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Abstract: This paper investigates the usage of logic and logic programming in the design of smart
contracts. Our starting point is the logic-based programming language for smart contracts used in
a recently proposed framework of quantum-secured blockchain, called Logicontract (LC). We then
extend the logic used in LC by answer set programming (ASP), a modern approach to declarative
logic programming. Using ASP enables us to write various interesting smart contracts, such as
conditional payment, commitment, multi-party lottery and legal service. A striking feature of our
ASP implementation proposal is that it involves post-quantum cryptographic primitives, such as the
lattice-based public key encryption and signature. The adoption of the post-quantum cryptographic
signature overcomes a specific limitation of LC in which the unconditionally secure signature, despite
its strength, offers limited protection for users of the same node.

Keywords: logic programming; quantum blockchain; smart contract

A blockchain is a distributed, transparent and append-only chain of cryptographically
linked units of data (blocks) stored in a large decentralized network. Due to the mechanisms
of introducing new data based on consensus, blockchain can be used by peers who do
not trust each other. The data entries can be considered transactions, so a blockchain can
be treated as a ledger. Peers in charge of updating the ledger (called often miners) have
separated, identical copies of the ledger. This fact makes the system distributed and is
crucial for its safety. Recently Bitcoin [1] and other cryptocurrencies made the blockchain
technology widely known. Another important and still not fully utilized way of using
blockchain is the implementation of smart contracts [2] on their basis. Smart contract is a
piece of software that implements an agreement between parties in such a way that terms
of the contracts are enforced automatically. Due to registering them in a blockchain, smart
contracts are irrefutable, which makes them appropriate for mutually distrusting peers.
The main advantage is that a trusted third party is not needed for the affirmation and
enforcement of contracts.

The advantages of smart contracts reside in the fact that existing blockchain platforms
provide an infrastructure for them. In most cases, procedural languages are supported for
smart contracts. However, logic-based languages for smart contracts seem to provide some
advantages over the procedural approach [3,4]. The main ones are the following:

• Logical programs in general and smart contracts among them are better suited for
formal verification than procedural programs. In the case of procedural programs, a
usual way to proceed is to construct a formal calculus with rigorous semantics and
express a program as a set of expressions of that calculus [5,6]. Logic is formal calculus
itself, so there is no need for translation to other systems, and the verification is easier.

• Logical contracts are usually more compact. In contrast to their procedural coun-
terparts, they are limited only to what has to be done, without specifying how to
achieve it.
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• Expressing contracts in a logical language is less error prone [7], as they are much
closer to the user-friendly specifications than the procedural programming languages.

This paper provides investigations on the usage of logic and logic programming in
the design of smart contracts. Our starting point is the logic-based programming language
for smart contracts used in the recently proposed framework of Logicontract (LC) [8]. We
then extend the logic used in LC by answer set programming (ASP), a modern approach to
truly declarative logic programming. Using answer set programming enables us to write
various interesting smart contracts. Moreover, due to the well-defined and rigorous syntax
and semantics, the contracts written in the ASP language are easier to understand and
formally verify.

We assume that the underlying blockchain is a quantum-secured permissioned blockchain,
such as LC. More specifically, we assume the existence of a quantum communication net-
work. In this network, every node is a classical computer. It would be better if nodes
were quantum computers. In fact, some interesting problems, such as voting, lotteries and
auctions, can be solved in an unconditionally secure manner on a blockchain with quantum
computers as nodes [9,10]. However, there are still plenty of interesting problems that can
be solved on quantum-secured blockchain with classical computers. Nodes are connected
by both classical and quantum channels such that unconditionally secure keys between
each pair of nodes can be successfully established. Nodes are also the participants (sender
or receiver) of transactions. Every transaction is signed by its sender, using a quantum key
distribution-based signature scheme. Such a signature is unconditionally secure. Every
node maintains a record of all transactions. The consensus algorithm of the blockchain
ensures that different nodes have an identical record of transactions.

