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Abstract: The problem of reliable function computation is extended by imposing privacy, secrecy,
and storage constraints on a remote source whose noisy measurements are observed by multiple
parties. The main additions to the classic function computation problem include (1) privacy leakage
to an eavesdropper is measured with respect to the remote source rather than the transmitting
terminals’ observed sequences; (2) the information leakage to a fusion center with respect to the
remote source is considered a new privacy leakage metric; (3) the function computed is allowed to be
a distorted version of the target function, which allows the storage rate to be reduced compared to a
reliable function computation scenario, in addition to reducing secrecy and privacy leakages; (4) two
transmitting node observations are used to compute a function. Inner and outer bounds on the rate
regions are derived for lossless and lossy single-function computation with two transmitting nodes,
which recover previous results in the literature. For special cases, including invertible and partially
invertible functions, and degraded measurement channels, simplified lossless and lossy rate regions
are characterized, and one achievable region is evaluated as an example scenario.

Keywords: information theoretic privacy; secure function computation; remote source; distributed
computation

1. Introduction

We consider function computation scenarios in a network with multiple nodes in-
volved. Each node observes a random sequence, and all observed random sequences are
modeled to be correlated. Recent advancements in network function virtualization [1] and
distributed machine learning applications [2] make function computation in a wireless
network via software defined networking an important practical problem that should be
tackled to improve the performance of future communication systems. In a classic function
computation scenario, the nodes exchange messages through authenticated, noiseless, and
public communication links, which results in undesired information leakage about the
computed function [3–5]. Furthermore, it is possible to reduce the amount of public com-
munication [6,7] by using distributed lossless or lossy source coding methods; see [8–12] for
several extensions. The former method uses Slepian-Wolf (SW) coding [13] constructions,
and the latter allows the computed function to be a distorted version of the target func-
tion and applies Wyner-Ziv (WZ) coding [14] methods, which result in further reductions
compared to the former. A decrease in public communication is also important in order
to limit the information about the computed function leaked to an eavesdropper in the
same network, i.e., secrecy leakage. In addition to the public messages, an eavesdropper
has generally access to a random sequence correlated with other sequences; see [15–17] for
various secure function computation extensions.

An important addition to the secure function computation model is a privacy con-
straint that measures the amount of information about the observed sequence leaked to
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an eavesdropper [18]. Providing privacy is necessary to ensure confidentiality of a private
sequence that can be reused for future function computations [19]. An extension of the
results in [18] are given in [20], where two privacy constraints are considered on a remote
source whose different noisy measurements are observed by multiple nodes in the same
network. The extension in [20] is different from the previous secure and private function
computation models due to the assumption that there exists a remote source that is the
main reason for the correlation between the random sequences observed by the nodes in
the same network. It is illustrated via practical examples that considering a remote source
hinders unexpected decrease in reliability and unnoticed secrecy leakage [19]. Similarly,
such a remote source model is proposed, e.g., in [21] for biometric secrecy and in [22]
for user or device authentication problems. It is shown in [20] that with such a remote
source model, two different privacy leakage rate values should be limited, unlike a single
constraint considered in [18].

We consider a private remote source whose three noisy versions are used for secure
single-function computation. Suppose two nodes transmit public indices to a fusion center
to compute one function. In [20], for each function computation, one node sends a public
index to a fusion center. In [18], cases with two transmitting nodes for function computation
are considered for a visible source model, whose results are improved in this work for
a remote source model with an additional privacy leakage constraint. Furthermore, we
also consider function computation scenarios where the function computed is allowed to
be a distorted version of the target function, which is relevant for various recent function
computation applications.

1.1. Models for Function Inputs and Outputs

We consider noisy remote source output measurements that are independent and
identically distributed (i.i.d.) according to a fixed probability distribution and that are
inputs of a target function. This model is reasonable if, e.g., one uses transform-coding
algorithms from [19,23–28] to extract almost i.i.d. symbols, as applied in the biometric
security, physical unclonable function, and image and video coding literature. Furthermore,
the set of target functions we study are applied per letter; i.e., the same function is applied
to each input symbol (see Section 2 below). These functions are realistic and are used in
various recent applications, such as distributed and federated learning applications where
the same loss function is applied to each data example [29].

1.2. Summary of Contributions

We extend the lossless and lossy rate region analysis of the single-function computation
model with one transmitting node in [20] to consider two transmitting nodes with joint
secrecy and privacy constraints, as well as a distortion constraint on the computed function.
A summary of the main contributions is as follows.

• The lossless single-function computation model with two transmitting nodes is con-
sidered, and an inner bound for the rate region that characterizes the optimal trade-off
between secrecy, privacy, storage, and distortion constraints is established by using
the output statistics of a random binning (OSRB) method [30,31]. An outer bound for
the same rate region is also provided by using standard properties of Shannon entropy.
Inner and outer bounds are shown to not match in general due to different Markov
chains imposed.

• The proposed inner and outer bounds are extended for the lossy single-function
computation model with two transmitting nodes by considering a distortion metric.
Furthermore, effects of considering a distortion constraint, rather than a reliability
constraint, on the function computation are discussed.

• For both partially invertible functions, which define a set that is a proper superset
of the set of invertible functions, and invertible functions, we characterize simplified
lossless and lossy rate regions.
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• The simplified rate regions for invertible functions are further simplified when the
eavesdropper’s measurement channel is physically degraded with respect to the
fusion center’s channel or vice versa, which results in different bounds on the rates.

• We evaluate a simplified rate region for a physically degraded case with multiplicative
Bernoulli noise components.

We remark that the new contributions in this work as compared to [32,33] include the
characterization of the rate region for a physically-degraded channel and the evaluation
of the rate region for an example lossless single-function computation scenario, which are
mentioned in the last two bullet points above. Furthermore, additional discussions to com-
pare lossless and lossy function computation models are given, the function computation
literature review is extended, and discussions about why the considered model is realistic
are provided.

1.3. Organization

This paper is organized as follows. In Section 2, we introduce the lossless and lossy
single-function computation problems with two transmitting nodes under secrecy, privacy,
storage, and reliability or distortion constraints. In Section 3, we present the inner and
outer bounds for the rate regions of the introduced problems and discuss that the bounds
differ because of different Markov chains imposed. In Section 4, we characterize simplified
lossless and lossy rate regions for invertible functions, partially invertible functions, and
two different degraded measurement channels, and a rate region for an example case is
evaluated. In Section 5, we offer proofs of the inner and outer bounds for the lossless
single-function computations with two transmitting nodes. In Section 6, we conclude
the paper.

1.4. Notation

Upper case letters represent random variables and lower case letters their realizations.
A superscript denotes a sequence of variables, e.g., Xn = X1, X2, . . . , Xi, . . . , Xn, and a
subscript i denotes the position of a variable in a sequence. A random variable X has proba-
bility distribution PX . Calligraphic letters such as X denote sets, and set sizes are written as
|X |. Given any a ∈ R, we define [a]− = min{a, 0}. Hb(c)=−c log2 c− (1− c) log2(1−c)
as the binary entropy function for any c ∈ [0, 1].

