479
http://dx.doi.org/10.1016/j.cnsns.2014.09.004
http://dx.doi.org/10.1002/(SICI)1098-2760(19980205)17:2<86::AID-MOP4>3.0.CO;2-E
http://dx.doi.org/10.1016/j.optcom.2004.07.028
http://dx.doi.org/10.1016/j.aop.2008.04.005
http://dx.doi.org/10.3103/S0027134909040031
http://dx.doi.org/10.1007/s11232-009-0029-z
http://dx.doi.org/10.1016/j.cnsns.2013.01.005
http://dx.doi.org/10.1088/0031-8949/43/2/011
http://dx.doi.org/10.1109/8.489308
http://dx.doi.org/10.1109/74.632994
http://dx.doi.org/10.1016/j.sigpro.2006.02.010
http://dx.doi.org/10.1109/MMET.2004.1396990
http://dx.doi.org/10.1163/156939307781891012
http://dx.doi.org/10.2528/PIER07102406
http://dx.doi.org/10.1016/j.optcom.2006.05.030
http://dx.doi.org/10.1002/andp.19073270313
http://dx.doi.org/10.1002/andp.19073291409
http://dx.doi.org/10.1080/14786440508637276
http://dx.doi.org/10.1088/1751-8113/46/5/053001
http://dx.doi.org/10.1016/S0079-6638(08)70316-0
http://dx.doi.org/10.1103/PhysRevLett.80.5247
http://dx.doi.org/10.1016/j.optcom.2005.11.071
http://dx.doi.org/10.2528/PIERB16051809
http://dx.doi.org/10.1109/PIERS.2017.8262144


Entropy 2021, 23, 987 24 of 25

32. Gulgowski, J.; Stefanski, T.P. On Applications of Fractional Derivatives in Electromagnetic Theory. In Proceedings of the 2020
23rd International Conference on Microwave, Radar and Wireless Communications (MIKON), Warsaw, Poland, 5–8 October 2020;
pp. 1–4
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