So far, in LC, there is only unconditionally secure signature (USS), but no public-key
signature. While USS is good at protecting messages communicated between different
nodes, it seems difficult—at least inconvenient—to protect different users on the same node.
To overcome this limitation of USS, we embed post-quantum cryptographic primitives,
such as lattice-based public-key signature [11–13], into ASP. This treatment allows a user of
a node to identify himself from other users by his unique public key. The post-quantum
cryptographic primitive makes our logical language even more powerful than ordinary
ASP. Our approach is also practically feasible, as witnessed by the very recent work
of Wang et al. [14], which experimentally demonstrated the efficiency of the quantum
communication network with identity authenticated by post-quantum cryptography.

The structure of this paper is the following. In Section 1, we review the existing work
on the programming language and formal models of smart contracts, with special interest
in the programming language of LC. We then develop our update of LC in Section 2.
Various examples are presented in this section to demonstrate the usage of our logical
contract. We conclude this paper with future work perspectives in Section 3.

1. Background and Related Work: Programming Language and Formal Models of
Bitcoin-like Smart Contract

In this section, we briefly review the existing work on the programming languages
and formal models of Bitcoin-like smart contracts. The work on the programming lan-
guages and formal models of Ethereum-like smart contracts are also relevant to our paper.
However, due to the limitation of space, we will not review them. The interested reader
may find a survey of these works by Rouhani [15].

1.1. Timed Automata

Andrychowicz et al. [16] proposed a framework for modeling Bitcoin contracts
using the timed automata (TA) in the UPPAAL model checker [17]. Their key idea is
to use TA to model the behavior of each participant in a contract. The whole system
is then modeled as the network constructed by composing these TAs, plus a TA that
models the Bitcoin network. The security of the smart contract is then verified in UPPAAL
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automatically, finding and correcting some subtle errors that are difficult to discover by the
manual analysis.

1.2. Simplicity

Simplicity [18] is an alternative language for Bitcoin scripts. It is a typed, combinator-
based, functional language without loops and recursion. For a formal verification of
Simplicity programs, denotational semantics in Coq, a popular, general-purpose software
proof assistant, is defined. An abstract machine constituting operational semantics for
Simplicity is also provided. It is possible to statically estimate the resources (e.g., memory)
required to execute contracts written in Simplicity. In Valliappan et al. [19], the authors
connected Simplicity’s primitives with a categorical model. This lifts the language to a
more abstract level allowing for extending it by category theory models of computations.

1.3. BitML

Bartoletti and Zunino [20] expressed Bitcoin contracts in BitML—a simple process
calculus. Contracts are three-phase processes:

1. Participants broadcast a contract advertisement, which specifies the content of the
contract and its preconditions (e.g., depositing a certain amount of bitcoins).

2. Participants accept the contract and fulfill all the required preconditions. When all
the needed participants commit to the contract, the contract is stipulated and can
be executed.

3. Executing the contract eventually results in a transfer of the bitcoins deposited by the
participants, according to the logic defined by the contract.

1.4. Logical Contract

The logical contract project http://logicalcontracts.com/(accessed on 22 August 2021)
developed a logical representation of a legal document that is close to natural, human
language and, at the same time, executable by computer. It can be used for the following:

• Monitor compliance of the parties to a contract;
• Enforce compliance, by automatically performing actions to fulfill obligations, and/or

by issuing warnings and remedial actions to respond to violations of obligations;
• Explore logical consequences of hypothetical scenarios;
• Query and update the Ethereum blockchain.

The theoretic foundation of the logical contract project is a LPS (Logic-based Production
System), which is a general-purpose computer language, developed by Kowalski, Sadri
and Calejo [21–23].

1.5. Probabilistic Logic Programs for Blockchain and Smart Contracts

Azzolini et al. [24–26] applied probabilistic logic programs to model and analyze the
safely and effectiveness of blockchain systems. They presented a method to translate smart
contracts into probabilistic logic programs that can be used to analyze the expected values
of several smart contract’s utility parameters and obtain a quantitative idea on how smart
contracts variables changes over time. They have used this method to study several real
smart contracts deployed on the Ethereum blockchain.