2. System Model

We consider the single-function computation model with two transmitting nodes
illustrated in Figure 1. Noisy measurements X̃n

1 and X̃n
2 of an i.i.d. remote source Xn ∼ Pn

X
through memoryless channels PX̃1|X and PX̃2|X , respectively, are observed by two legitimate
nodes in a network. Similarly, other noisy measurements Yn and Zn of the same remote
source are observed by the fusion center and eavesdropper (Eve), respectively, through
another memoryless channel PYZ|X . Encoders Enc1(·) and Enc2(·) of the legitimate nodes
send indices W1 and W2, respectively, to the fusion center over public communication
links with storage rate constraints. The fusion center decoder Dec(·) then uses its observed
noisy sequence Yn and the public indices W1 and W2 to estimate a function f n(X̃n

1 , X̃n
2 , Yn)

such that

f n(X̃n
1 , X̃n

2 , Yn) = { f (X̃1,i, X̃2,i, Yi)}
n
i=1. (1)

The source and measurement alphabets are finite sets.
A natural secrecy leakage constraint is to minimize the information leakage about

the function output f n(X̃n
1 , X̃n

2 , Yn) to the eavesdropper. However, its analysis depends
on the specific function f (·, ·, ·) computed, so we impose below another secrecy leakage
constraint that does not depend on the function used and that provides an upper bound
for secrecy leakage for all functions, as considered in [18,20]. Furthermore, we impose two
privacy leakage constraints to minimize the information leakage about Xn to the fusion



Entropy 2022, 24, 110 4 of 21

center and eavesdropper because the same remote source would be measured if another
function would be computed in the same network (see also [19] for motivations to consider
privacy leakage with respect to a remote source) as well as public storage constraints that
minimize the rate of storage for transmitting nodes.

We next define lossless and lossy single-function computation rate regions.

PX

W1 = Enc1(X̃n
1 )

PYZ|X

PX̃1|X

f̂ n = Dec(W1, W2, Yn)

EVE

W1

Xn

Yn

X̃n
1

Xn

Zn

f̂ n

W1

W2 = Enc2(X̃n
2 )

PX̃2|X

W2

X̃n
2

W2

Figure 1. Single-function computation problem with two transmitting nodes under secrecy, privacy,
and storage (or communication) constraints.

2.1. Lossless Single-Function Computation

Consider the single-function computation model illustrated in Figure 1. The corre-
sponding lossless rate region is defined as follows.

Definition 1. A lossless tuple (Rs, Rw,1, Rw,2, R`,Dec, R`,Eve) is achievable if, for any δ>0, there
exist n≥1, two encoders, and one decoder such that

Pr
[

f n(X̃n
1 , X̃n

2 , Yn) 6= f̂ n
]
≤ δ (reliability) (2)

1
n

I(X̃n
1 , X̃n

2 , Yn; W1, W2|Zn) ≤ Rs + δ (secrecy) (3)

1
n

log
∣∣W1

∣∣ ≤ Rw,1 + δ (storage 1) (4)

1
n

log
∣∣W2

∣∣ ≤ Rw,2 + δ (storage 2) (5)

1
n

I(Xn; W1, W2|Yn) ≤ R`,Dec + δ (privacyDec) (6)

1
n

I(Xn; W1, W2|Zn) ≤ R`,Eve + δ (privacyEve). (7)

The lossless regionR is the closure of the set of all achievable lossless tuples.

2.2. Lossy Single-Function Computation

The corresponding lossy rate region for the single-function computation model illus-
trated in Figure 1 is defined as follows.

Definition 2. A lossy tuple (Rs, Rw,1, Rw,2, R`,Dec, R`,Eve, D) is achievable if, for any δ>0, there
exist n≥1, two encoders, and one decoder such that (3)–(7) and

E
[
d( f n(X̃n

1 , X̃n
2 , Yn), f̂ n)

]
≤ D + δ (distortion) (8)
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where

d( f n, f̂ n) =
1
n

n

∑
i=1

d( fi, f̂i) (9)

is a per-letter distortion metric. The lossy region RD is the closure of the set of all achievable
lossy tuples.

3. Inner and Outer Bounds
3.1. Lossless Single-Function Computation

We first extend the notion of admissibility defined in [6] for a single auxiliary random
variable to two auxiliary random variables, used in the inner and outer bounds given below
for lossless function computation; see also Theorem 3 of [18].

Definition 3. A pair of (vector) random variables (U1, U2) is admissible for a function f (X̃1, X̃2, Y)
if we have

H( f (X̃1, X̃2, Y)|U1, U2, Y) = 0 (10)

and

U1 − X̃1 − (X̃2, Y) (11)

U2 − X̃2 − (X̃1, Y) (12)

form Markov chains.

We next provide inner and outer bounds for the lossless regionR; see Section 5 for a
proof sketch.

Theorem 1. (Inner Bound): An achievable lossless region is the union over all PQ, PV1|Q, PV2|Q,
PU1|V1

, PU2|V2
, PX̃1|U1

, and PX̃2|U2
of the rate tuples (Rs, Rw,1, Rw,2, R`,Dec, R`,Eve) such that the

(U1, U2) pair is admissible for the function f (X̃1, X̃2, Y) and

Rs ≥
[

I(U1, U2; Z|V1, V2, Q)− I(U1, U2; Y|V1, V2, Q)
]−

+ I(U1, U2; X̃1, X̃2|Z) (13)

Rw,1 ≥ I(V1; X̃1|V2, Y) + I(U1; X̃1|V1, U2, Y) (14)

Rw,2 ≥ I(V2; X̃2|V1, Y) + I(U2; X̃2|U1, V2, Y) (15)

Rw,1 + Rw,2 ≥ I(U2; X̃2|U1, V2, Y) + I(U1; X̃1|V1, V2, Y)

+ I(V2; X̃2|V1, Y) + I(V1; X̃1|Y) (16)

R`,Dec ≥ I(U1, U2; X|Y) (17)

R`,Eve ≥
[

I(U1, U2; Z|V1, V2, Q)− I(U1, U2; Y|V1, V2, Q)
]−

+ I(U1, U2; X|Z) (18)

where we have

PQV1V2U1U2X̃1X̃2XYZ = PQ|V1V2
PV1|U1

PU1|X̃1
PX̃1|XPV2|U2

PU2|X̃2
PX̃2|XPXPYZ|X . (19)
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(Outer Bound): An outer bound for the lossless region R is the union of the rate tuples in
(13), (16)–(18), and

Rw,1 ≥ I(V1; X̃1|V2, Y) + I(U1; X̃1|V1, U2, Y)

− I(V1; V2|X̃1, Y)− I(U1; U2|X̃1, Y, V1) (20)

Rw,2 ≥ I(V2; X̃2|V1, Y) + I(U2; X̃2|U1, V2, Y)

− I(V2; V1|X̃2, Y)− I(U2; U1|X̃2, Y, V2) (21)

over all PQ, PV1|Q, PV2|Q, PU1|V1
, PU2|V2

, PX̃1|U1
, and PX̃2|U2

such that (U1, U2) pair is admissible

for the function f (X̃1, X̃2, Y) and

(Q, V1)−U1 − X̃1 − X− (X̃2, Y, Z) (22)

(Q, V2)−U2 − X̃2 − X− (X̃1, Y, Z) (23)

form Markov chains. One can limit the cardinalities to |Q| ≤ 2, |V1| ≤ |X̃1|+ 6, |V2| ≤ |X̃2|+ 6,
|U1| ≤ (|X̃1|+ 6)2, and |U2| ≤ (|X̃2|+ 6)2.

We remark that if the joint probability distribution in (19) is imposed on the outer
bound, (20) and (21) recover (14) and (15), respectively, because then

(V1, U1)− X̃1 − (Y, U2, V2) (24)

(V2, U2)− X̃2 − (Y, U1, V1) (25)

form Markov chains for (19). However, the outer bound that satisfies (22) and (23) defines
a rate region that is in general larger than the rate region defined by the inner bound that
satisfies (19). Thus, inner and outer bounds generally differ. The results in Theorem 1
recover previous results including Theorem 3 of [18] and, naturally, also other results that
are recovered by these previous results such as the SW coding region.