1.6. Logicontract

The programming language for smart contracts on LC [8] is based on the script
language of Bitcoin [5,20,27]. The definition of a formula of the language is as follows:

e ::= x | k | e + e | Hash(e)
φ ::= e = e | e > e | Odd(e) | A f ter(e) | ¬φ | φ ∧ φ

where φ is a formula, e is an arithmetic expression, x is a variable ranging over natural
numbers, k ∈ N is a constant natural number, Hash is a collision-resistant hash function
on natural numbers, and Odd(e) means that e is an odd number. LC uses a global clock.

http://logicalcontracts.com/
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A f ter(e) means that the current time by the clock is later than e. Propositional operators
of negation and conjunction are represented in a usual way by the symbols ¬ and ∧,
respectively. The formal definition of the transaction on LC is as follows.

Definition 1 (transaction [8]). A transaction T is a tuple (send, rece, sour, cert, prot) with
the following:

• T is the name of the transaction.
• send stands for the sender of the transaction.
• rece stands for the set of ordered pairs and each of the pairs consists of a potential re-

ceiver of this transaction and the amount of the currency that the receiver will receive, i.e.,
rece = {(r1, a1), . . . , (rm, am)}.

• sour stands for the source of the transaction, which is a list of names of transactions (T1, . . . , Tn)
that are redeemed by T.

• prot stands for the protection, which is a list of ordered pairs in which each pair consists
of a receiver from rece and a formula that has to be fulfilled by the receiver to redeem the
transaction, i.e., prot = {(r1, φ1), . . . , (rm, φm)}. In order to redeem T, ri has to provide φi
as the certification of a following transaction.

• cert stands for the certification, which is a list of ordered pairs consisting of names of transac-
tions and valuation functions that are supposed to satisfy protections of source transactions,
i.e., cert = {(T1, V1), . . . , (Tn, Vn)}. Valuation functions map variables to natural numbers.
The list must provide a valuation function for each source transaction.

A transaction T redeems source transactions if and only if the following holds:

1. The sender of T is one of the receivers in each of its source transactions.
2. The certification of T evaluates correctly the protections of all sources.
3. None of the sources has been already redeemed.

A transaction T is redeemed if one of its receivers has redeemed it.
Let us now see how the process of redeeming of one transaction by another on examples.

Example 1 (direct payment). Bob receives the amount of 1 coin from Alice (see Figure 1).

T0
send: Alice
rece: {(Bob, 1)}
sour: . . .
cert: . . .
prot: ∅

T1
send: Bob
rece: . . .
sour: T0
cert: ∅
prot: . . .

Figure 1. Direct payment.

Example 2 (payment from multiple sources). Bob receives payments from Alice and from Eve
(1 coin from each) (see Figure 2).
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T0
send: Alice
rece: {(Bob, 1)}
sour: . . .
cert: . . .
prot: ∅

T1
send: Eve
rece: {(Bob, 1)}
sour: . . .
cert: . . .
prot: ∅

T2
send: Bob
rece: . . .
sour: T0, T1
cert: ∅
prot: . . .

Figure 2. Payment from multiple sources.

Example 3 (conditional payment). Bob receives the amount of 1 coin from Alice if Bob presents
a number larger than 10 as the value of variable x (see Figure 3).

T0
send: Alice
rece: {(Bob, 1)}
sour: . . .
cert: . . .
prot: {(Bob, x > 10)}

T1
send: Bob
rece: . . .
sour: T0
cert: {(T0, V(x) = 11)}
prot: . . .

Figure 3. Conditional payment.

Example 4 (commitment). Alice commits a secret number x to Bob (the hash value of x is in the
example 1234) and makes a deposit (1 coin). If she reveals this secret before a certain time (20211230
in the example), then she redeems the deposit. Otherwise Bob redeems the deposit after the agreed
upon time (see Figure 4).