3.2. Lossy Single-Function Computation

We next provide inner and outer bounds for the lossy region RD; see below for a
proof sketch.

Theorem 2. (Inner Bound): An achievable lossy region is the union over all PQ, PV1|Q, PV2|Q,
PU1|V1

, PU2|V2
, PX̃1|U1

, and PX̃2|U2
of the rate tuples in (13)–(18) and

D ≥ E[d( f (X̃1, X̃2, Y), g(U1, U2, Y))] (26)

for some function g(·, ·, ·) and where PQV1V2U1U2X̃1X̃2XYZ is equal to (19).
(Outer Bound): An outer bound for the lossy region RD is the union over all PQ, PV1|Q,

PV2|Q, PU1|V1
, PU2|V2

, PX̃1|U1
, and PX̃2|U2

of the set of rate tuples (Rs, Rw,1, Rw,2, R`,Dec, R`,Eve, D)

in (13), (16)–(18), (20), (21), and (26) such that (22) and (23) form Markov chains. One can
limit the cardinalities to |Q| ≤ 2, |V1| ≤ |X̃1|+ 7, |V2| ≤ |X̃2|+ 7, |U1| ≤ (|X̃1|+ 7)2, and
|U2| ≤ (|X̃2|+ 7)2.

Proof Sketch. The achievability proof of the lossy function computation problem follows
from the achievability proof of its lossless version given in Section 5.1 by replacing the
admissibility constraint with the constraint that PU1|X̃1

, PV1|U1
, PU2|X̃2

, and PV2|U2
are chosen

such that there exists a function g(U1, U2, Y) that satisfies

gn(Un
1 , Un

2 , Yn) = {g(U1,i, U2,i, Yi)}n
i=1 (27)

E[d( f n(X̃n
1 , X̃n

2 , Yn), gn(Un
1 , Un

2 , Yn))] ≤ D + εn (28)
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where εn > 0 such that εn → 0 when n→ ∞. Since all (x̃n
1 , x̃n

2 , yn, un
1 , un

2 ) tuples are in the
jointly typical set with high probability, by the typical average lemma [34] p. 26, constraint
in (8) is satisfied.

The proof of the outer bound applies the standard properties of the Shannon entropy
and follows mainly from the outer bound proof for the lossless function computation
problem given in Section 5.2. However, the proof for the lossless function computation
problem requires the auxiliary random variables to be admissible as defined in Definition 3,
unlike the lossy function computation problem. Thus, the outer bound proof for Theorem 2
follows by replacing the admissibility step (96) in the outer bound proof for the lossless
function computation problem with the step

n(D + δn)

(a)
≥ E

[ n

∑
i=1

d
(

fi(X̃1,i, X̃2,i, Yi), f̂i(W1, W2, Yn)
)]

(b)
≥ E
[ n

∑
i=1

d
(

fi(X̃1,i, X̃2,i, Yi), gi(W1, W2, Yn, Xi−1, Zi−1)
)]

(29)

(c)
=E
[ n

∑
i=1

d
(

fi(X̃1,i, X̃2,i, Yi), gi(W1, W2, Yn
i , Xi−1, Zi−1)

)]
(d)
= E

[ n

∑
i=1

d
(

f (X̃1,i, X̃2,i, Yi), g(U1,i, U2,i, Yi)
)]

where (a) follows by (8) and (9), (b) follows since there exists a function gi(·, ·, ·) that
achieves a distortion that is not greater than the distortion achieved by f̂i(W1, W2, Yn),
where the distortion is measured with respect to fi(X̃1,i, X̃2,i, Yi), since gi(·, ·, ·) has addi-
tional inputs, (c) follows from the Markov chain given in (100), and (d) follows from the
definitions of U1,i and U2,i given in (91) and (92), respectively. Furthermore, the proof of
the cardinality bounds for the lossy case follows from the proof for the lossless case since
we preserve the same probability and conditional entropy values as being preserved for
the lossless function computation problem with the addition of preserving the value of
g(U1, U2, Y) = g(U1, U2, V1, V2, Y), following from the Markov chain

(V1, V2)− (U1, U2, Y)− g(U1, U2, Y). (30)

Entirely similar to Theorem 1, the inner and outer bounds given in Theorem 2 do not
match in general because of different Markov chains imposed.

Remark 1. Since all secrecy and privacy rate terms given in the outer bounds in Theorems 1
and 2, i.e., lower bounds in (13), (17), and (18), are generally strictly positive, strong secrecy or
strong privacy constraints cannot be satisfied in general for the lossless and lossy single-function
computation problems.

We next provide simplified rate regions, for various sets of computed functions f (·, ·, ·)
and measurement channels PYZ|X .

4. Rate Regions for Special Sets of Computed Functions and Measurement Channels

The terms that characterize simplified rate regions of the lossless and lossy function
computation problems for various sets of functions and channels are the same, except (1)
removal of the admissibility requirement; (2) addition of a distortion constraint; and (3)
increase in the cardinality bounds on the auxiliary random variables for the lossy case as
compared to the lossless case. Thus, we provide simplified rate regions only for the lossless
case. However, we remark that the optimal auxiliary random variables for lossless and
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lossy cases might differ. Therefore, the corresponding lossless and lossy rate regions might
look different for the same joint probability distribution PX̃1X̃2XYZ.

4.1. Partially Invertible Functions

We now impose the condition that the function f (X̃1, X̃2, Y) is partially invertible with
respect to X̃1, i.e., we have [9,35]

H(X̃1| f (X̃1, X̃2, Y), Y) = 0. (31)

For such functions, it is straightforward to show that we have the following simplified
rate region for the lossless function computation problem with two transmitting nodes.
The proof of Lemma 1 follows from Theorem 1 by assigning U1 = X̃1 and constant V1 and
then by applying the Markov chain (23) to (13). Furthermore, by symmetry, the simplified
lossless rate region for a function f (X̃1, X̃2, Y) that is partially invertible with respect to X̃2
can be obtained by assigning U2 = X̃2 and constant V2 and then applying (22) to (13).

Lemma 1. The lossless rate region R when f (X̃1, X̃2, Y) is a partially invertible function with
respect to X̃1 includes the set of all tuples (Rs, Rw,1, Rw,2, R`,Dec, R`,Eve) such that U2 is admissible
for the function f (X̃1, X̃2, Y) and

Rs ≥
[

I(X̃1, U2; Z|V2, Q)− I(X̃1, U2; Y|V2, Q)
]−

+ H(X̃1|U2, Z) + I(U2; X̃2|Z) (32)

Rw,1 ≥ H(X̃1|U2, Y) (33)

Rw,2 ≥ I(V2; X̃2|Y) + I(U2; X̃2|X̃1, V2, Y) (34)

Rw,1 + Rw,2 ≥ I(U2; X̃2|X̃1, V2, Y) + H(X̃1|V2, Y) + I(V2; X̃2|Y) (35)

R`,Dec ≥ I(X̃1, U2; X|Y) (36)

R`,Eve ≥
[

I(X̃1, U2; Z|V2, Q)− I(X̃1, U2; Y|V2, Q)
]−

+ I(X̃1, U2; X|Z) (37)

such that (23) forms a Markov chain. One can limit the cardinalities to |Q| ≤ 2, |V2| ≤ |X̃2|+ 6,
and |U2| ≤ (|X̃2|+ 6)2.

4.2. Invertible Functions

Suppose now we impose the condition that the function f (X̃1, X̃2, Y) is invertible; i.e.,
we have [9,35]

H(X̃1, X̃2| f (X̃1, X̃2, Y), Y) = 0. (38)

We provide in Lemma 2 below simplified rate region for the lossless function computation
problem with two transmitting nodes when the function f (X̃1, X̃2, Y) is invertible. The
proof of Lemma 2 follows from Theorem 1 by assigning U1 = X̃1, U2 = X̃2, and constant
V1 and V2.