T0
send: Alice
rece: {(Alice, 1), (Bob, 1)}
sour: . . .
cert: . . .
prot: {(Alice, Hash(x) = 1234), (Bob, A f ter(20211230))}

T1
send: Alice
rece: . . .
sour: T0
cert: {(T0, V(x) = Hash−1(1234))}
prot: . . .

Figure 4. Commitment.

2. Logic Programming for Smart Contracts

The logic used to specify the protection in LC has strong limits on functions and pred-
icates. It can be straightforwardly generalized to involve more expressive logical formulas
from logic programming. More specifically, we will use answer set programming [28–30],
a modern approach to logic programming, as our underlying logic. In the following, we
will first review classical logic programming, then review the answer set programming as
an extension of classical logic programming.

2.1. Classical Logic Programming

Now, we give a formal definition of notions, such as formula, valuation, satisfactions
and entailment. All these notions can be found in the literature of logic programming [31,32].



Entropy 2021, 23, 1120 6 of 14

Let X, Y, Z, . . . stand for variables, a, b, c, . . . for constants p, q, . . . for predicate symbols
and f , g, h, . . . for function symbols. Constants can be treated as special cases of functions
that have no arguments. A language L of logic programs is determined by the set of its
predicates and functions (and constants).

A term is defined inductively as follows: any variable and any constant is a term, and
if f is an n-ary function symbol and t1, . . . , tn are terms, then f (t1, . . . , tn) is a term. If no
variable occurs in a term, then the term is ground. The set of all ground terms that can be
formed with the functions and constants of a language in L is called its Herbrand universe UL.

An atomic formula (atom in short) is built from an n-ary predicate and n terms as
its arguments, e.g., p(t1, . . . , tn). An atom is ground if all terms ti are ground. The set of
all ground atoms that can be formed in L is called Herbrand base BL. Any atom and any
negation of an atom is called a literal.

A rule of the following form is called a Horn clause:

A0 ← A1, . . . , An (n ≥ 0),

where each Ai (0 ≤ i ≤ n) is an atom. A0 is called the head of the clause, and the part on
the right of← is called its body. When i = 0, the body of a rule is empty; such a rule, taking
the form A0 ←, is called a fact. A classical logic program is a finite set of Horn clauses.
Clauses (including facts) and logic programs containing no variables are called ground.

For any logic program P, we can define the language L(P) that consists of the pred-
icates, functions, and constants occurring in P. If there are no constants in P, we add to
L(P) a constant to avoid the empty domain. For simplicity, instead of UL(P) and BL(P), we
will write UP and BP, respectively. A Herbrand interpretation of P is any subset I ⊆ BP of
its Herbrand base. Intuitively, the atoms in I are true, and all others are false. A Herbrand
interpretation of P such that for each rule A0 ← A1, . . . , Am in P, this interpretation satisfies
the logical formula ∀X((A1 ∧ . . . ∧ Am)→ A0) (X being the list of all variables occuring in
the rule) is called the Herbrand model of P.

The notions of a Herbrand interpretation and Herbrand model can be generalized,
in a natural way, to infinite sets of clauses. Let P be an arbitrary (finite or infinite) set of
ground clauses. P defines an operator TP : 2BP 7→ 2BP , where 2BP denotes the set of all
Herbrand interpretations of P, by the following:

TP(I) = {A0 ∈ BP | P contains a rule A0 ← A1, . . . , Am such that {AA, . . . , Am} ⊆
I holds}

This operator is called the immediate consequence operator; intuitively, it yields all
atoms that can be derived by a single application of some rule in P, given the atoms in I.
Since TP is monotone, by the Knaster–Tarski theorem, it has the least fixed point, denoted
by T∞

P . It can be proven that T∞
P is the limit of the sequence T0

P = ∅, Ti+1
P = TP(Ti

P).
A ground atom A is called a consequence of a set P of clauses if A ∈ T∞

P (we write P |= A).
Additionally, we say that a negated ground atom ¬A is a consequence of P and write
P |= ¬A if A /∈ T∞

P .
The semantics of a set P of ground clauses, denoted as M(P), is defined as the

following set consisting of atoms and negated atoms.

M(P) = {A | P |= A} ∪ {¬A | P |= ¬A}.

For a ground formula φ, built from literals with connective ∧,∨, we define P |= φ if
M(P) |= φ according to the semantics of classical logic. The semantics of logic programs
is now defined as follows. Let the grounding of a clause r in a language L, denoted
as ground(r,L), be the set of all clauses obtained from r by all possible substitutions of
elements of UL for the variables in r. For any logic program P, we define the following:

ground(P,L) =
⋃

r∈P
ground(r,L),

and we write ground(P) for ground(P,L(P)). The operator TP : 2BP 7→ 2BP associated with
P is defined by TP = Tground(P). Accordingly,M(P) =M(ground(P)).
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2.2. Answer Set Programming

While a rule in classical logic programming is of the form A0 ← A1, . . . , Am, in answer
set programming a rule has the following form:

L1 ∨ . . . ∨ Lk∨ ∼ Lk+1 ∨ . . .∨ ∼ Ll ← Ll+1 ∧ . . . ∧ Lm∧ ∼ Lm+1 ∧ . . .∧ ∼ Ln,

where all Li, 1 ≤ i ≤ n are literals (i.e., atoms or the negation of atoms) and 0 ≤ k ≤ l ≤
m ≤ n. Here, ∼ is the default negation (negation as failure). For a rule r of the above form,
{L1, . . . ,∼ Ll} is the head of r and {Ll+1, . . . ,∼ Ln} is the body of r. We use Head(r) and
Body(r) to denote the head and body of r, respectively.

The notion of an answer set is defined first for ground programs, which do not contain
default negation. Let P be such a program and M be a consistent set of literals. We say
that M is closed under P if for every rule r ∈ P, Head(r) ∩M 6= ∅ whenever Body(r) ⊆ M.
M is an answer set for P if M is minimal (relatively to set inclusion) among the sets of
literals that are closed under P.

Now, we extend the definition of an answer set to ground programs with default
negation. Let P be an arbitrary program and M a consistent set of literals. The reduct PM

of P relative to M is the set of the following rule:

L1 ∨ . . . ∨ Lk ← Ll+1 ∧ . . . ∧ Lm

for all rules L1 ∨ . . . ∨ Lk∨ ∼ Lk+1 ∨ . . .∨ ∼ Ll ← Ll+1 ∧ . . . ∧ Lm∧ ∼ Lm+1 ∧ . . .∧ ∼ Ln
in P such that M contains all literals Lk+1, . . . , Ll but does not contain any of Lm+1, . . . , Ln.
Thus, PM is a ground program without default negation. We say that M is an answer set
for P if M is an answer set of PM.

Finally, for a non-ground program P, the answer set for P is the answer set for
ground(P). It can be verified that if a program P in answer set programming is also a
classical logic program, then there is a unique answer set of P, and it coincides with the
least fixed point of TP. A ground literal L is entailed by a program P, denoted by P |= L,
if L is contained in all answer sets of P. For a ground formula φ built from literals with
connective ∧,∨, P |= φ is defined by interpreting ∧,∨ in the same way as in classical logic.

2.3. Transaction and Smart Contracts

Now, we are ready to define a new notion of transaction in which protection and
certification are specified by logical programs and its semantics.

Definition 2 (transaction). A transaction T is a tuple (send, rece, sour, cert, prot), where
send, rece, sour are defined in the same way as in LC, and the following:

• prot is the protection, which is a list of triples of logic programs, formulas and time locks. The num-
ber of triples must be the same as the number of receivers. Formally, prot = {(r1, (P1, φ1, tilo1)),
. . . , (rm, (Pm, φm, tilom))}. Pi is a logical program of answer set programming. φi is either the
logical truth> or a non-ground formula φ built from literals with connective ∧,∨. tiloi is the time
lock, which is of the form a f ter(k) for some natural number k.