Lemma 2. The lossless rate regionR when f (X̃1, X̃2, Y) is an invertible function includes the set
of all tuples (Rs, Rw,1, Rw,2, R`,Dec, R`,Eve) satisfying

Rs ≥
[
I(X̃1, X̃2; Z|Q)− I(X̃1, X̃2; Y|Q)

]−
+ H(X̃1, X̃2|Z) (39)

Rw,1 ≥ H(X̃1|X̃2, Y) (40)

Rw,2 ≥ H(X̃2|X̃1, Y) (41)

Rw,1 + Rw,2 ≥ H(X̃1, X̃2|Y) (42)

R`,Dec ≥ I(X̃1, X̃2; X|Y) (43)

R`,Eve ≥
[
I(X̃1, X̃2; Z|Q)− I(X̃1, X̃2; Y|Q)

]−
+ I(X̃1, X̃2; X|Z) (44)
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where Q− (X̃1, X̃2)−X− (Y, Z) forms a Markov chain. One can limit the cardinality to |Q| ≤ 2.

4.3. Invertible Functions and Two Different Degraded Channels

The lossless rate region given in Lemma 2 can be further simplified by imposing
conditions on the measurement channel PYZ|X in addition to the function f (X̃1, X̃2, Y)
being invertible. We next characterize further simplified lossless rate regions for two
different physically degraded channels.

4.3.1. Eve’s Channel is Physically Degraded

Suppose the measurement channel PYZ|X is physically degraded such that

PYZ|X = PY|XPZ|Y. (45)

For invertible functions and physically degraded measurement channels PYZ|X as defined
in (45), we provide further simplified lossless rate region in Lemma 3. The proof of Lemma 3
follows from Lemma 2, and by using the following Markov chain for this case

(X̃1, X̃2)− X−Y− Z (46)

which follows by (45).

Lemma 3. The lossless rate regionR when f (X̃1, X̃2, Y) is an invertible function and PYZ|X is as
given in (45) includes the set of all tuples (Rs, Rw,1, Rw,2, R`,Dec, R`,Eve) satisfying (40)–(43) and

Rs ≥ H(X̃1, X̃2|Y) (47)

R`,Eve ≥ I(X̃1, X̃2; X|Y). (48)

4.3.2. Fusion Center’s Channel is Physically Degraded

Suppose the measurement channel PYZ|X is physically degraded such that

PYZ|X = PZ|XPY|Z. (49)

For invertible functions and physically degraded measurement channels PYZ|X as defined
in (49), we provide a simplified lossless rate region in Lemma 4. The proof of Lemma 4
follows from Lemma 2 and by using the following Markov chain for this case

(X̃1, X̃2)− X− Z−Y (50)

which follows by (49).

Lemma 4. The lossless rate regionR when f (X̃1, X̃2, Y) is an invertible function and PYZ|X is as
given in (49) includes the set of all tuples (Rs, Rw,1, Rw,2, R`,Dec, R`,Eve) satisfying (40)–(43) and

Rs ≥ H(X̃1, X̃2|Z) (51)

R`,Eve ≥ I(X̃1, X̃2; X|Z). (52)

Remark 2. The rate regions given in Lemmas 2–4 can be plotted by computing the terms that
characterize the regions since PX̃1X̃2XYZ is fixed for function computation problems considered.
However, the rate region given in Lemma 1, similar to the inner bounds given in Theorems 1 and 2,
might not be easy to characterize due to the requirement to optimize the auxiliary random variables
whose cardinalities are bounded by large terms. Thus, evaluating the rate region for a function
computation problem with two transmitting terminals is generally significantly more difficult than
characterization of the rate region for function computation with one transmitting terminal; see [20]
for an example of an information bottleneck for the latter problem.
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We next evaluate an inner bound for the lossless rate regionR by using Lemma 4 for
specific measurement channels when f (X̃1, X̃2, Y) is an invertible function.

4.4. Lossless Rate Region Example

Suppose measurement channels in Figure 1 have binary input and output alphabets
with multiplicative Bernoulli noise components; i.e., we have X = X̃1 = X̃2 = Z = Y =
S1 = S2 = SZ = SY = {0, 1} and

X̃1 = S1 · X, X̃2 = S2 · X, Z = SZ · X, Y = SY · X (53)

where S1, S2, X, and (SZ, SY) are mutually independent, and we have PX(1) = 0.5,
PS1(1) = β1, PS2(1) = β2, PSZSY (0, 0) = (1−q), PSZSY (1, 1) = qα, and PSZSY (1, 0) = q(1−α)
for fixed β1, β2, q, α ∈ [0, 1], so (49) is satisfied; see also Section IV-A of [36]. Using Lemma 4
for the given probability distributions, we evaluate an inner bound for the lossless rate
regionR for an invertible function computation scenario with two transmitting nodes, in
which, e.g., β1 = 0.2, β2 = 0.11, α = 0.3, and q = 0.25 and obtain the lossless rate region
that is characterized by

Rs ≥ 0.7579 bits/symbol, Rw,1 ≥ 0.4626 bits/symbol, (54)

Rw,2 ≥ 0.3021 bits/symbol, Rw,1 + Rw,2 ≥ 0.7686 bits/symbol, (55)

R`,Dec ≥ 0.1577 bits/symbol, R`,Eve ≥ 0.1469 bits/symbol (56)

where the sum-storage rate constraint is active since the sum of the bounds on Rw,1 and
Rw,2 is smaller than the bound on (Rw,1 + Rw,2).

5. Proof of Theorem 1
5.1. Inner Bound

Proof Sketch. The OSRB method [30] is used for the proof of achievability by applying the
steps given in Section 1.6 of [37]. Let

(Vn
1 , Vn

2 , Un
1 , Un

2 , X̃n
1 , X̃n

2 , Xn, Yn, Zn) (57)

be i.i.d. according to PV1V2U1U2X̃1X̃2XYZ that can be obtained from (19) with fixed PU1|X̃1
,

PV1|U1
, PU2|X̃2

, and PV2|U2
such that the pair (U1, U2) is admissible for a function f (X̃1, X̃2, Y),

so (Un
1 , Un

2 ) is also admissible since random variables in (57) are i.i.d.

To each vn
1 , assign two random bin indices (Fv1 , Wv1) such that Fv1 ∈ [1 : 2nR̃v1 ] and

Wv1 ∈ [1 : 2nRv1 ]. Furthermore, to each un
1 , assign two random indices (Fu1 , Wu1) such that

Fu1 ∈ [1 : 2nR̃u1 ] and Wu1 ∈ [1 : 2nRu1 ]. Similarly, random indices (Fv2 , Wv2) and (Fu2 , Wu2)
are assigned to each vn

2 and un
2 , respectively. The indices F1 = (Fv1 , Fu1), and F2 = (Fv2 , Fu2)

represent the public choice of two encoders and one decoder, whereas W1 = (Wv1 , Wu1)
and W2 = (Wv2 , Wu2) are the public messages sent by the encoders Enc1(·) and Enc2(·),
respectively, to the fusion center.

We consider the following decoding order:

1. observing (Yn, Fv1 , Wv1), the decoder Dec(·) estimates Vn
1 as V̂n

1 ;
2. observing (Yn, V̂n

1 , Fv2 , Wv2), the decoder estimates Vn
2 as V̂n

2 ;
3. observing (Yn, V̂n

1 , V̂n
2 , Fu1 , Wu1), the decoder estimates Un

1 as Ûn
1 ;

4. observing (Yn, V̂n
1 , V̂n

2 , Ûn
1 , Fu2 , Wu2), the decoder estimates Un

2 as Ûn
2 .