• cert is the certification, which is a set of ordered pairs of which the first component is the name
of a transaction and the second component is either a set of literals or a valuation function that
maps variables to constants. Formally, cert = {(T1, V1), . . . , (Tn, Vn)}.
Vi satisfies (Pi,>, tiloi) if Vi is an answer set for Pi and the time lock is satisfied by the global
clock. Vi satisfies (Pi, φi, tiloi), where φi is a non-ground formula φ built from literals with
connective ∧,∨, if Pi |= Vi(φi) and the time lock is satisfied by the global clock. When the
time lock is ∅, it is vacuously satisfied by the global clock.

Just like in LC, a transaction T redeems its sources if and only if the following holds:

1. The sender of T is one of the receivers in each of its source transactions.
2. The certification of T evaluates the protections of all its sources to be true.
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3. None of its source transactions has been redeemed.

A transaction T is redeemed if one of its receivers has redeemed it.
We typically include a special predicate A f ter(·) in our language. The atom A f ter(t)

is true when the global clock has passed time t. Some primitives of the post-quantum
public key infrastructure [33] are also involved in our language. At the current stage, we
do not specify which post-quantum algorithm is to be used because the standardization
of post-quantum cryptography is still an ongoing procedure. Instead, we give an abstract
description of some primitives of post-quantum cryptography in ASP. Those primitives
include the encryption, signature and hash function.

• For encryption, a secret key sk is a constant. The function pk(·) maps sk to the
corresponding public key pk(sk). The encryption function enc(·, ·) maps a plain
message m and public key pk = pk(sk) to an encrypted message enc(m, pk).

• For signature, the signing function sign(·, ·) maps a message m and a secret key sk to
the signature sign(m, sk). The atom verSig(σ, m, pk) is true when σ = sign(m, sk) is
the signature of m and sk with public key pk = pk(sk).

• The hash function is represent by a collision-resistant function Hash.

Note that we use both an unconditionally secure signature and a post-quantum
public key signature (e.g., lattice-based signature). They serve different purposes. The
unconditionally secure signature is used to prove that a message from node A to other
nodes is indeed sent from node A. Since the computer A may have more than one users, the
post-quantum public key signature is used to prove the identity of the users of a computer.

This new format of transaction enables us to design various interesting smart contracts,
especially contracts related to knowledge representation, automated planning, constraint
solving and other areas in which ASP has proven to be applicable. Now, we use several
examples for the demonstration.

Example 5 (authorized payment). Bob receives a coin from Alice if he provides an appropri-
ate signature from Bob1 (see Figure 5). Here, Bob is a (classical or quantum) computer, which
is a node of the underlying quantum-secured permissioned blockchain. Bob1 is a user of Bob.
PKBob1 and SKBob1 are, respectively, the public and secret key of Bob1, and sign(“agree”, SKBob1)
represents the signature of the message “agree” generated by secret key SKBob1 . Similarly, if
Alice changes verSig(x, “agree”, PKBob1) to (verSig(x, “agree”, PKBob1) ∨ verSig(y, “agree”,
PKBob2)) ∧verSig(z, “agree”, PKBob3), then Bob has to provide a signature of Bob3 and at least
one of the signatures of Bob1 and Bob2.

T0
send: Alice
rece: {(Bob, 1)}
sour: . . .
cert: . . .
prot: {(Bob, (∅, verSig(x, “agree′′, PKBob1), ∅))}.

T1
send: Bob
rece: . . .
sour: T0
cert: {(T0, V(x) = sign(“agree”, SKBob1))}
prot: . . .

Figure 5. Authorized payment.

Example 6 (conditional payment with Sudoku). Bob receives 1 coin from Alice on the condition
that Bob solves a Sudoku puzzle (see Figure 6). Here, Sudo is a Sudoku puzzle described in logical
programs. A detailed formalization of Sudo can be found in Hölldobler and Schweizer [29]. Ans is
an answer set for Sudo.
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T0
send: Alice
rece: {(Bob, 1)}
sour: . . .
cert: . . .
prot: {(Bob, (Sudo,>, ∅))}

T1
send: Bob
rece: . . .
sour: T0
cert: {(T0, Ans)}
prot: . . .

Figure 6. Conditional payment.

Obviously, we can replace Sudo by any logical program. This means that we can
realize various interesting conditional payments, as long as the condition can be expressed
by logic programs.

Example 7 (competition for solving problems). Alice declares a difficult problem Prob to Bob
and Charlie. The one who first solves it before 20211231 will get the reward. (See Figure 7)

T0
send: Alice
rece: {(Bob, 1), (Charlie, 1), (Alice, 1)}
sour: . . .
cert: . . .
prot: {(Bob, (Prob,>, ∅)), (Charlie, (Prob,>, ∅)), (Alice, (∅,>, A f ter(20211231)))}

Figure 7. Competition for solving problems.

2.3.1. Multi-Party Lottery

Lottery is a part of the gambling industry with a turnover of billions of dollars [34].
Traditionally, a lottery game is organized by a trustworthy authority. In order to enter
a lottery game, players buy tickets. Then, the authority organizing the game initiates a
random process that determines the winning tickets. The revenue, in many cases, is large
enough to induce temptation to cheat. To ensure fairness of a lottery game and trust of the
players, several requirements on a lottery protocol were formulated (c.f. [16,35–39]):

1. Randomness. All tickets are equally likely to win.
2. Unpredictability. No player can predict the winning ticket.
3. Unforgeability. Tickets cannot be forged. In particular, it is impossible to create a

winning ticket after the outcome of the random process is known.
4. Verifiability. The number and the revenue of winning tickets are publicly verifiable.
5. Decentralization. The random process does not rely on a single authority.

Note that decentralization allows to organize a lottery without the need for an authority
that all players trust, replacing it by alternative mechanisms, such as Blockchain.

In [8], a two-party lottery protocol satisfying the above requirements is defined. We
extend it to a multi-party lottery protocol.

Example 8 (multi-party lottery). The lottery protocol consists of several steps.

1. Alice commits a secret to Bob by making a deposit. Bob commits a secret to Charlie by making
a deposit. Charlie commits a secret to Alice by making a deposit. (See Figure 8).

2. Alice sends a conditional transfer to Alice, Bob and Charlie. Bob sends a conditional transfer
to Alice, Bob and Charlie. Charlie sends a conditional transfer to Alice, Bob and Charlie. (See
Figure 9).
Here, AliceWin is specified by (Hash−1(x) = 111)∧ (Hash−1(y) = 222)∧ (Hash−1(z) =
333) ∧ x + y + z ≡3 0, where ≡3 means equivalence modulo 3. BobWin is specified by
(Hash−1(x) = 111) ∧ (Hash−1(y) = 222) ∧ (Hash−1(z) = 333) ∧ x + y + z ≡3 1.
CharlieWin is specified by (Hash−1(x) = 111) ∧ (Hash−1(y) = 222) ∧ (Hash−1(z) =
333) ∧ x + y + z ≡3 2. Alice can also redeem her conditional transfer after 20220130. This
condition ensures that Alice can get her money back in case any participant aborts the lottery
game before the results can be determined. This is similarly the case for Bob and Charlie.
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3. Alice reveals her secret and gets her deposit back. Bob reveals his secret and gets his deposit
back. Charlie reveals his secret and gets his deposit back. (See Figure 10).

4. Now, Alice, Bob and Charlie’s secrets are public and the winner can be determined. The
winner redeems the loser’s conditional transfer and his/her own conditional transfer. If Alice
is the winner, then she redeems T3, T4 and T5. This is similarly true for Bob/Charlie when
they are the winner. (See Figure 11).