By swapping indices 1 and 2 in the decoding order, another corner point in the
achievable rate region is obtained, so we analyze the given decoding order but also provide
the results for the other corner point.
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Consider Step 1 in the decoding order given above. Using an SW [13] decoder, one can
reliably estimate Vn

1 from (Yn, Fv1 , Wv1) such that the expected value of the error probability
taken over the random bin assignments vanishes when n→ ∞, if we have Lemma 1 of [30]

R̃v1 + Rv1 > H(V1|Y). (58)

Similarly, Step 2–4 estimations are reliable if we have

R̃v2 + Rv2 > H(V2|V1, Y) (59)

R̃u1 + Ru1 > H(U1|V1, V2, Y) (60)

R̃u2 + Ru2 > H(U2|V1, V2, U1, Y)
(a)
= H(U2|V2, U1, Y) (61)

where (a) follows from the Markov chain V1 −U1 − (U2, V2, Y). Therefore, (2) is satisfied if
(58)–(61) are satisfied.

The public index Fv1 is almost independent of X̃n
1 , so it is almost independent of

(X̃n
1 , X̃n

2 , Xn, Yn, Zn), if we have Theorem 1 of [30]

R̃v1 < H(V1|X̃1) (62)

because then the expected value, which is taken over the random bin assignments, of the

variational distance between the joint probability distributions Unif[1 : 2nR̃v1 ] · PX̃n
1

and
PFv1 X̃n

1
, vanishes when n→ ∞. Furthermore, the public index Fu1 is almost independent of

(Vn
1 , X̃n

1 ), so it is almost independent of (Vn
1 , X̃n

1 , X̃n
2 , Xn, Yn, Zn), if we have

R̃u1 < H(U1|V1, X̃1). (63)

Similarly, Fv2 is almost independent of X̃n
2 if we have

R̃v2 < H(V2|X̃2) (64)

and Fu2 is almost independent of (Vn
2 , X̃n

2 ) if we have

R̃u2 < H(U2|V2, X̃2). (65)

To satisfy (58)–(65), for any ε > 0 we fix

R̃v1 = H(V1|X̃1)− ε (66)

Rv1 = I(V1; X̃1)− I(V1; Y) + 2ε (67)

R̃v2 = H(V2|X̃2)− ε (68)

Rv2 = I(V2; X̃2)− I(V2; V1, Y) + 2ε (69)

R̃u1 = H(U1|V1, X̃1)− ε (70)

Ru1 = I(U1; X̃1|V1)− I(U1; V2, Y|V1) + 2ε (71)

R̃u2 = H(U2|V2, X̃2)− ε (72)

Ru2 = I(U2; X̃2|V2)− I(U2; U1, Y|V2) + 2ε. (73)
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Public Message (Storage) Rates: (67) and (71) result in a public message (storage)
rate Rw1 of

Rw1 = Rv1 + Ru1

(a)
= I(V1; X̃1|Y) + H(U1|V1, V2, Y)− H(U1|V1, X̃1) + 4ε

(b)
= I(V1; X̃1|Y) + I(U1; X̃1|V1, V2, Y) + 4ε (74)

where (a) follows because V1 − X̃1 − Y forms a Markov chain and (b) follows because
U1 − (V1, X̃1)− (V2, Y) form a Markov chain. Furthermore, (69) and (73) result in a storage
rate Rw2 of

Rw2 = Rv2 + Ru2

(a)
= I(V2; X̃2|V1, Y) + H(U2|U1, V2, Y)− H(U2|V2, X̃2) + 4ε

(b)
= I(V2; X̃2|V1, Y) + I(U2; X̃2|U1, V2, Y) + 4ε (75)

where (a) follows from the Markov chain V2 − X̃2 − (V1, Y) and (b) from U2 − (V2, X̃2)−
(U1, Y). We remark that if the indices 1 and 2 in the decoding order given above are
swapped, the other corner point with

R′w1
= I(V1; X̃1|V2, Y) + I(U1; X̃1|U2, V1, Y) + 4ε (76)

R′w2
= I(V2; X̃2|Y) + I(U2; X̃2|V1, V2, Y) + 4ε (77)

is achieved.
Privacy Leakage to Decoder: We have

I(Xn; W1, W2, F1, F2|Yn)

= I(Xn; W1, W2|F1, F2, Yn) + I(Xn; F1, F2|Yn)

(a)
≤ H(Xn|Yn)− H(Xn|W1, W2, F1, F2, Vn

1 , Vn
2 , Un

1 , Un
2 , Yn) + 4εn

(b)
= H(Xn|Yn)− H(Xn|Un

1 , Un
2 , Yn) + 4εn

(c)
= nI(U1, U2; X|Y) + 4εn (78)

where
(a) follows for some εn > 0 with εn → 0 when n→ ∞ because

I(Xn; F1, F2|Yn)

= I(Xn; Fv1 |Y
n) + I(Xn; Fu1 |Fv1 , Yn) + I(Xn; Fv2 |Fv1 , Fu1 , Yn)

+ I(Xn; Fu2 |Fv1 , Fu1 , Fv2 , Yn)

≤ 4εn (79)

since (1) by (62) Fv1 is almost independent of (Xn, Yn); (2) by (63) Fu1 is almost independent
of (Vn

1 , Xn, Yn) and because Vn
1 determines Fv1 ; (3) by (64) Fv2 is almost independent

of (Un
1 , Vn

1 , Xn, Yn) and because (Vn
1 , Un

1 ) determine (Fv1 , Fu1); (4) by (65) Fu2 is almost
independent of (Vn

2 , Un
1 , Vn

1 , Xn, Yn) and because (Vn
1 , Un

1 , Vn
2 ) determine (Fv1 , Fu1 , Fv2);

(b) follows because (Vn
1 , Vn

2 , Un
1 , Un

2 ) determine (W1, W2, F1, F2) and from the Markov
chains Vn

1 −Un
1 − (Xn, Yn, Un

2 , Vn
2 ) and Vn

2 −Un
2 − (Xn, Yn, Un

1 );
(c) follows because (Xn, Un

1 , Un
2 , Yn) are i.i.d.
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Privacy Leakage to Eve: We have

I(Xn; W1, W2, F1, F2|Zn)

(a)
= H(W1, W2, F1, F2|Zn)− H(W1, W2, F1, F2|Xn)

(b)
= H(W1, W2, F1, F2|Zn)− H(Wu1 , Fu1 , Wu2 , Fu2 , Vn

1 , Vn
2 |Xn)

+ H(Vn
1 |W1, W2, F1, F2, Xn) + H(Vn

2 |Vn
1 , W1, W2, F1, F2, Xn)

(c)
≤ H(W1, W2, F1, F2|Zn)− H(Wu1 , Fu1 , Wu2 , Fu2 , Vn

1 , Vn
2 |Xn) + 2nε′n

(d)
= H(W1, W2, F1, F2|Zn)− H(Un

1 , Un
2 , Vn

1 , Vn
2 |Xn)

+ H(Un
1 |Wu1 , Fu1 , Wu2 , Fu2 , Vn

1 , Vn
2 , Xn)

+ H(Un
2 |Un

1 , Wu1 , Fu1 , Wu2 , Fu2 , Vn
1 , Vn

2 , Xn) + 2nε′n
(e)
≤ H(W1, W2, F1, F2|Zn)−H(Un

1 , Un
2 , Vn

1 , Vn
2 |Xn)+4nε′n

( f )
= H(W1, W2, F1, F2|Zn)− nH(U1, U2, V1, V2|X) + 4nε′n (80)

where (a) follows because (W1, W2, F1, F2)− Xn − Zn form a Markov chain, (b) follows
since (Vn