T0
send: Alice
rece: {(Alice, 1), (Bob, 1), }
sour: . . .
cert: . . .
prot: {(Alice, (∅, Hash(x) = 111, ∅)), (Bob, (∅, ∅, A f ter(20211230)))}

T1
send: Bob
rece: {(Bob, 1), (Charlie, 1)}
sour: . . .
cert: . . .
prot: {(Bob, (∅, Hash(x) = 222, ∅)), (Charlie, (∅, ∅, A f ter(20211230)))}

T2
send: Charlie
rece: {(Charlie, 1), (Alice, 1)}
sour: . . .
cert: . . .
prot: {(Charlie, (∅, Hash(x) = 333, ∅)), (Alice, (∅, ∅, A f ter(20211230)))}

Figure 8. Lottery: deposit.

1 
 

 
Figure 9. Lottery: conditional transfer.
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T6
send: Alice
rece: . . .
sour: T0
cert: {(T0, V(x) = Hash−1(111))}
prot: . . .

T7
send: Bob
rece: . . .
sour: T1
cert: {(T1, V(x) = Hash−1(222))}
prot: . . .

T8
send: Charlie
rece: . . .
sour: T2
cert: {(T2, V(x) = Hash−1(333))}
prot: . . .

Figure 10. Lottery: revealing the secrets.

T9
send: Alice
rece: . . .
sour: T3, T4, T5
cert: V(x) = Hash−1(111), V(y) = Hash−1(222), , V(z) = Hash−1(333)
prot: . . .

Figure 11. Lottery: determining the winner.

2.3.2. Legal Service

As in the last example, we show that our logical contracts can be used to provide a
legal consultation service on blockchain. This is possible because ASP is able to express
legal/normative rules, thanks to the close connection between ASP and default logic,
which, in turn, can be used to express legal/normative rules. The connection between ASP
and default logic is the following. Let P be a program such that the head of every rule of P
is a single literal, as follows:

L1 ← L2 ∧ . . . ∧ Lm∧ ∼ Lm+1 ∧ . . .∧ ∼ Ln. (1)

We can transform P into a default theory D(P) in the sense of [40] by turning each
rule (1) into the default as follows:

L2 ∧ . . . ∧ Lm∧ : ¬Lm+1, . . . ,¬Ln

L1
.

The correspondence between P and D(P) is the following: if X is an answer set for
P, then the deductive closure of X is a consistent extension for D(P); conversely, every
consistent extension for D(P) is the deductive closure of an answer set for P.

In deontic default logic [41], a conditional obligation φ→ Oψ, meaning that if φ, then
it is obliged to be ψ, and is expressed by a default as follows:

φ : ψ

ψ
.

Therefore, a conditional obligation L1 → OL2 can be expressed as the following rule
in ASP:

L2 ← L1∧ ∼ ¬L2.

Moreover, since a conditional prohibition φ → Fψ, meaning that if φ, then it is
forbidden to be ψ, is defined by φ → O¬ψ, we can express a conditional prohibition
L1 → FL2 as the following rule in ASP:

¬L2 ← L1∧ ∼ L2.
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Now, if the protection of a transaction T includes a logical program P, which consists
of some facts, conditional obligations and prohibitions expressed in ASP, then a transaction
T′ redeems T only if it provides an answer set of P. We can view P as a description of a
legal situation or a normative system together with some facts. An answer set of P is then
a suggestion of actions to be taken. In this sense, legal consultation can be carried out by
transactions of blockchain.

3. Conclusions and Future Work

This paper applies answer set programming, enriched with post-quantum crypto-
graphic primitives, to the design and specification of smart contracts on quantum-secured
blockchains. The enrichment of post-quantum cryptographic primitives overcomes the
limitation of unconditionally secure signatures in existing quantum-secured blockchains,
which do not provide mechanisms for user authentication.

The application of ASP allows us to design various interesting smart contracts. Com-
pared to procedural languages, the smart contracts written in our logical language are
easier to be understood and formally verified.

In the future, we plan to systematically explore the usage of our framework in multi-
party secure computation. We are also interested in further extending our logical language
to include primitives of quantum computation. Such an extension will create a program-
ming language of smart contracts in quantum logic.
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