1 , Vn
2 ) determine (Fv1 , Wv1 , Fv2 , Wv2), (c) follows for some ε′n > 0 such that ε′n → 0

when n→ ∞ because (Fv1 , Wv1 , Xn) can reliably recover Vn
1 by (58), and similarly because

(Fv2 , Wv2 , Vn
1 , Xn) can reliably recover Vn

2 by (59) both due to the Markov chain (Vn
1 , Vn

2 )−
Xn −Yn, (d) follows because (Un

1 , Un
2 ) determine (Fu1 , Wu1 , Fu,2, Wu2), (e) follows because

(Fu1 , Wu1 , Vn
1 , Vn

2 , Xn) can reliably recover Un
1 by (60) and the inequality

H(U1|V1, V2, Y) ≥ H(U1|V1, V2, X) (81)

that follows from

I(U1; V1, V2, X)− I(U1; V1, V2, Y) ≥ I(U1; V1, V2, X)− I(U1; V1, V2, Y, X) = 0 (82)

since U1 − (V1, V2, X)− Y form a Markov chain. Furthermore, (Fu2 , Wu2 , Vn
1 , Vn

2 , Un
1 , Xn)

can reliably recover Un
2 by (61) and the inequality

H(U2|V1, V2, U1, Y) ≥ H(U2|V1, V2, U1, X) (83)

that can be proved entirely the same as (82) by using the Markov chain U2− (V1, V2, U1, X)−
Y, and ( f ) follows because (Un

1 , Un
2 , Vn

1 , Vn
2 , Xn) are i.i.d.

In (80), obtaining single-letter bounds on the term H(W1, W2, F1, F2|Zn) requires anal-
ysis of numerous decodability cases, whereas there are only six different decodability
cases analyzed in [20] for secure function computation with a single transmitting node.
To simplify our analysis by applying the results in [20], we combine the decoding order
Steps 1 and 2 given above such that (V1, V2) are treated jointly, and, similarly, we combine
Steps 3 and 4 such that (U1, U2) are treated jointly. Using the combined steps, we can
consider the six decodability cases analyzed in Section V-A of [20] by replacing Vn with
(Vn

1 , Vn
2 ) and Un with (Un

1 , Un
2 ), respectively, in the proof. Since in (80) the second term

−nH(U1, U2, V1, V2|X) can be obtained by applying the same replacement to the second
term in Equation (54) of [20], we obtain from (80) and these decodability analyses that

I(Xn; W1, W2, F1, F2|Zn)

≤ n([I(U1, U2; Z|V1, V2)− I(U1, U2; Y|V1, V2) + ε]− (84)

+ I(U1, U2; X|Z) + 4ε′n + ε′′n)

for some ε′′n > 0 such that ε′′n → 0 when n→ ∞.
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Secrecy Leakage (to Eve): We obtain

I(X̃n
1 , X̃n

2 , Yn; W1, W2, F1, F2|Zn)

(a)
= H(W1, W2, F1, F2|Zn)− H(W1, W2, F1, F2|X̃n

1 , X̃n
2 )

(b)
= H(W1, W2, F1, F2|Zn)− H(Wu1 , Wu2 , Fu1 , Fu2 , Vn

1 , Vn
2 |X̃n

1 , X̃n
2 )

+ H(Vn
1 |W1, W2, F1, F2, X̃n

1 , X̃n
2 ) + H(Vn

2 |Vn
1 , W1, W2, F1, F2, X̃n

1 , X̃n
2 )

(c)
≤ H(W1, W2, F1, F2|Zn)− H(Wu1 , Wu2 , Fu1 , Fu2 , Vn

1 , Vn
2 |X̃n

1 , X̃n
2 ) + 2nε′n

(d)
= H(W1, W2, F1, F2|Zn)− H(Un

1 , Un
2 , Vn

1 , Vn
2 |X̃n

1 , X̃n
2 ) + 2nε′n

+ H(Un
1 |Wu1 , Wu2 , Fu1 , Fu2 , Vn

1 , Vn
2 , X̃n

1 , X̃n
2 )

+ H(Un
2 |Un

1 , Wu1 , Wu2 , Fu1 , Fu2 , Vn
1 , Vn

2 , X̃n
1 , X̃n

2 )

(e)
≤ H(W1, W2, F1, F2|Zn)− H(Un

1 , Un
2 , Vn

1 , Vn
2 |X̃n

1 , X̃n
2 ) + 4nε′n (85)

( f )
≤ H(W1, W2, F1, F2|Zn)− nH(U1, U2, V1, V2|X̃1, X̃2) + 4nε′n

where (a) follows from the Markov chain (W1, W2, F1, F2)− (X̃n
1 , X̃n

2 )− (Yn, Zn), (b) follows
since (Vn

1 , Vn
2 ) determine (Fv1 , Wv1 , Fv2 , Wv2), (c) follows because (Fv1 , Wv1 , X̃n

1 , X̃n
2 ) can

reliably recover Vn
1 by (58), and similarly because (Fv2 , Wv2 , Vn

1 , X̃n
1 , X̃n

2 ) can reliably recover
Vn

2 by (59) both due to the Markov chain (Vn
1 , Vn

2 ) − (X̃n
1 , X̃n

2 ) − Yn, (d) follows since
(Un

1 , Un
2 ) determine (Fu1 , Wu1 , Fu2 , Wu2), (e) follows because (Fu1 , Wu1 , Vn

1 , Vn
2 , X̃n

1 , X̃n
2 ) can

reliably recover Un
1 by (60) and the inequality

H(U1|V1, V2, Y) ≥ H(U1|V1, V2, X̃1, X̃n
2 ) (86)

that can be proved similarly to (82) due to the Markov chain U1 − (V1, V2, X̃1, X̃2)−Y. Fur-
thermore, (Fu2 , Wu2 , Vn

1 , Vn
2 , Un

1 , X̃n
1 , X̃n

2 ) can reliably recover Un
2 by (61) and the inequality

H(U2|V1, V2, U1, Y) ≥ H(U2|V1, V2, U1, X̃1, X̃2) (87)

that can be proved by using the Markov chain U2− (V1, V2, U1, X̃1, X̃2)−Y, and ( f ) follows
because (Un

1 , Un
2 , Vn

1 , Vn
2 , X̃n

1 , X̃n
2 ) are i.i.d.

We remark that the terms in (86) are entirely similar to the terms in (80). One can show
that all steps of the decodability analysis from Section V-A of [20] that is applied to (80) can
be applied also to (86) by replacing X with (X̃1, X̃2), so we obtain

I(X̃n
1 , X̃n

2 , Yn; W1, W2, F1, F2|Zn)

≤ n[I(U1, U2; Z|V1, V2)− I(U1, U2; Y|V1, V2) + ε]−

+ nI(U1, U2; X̃1, X̃2|Z) + 5nε′n. (88)

We consider that the public indices (F1, F2) are generated uniformly at random and
the encoders generate (Vn

1 , Un
1 ) and (Vn

2 , Un
2 ) according to PVn

1 Un
1 Vn

2 Un
2 |X̃n

1 F1X̃n
2 F2

obtained
from the binning scheme above. This procedure induces a joint probability distribution
that is almost equal to PV1V2U1U2X̃1X̃2XYZ fixed as in (19) Section 1.6 in [37]. Since the
privacy and secrecy leakage metrics considered above are expectations over all possible
realizations F = f , applying the selection lemma (Lemma 2.2 of [38]), these results prove
the achievability for Theorem 1 by choosing an ε > 0 such that ε → 0 when n → ∞. We
remark that the achievable region is convexified by using a time-sharing random variable
Q such that PQV1V2 = PQPV1|QPV2|Q, required because of the [·]− operation.
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5.2. Outer Bound

Proof Sketch. Assume that for some n ≥ 1 and δn > 0, there exist two encoders and a
decoder such that (2)–(7) are satisfied for some tuple (Rs, Rw1 , Rw,2, R`,Dec, R`,Eve). Let

V1,i , (W1, Yn
i+1, Zi−1) (89)

V2,i , (W2, Yn
i+1, Zi−1) (90)

U1,i , (Xi−1, W1, Yn
i+1, Zi−1) (91)

U2,i , (Xi−1, W2, Yn
i+1, Zi−1) (92)

that satisfy the Markov chains

V1,i −U1,i − X̃1,i − Xi − (X̃2,i, Yi, Zi) (93)

V2,i −U2,i − X̃2,i − Xi − (X̃1,i, Yi, Zi). (94)

Admissibility of (U1, U2): Define

nεn = nδn|X̃1||X̃2||Y|+ Hb(δn) (95)

such that εn→0 if δn→0. Using Fano’s inequality and (2), we obtain

nεn ≥ H( f n| f̂ n)

(a)
= H( f n| sf n) =

n

∑
i=1

H( fi| sfi)

≥
n

∑
i=1

H( fi| sf n)
(b)
≥

n

∑
i=1

H( fi|W1, W2, Yn)

≥
n

∑
i=1

H( fi|W1, W2, Yn, Xi−1, Zi−1)

(c)
=

n

∑
i=1

H( fi|W1, W2, Yn
i+1, Xi−1, Zi−1, Yi)

(d)
=

n

∑
i=1

H( fi|U1,i, U2,i, Yi) (96)

where (a) follows from Lemma 2 of [39] that proves that when n→ ∞, there exists an i.i.d.
random variable sf n that satisfies both

H( f n| f̂ n) = H( f n| sf n) (97)

and the Markov chain

f̂ n − sf n − (W1, W2, Yn) (98)

(b) follows from the data processing inequality because of the Markov chain

f n − (W1, W2, Yn)− sf n (99)

and permits randomized decoding, (c) follows from the Markov chain

Yi−1 − (Xi−1, Zi−1, W1, W2, Yi, Yn
i+1)− fi (100)

and (d) follows from the definitions of U1,i and U2,i.
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Public Message (Storage) Rates: We obtain

n(Rw1 + δn)
(a)
≥ log |W1|

≥ H(W1|Yn)− H(W1|X̃n
1 , Yn)

= H(X̃n
1 |Yn)− H(X̃n

1 |W1, Yn)

= H(X̃n
1 |Yn)−

n

∑
i=1

H(X̃1,i|X̃i−1
1 , W1, Yn)

(b)
= H(X̃n

1 |Yn)−
n

∑
i=1

H(X̃1,i|X̃i−1
1 , W1, Yn

i+1, Yi)

(c)
≥ H(X̃n

1 |Yn)−
n

∑
i=1

H(X̃1,i|Xi−1, Zi−1, W1, Yn
i+1, Yi)

(d)
= nH(X̃1|Y)−

n

∑
i=1

H(X̃1,i|U1,i, Yi) =
n

∑
i=1

I(U1,i; X̃1,i|Yi)

(e)
=

n

∑
i=1

[I(V1,i; X̃1,i|Yi) + I(U1,i; X̃1,i|Yi, V1,i)]

=
n

∑
i=1

[
I(V1,i; X̃1,i, V2,i|Yi)− I(V1,i; V2,i|X̃1,i, Yi) + I(U1,i; X̃1,i, U2,i|Yi, V1,i)

− I(U1,i; U2,i|X̃1,i, Yi, V1,i)
]

≥
n

∑
i=1

[
I(V1,i; X̃1,i|Yi, V2,i)− I(V1,i; V2,i|X̃1,i, Yi) + I(U1,i; X̃1,i|Yi, V1,i, U2,i)

− I(U1,i; U2,i|X̃1,i, Yi, V1,i)
]

(101)

where (a) follows from (4), (b) follows from the Markov chain

Yi−1 − (X̃i−1
1 , W1, Yn

i+1, Yi)− X̃1,i (102)

(c) follows from the data processing inequality applied to the Markov chain

(Xi−1, Zi−1)− (X̃i−1
1 , W1, Yn

i+1, Yi)− X̃1,i (103)

(d) follows from the definition of U1,i, and (e) follows from (93). Similarly, one can show
by symmetry that we have

n(Rw2 + δn)

≥
n

∑
i=1

[
I(V2,i; X̃2,i|Yi, V1,i)− I(V2,i; V1,i|X̃2,i, Yi)

+ I(U2,i; X̃2,i|Yi, V2,i, U1,i)− I(U2,i; U1,i|X̃2,i, Yi, V2,i)
]
. (104)

Now we consider the sum-rate bound such that

n(Rw1 + δn) + n(Rw2 + δn)

(a)
≥ log(|W1| · |W2|) ≥ H(W1, W2)

≥ I(W1, W2; X̃n
1 , X̃n

2 )− I(W1, W2; Yn)

(b)
=

n

∑
i=1

[
I(W1, W2; X̃1,i, X̃2,i|X̃i−1

1 , X̃i−1
2 , Yn

i+1)− I(W1, W2; Yi|X̃i−1
1 , X̃i−1

2 , Yn
i+1)

]
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(c)
=

n

∑
i=1

[
I(W1, W2, X̃i−1

1 , X̃i−1
2 , Yn

i+1; X̃1,i, X̃2,i)− I(W1, W2, X̃i−1
1 , X̃i−1

2 , Yn
i+1; Yi)

]
(d)
≥

n

∑
i=1

[
I(W1, W2, Xi−1, Zi−1, Yn

i+1; X̃1,i, X̃2,i)− I(W1, W2, Xi−1, Zi−1, Yn
i+1; Yi)

]
(e)
=

n

∑
i=1

[
I(U1,i, U2,i; X̃1,i, X̃2,i)− I(U1,i, U2,i; Yi)

]
( f )
=

n

∑
i=1

I(U1,i, U2,i; X̃1,i, X̃2,i|Yi)

(g)
=

n

∑
i=1

[
I(U1,i, U2,i; X̃1,i, X̃2,i|Yi, V1,i, V2,i) + I(V1,i, V2,i; X̃1,i, X̃2,i|Yi)

]
(h)
=

n

∑
i=1

[
I(U1,i; X̃1,i, X̃2,i|Yi, V1,i, V2,i) + I(U2,i; X̃1,i, X̃2,i|Yi, U1,i, V2,i)

+ I(V1,i; X̃1,i, X̃2,i|Yi) + I(V2,i; X̃1,i, X̃2,i|Yi, V1,i)
]

≥
n

∑
i=1

[
I(U1,i; X̃1,i|Yi, V1,i, V2,i) + I(U2,i; X̃2,i|Yi, U1,i, V2,i)

+ I(V1,i; X̃1,i|Yi) + I(V2,i; X̃2,i|Yi, V1,i)
]

(105)

where (a) follows from (4) and (5), (b) follows from Csiszár’s sum identity [40], (c) follows
because (X̃n

1 , X̃n
2 , Yn) are i.i.d., (d) follows from the data processing inequality applied to

the Markov chains

(Xi−1, Zi−1)− (X̃i−1
1 , X̃i−1

2 , W1, W2, Yn
i+1)− (X̃1,i, X̃2,i) (106)

(X̃i−1
1 , X̃i−1

2 )− (Xi−1, Zi−1, W1, W2, Yn
i+1)−Yi (107)

(e) follows from the definitions of U1,i and U2,i, ( f ) and (g) follow from the Markov chain

(V1,i, V2,i)− (U1,i, U2,i)− (X̃1,i, X̃2,i)−Yi (108)

(h) follows from the Markov chain

V1,i − (U1,i, Yi, V2,i)− (U2,i, X̃1,i, X̃2,i). (109)

Privacy Leakage to Decoder: We have

n(R`,Dec + δn) (110)
(a)
≥ H(W1, W2|Yn)− H(W1, W2|Xn)

(b)
=

n

∑
i=1

[
I(W1, W2; Xi|Xi−1, Yn

i+1)− I(W1, W2; Yi|Yn
i+1, Xi−1)

]
(c)
=

n

∑
i=1

[
I(W1, W2; Xi|Xi−1, Zi−1, Yn

i+1)− I(W1, W2; Yi|Yn
i+1, Xi−1, Zi−1)

]
(d)
=

n

∑
i=1

[
I(W1, W2, Xi−1, Zi−1, Yn

i+1; Xi)− I(W1, W2, Yn
i+1, Xi−1, Zi−1; Yi)

]
(e)
=

n

∑
i=1

[
I(U1,i, U2,i; Xi)− I(U1,i, U2,i; Yi)

]
( f )
=

n

∑
i=1

I(U1,i, U2,i; Xi|Yi) (111)
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where (a) follows from (6) and from the Markov chain (W1, W2)− Xn − Yn, (b) follows
from Csiszár’s sum identity, (c) follows from the Markov chain

Zi−1 − (Xi−1, Yn
i+1)− (Xi, Yi, W1, W2) (112)

(d) follows because (Xn, Yn, Zn) are i.i.d., (e) follows from the definitions of U1,i and U2,i,
and ( f ) follows from the Markov chain

(U1,i, U2,i)− Xi −Yi. (113)

Privacy Leakage to Eve: We have

n(R`,Eve + δn)

(a)
≥ [H(W1, W2|Zn)− H(W1, W2|Yn)] + [H(W1, W2|Yn)− H(W1, W2|Xn)]

(b)
=

n

∑
i=1

[
I(W1, W2; Yi|Yn

i+1, Zi−1)− I(W1, W2; Zi|Zi−1, Yn
i+1)

]
+

n

∑
i=1

[
I(W1, W2; Xi|Xi−1, Yn

i+1)− I(W1, W2; Yi|Yn
i+1, Xi−1)

]
(c)
=

n

∑
i=1

[
I(W1, W2; Yi|Yn

i+1, Zi−1)− I(W1, W2; Zi|Zi−1, Yn
i+1)

]
+

n

∑
i=1

[
I(W1, W2; Xi|Xi−1, Yn

i+1, Zi−1)− I(W1, W2; Yi|Yn
i+1, Xi−1, Zi−1)

]
(d)
=

n

∑
i=1

[
I(W1, W2, Yn

i+1, Zi−1; Yi)− I(W1, W2, Zi−1, Yn
i+1; Zi)

]
+

n

∑
i=1

[
I(W1, W2, Xi−1, Yn

i+1, Zi−1; Xi)− I(W1, W2, Yn
i+1, Xi−1, Zi−1; Yi)

]
(e)
=

n

∑
i=1

[
I(V1,i, V2,i; Yi)− I(V1,i, V2,i; Zi) + I(U1,i, U2,iV1,i, V2,i; Xi)

− I(U1,i, U2,i, V1,i, V2,i; Yi)
]

=
n

∑
i=1

[
− I(U1,i, U2,i, V1,i, V2,i; Zi) + I(U1,i, U2,i, V1,i, V2,i; Xi) (114)

+ I(U1,i, U2,i; Zi|V1,i, V2,i)− I(U1,i, U2,i; Yi|V1,i, V2,i)
]

( f )
≥

n

∑
i=1

[
I(U1,i, U2,i; Xi|Zi) +

[
I(U1,i, U2,i; Zi|V1,i, V2,i)− I(U1,i, U2,i; Yi|V1,i, V2,i)

]−]

where (a) follows from (7) and from the Markov chain (W1, W2)− Xn − Zn, (b) follows
from Csiszár’s sum identity, (c) follows from the Markov chain in (112), (d) follows because
(Xn, Yn, Zn) are i.i.d., (e) follows from the definitions of V1,i, V2,i, U1,i and U2,i, and ( f )
follows from the Markov chain

(V1,i, V2,i)− (U1,i, U2,i)− Xi − Zi. (115)
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Secrecy Leakage (to Eve): We obtain

n(Rs + δn)

(a)
≥ [H(W1, W2|Zn)− H(W1, W2|Yn)] + [H(W1, W2|Yn)− H(W1, W2|X̃n

1 , X̃n
2 , Yn)]

(b)
=

n

∑
i=1

[
I(W1, W2; Yi|Yn

i+1, Zi−1)− I(W1, W2; Zi|Zi−1, Yn
i+1)

+ H(X̃1,i, X̃2,i|Yi)−H(X̃1,i, X̃2,i|X̃i−1
1 , X̃i−1

2 , W1, W2, Yn
i+1, Yi)

]
(c)
≥

n

∑
i=1

[
I(W1, W2, Yn

i+1, Zi−1; Yi)− I(W1, W2, Zi−1, Yn
i+1; Zi)

+ H(X̃1,i, X̃2,i|Yi)− H(X̃1,i, X̃2,i|Xi−1, Zi−1, W1, W2, Yn
i+1, Yi)

]
(116)

(d)
=

n

∑
i=1

[
I(V1,i, V2,i; Yi)− I(V1,i, V2,i; Zi) + I(U1,i, U2,i, V1,i, V2,i; X̃1,i, X̃2,i|Yi)

]
(e)
=

n

∑
i=1

[
I(V1,i, V2,i; Yi)− I(V1,i, V2,i; Zi)

+ I(U1,i, U2,i, V1,i, V2,i; X̃1,i, X̃2,i)− I(U1,i, U2,i, V1,i, V2,i; Yi)
]

=
n

∑
i=1

[
− I(U1,i, U2,i, V1,i, V2,i; Zi) + I(U1,iU2,i, V1,i, V2,i; X̃1,i, X̃2,i)

+ I(U1,i, U2,i; Zi|V1,i, V2,i)− I(U1,i, U2,i; Yi|V1,i, V2,i)
]

( f )
≥

n

∑
i=1

[
I(U1,i, U2,i; X̃1,i, X̃2,i|Zi) +

[
I(U1,i, U2,i; Zi|V1,i, V2,i)− I(U1,i, U2,i; Yi|V1,i, V2,i)

]−]

where (a) follows from (3), (b) follows because (X̃n
1 , X̃n

2 , Yn) are i.i.d. and from Csiszár’s
sum identity and the Markov chain

Yi−1−(X̃i−1
1 , X̃i−1

2 , W1, W2, Yn
i+1, Yi)−(X̃1,i, X̃2,i) (117)

(c) follows because (Yn, Zn) are i.i.d. and from the data processing inequality applied to
the Markov chain

(Xi−1, Zi−1)−(X̃i−1
1 , X̃i−1

2 , W1, W2, Yn
i+1, Yi)−(X̃1,i, X̃1,i) (118)

(d) follows from the definitions of V1,i, V2,i, U1,i, and U2,i, (e) follows from the Markov
chain given in (108), and ( f ) follows from the Markov chain

(V1,i, V2,i)− (U1,i, U2,i)− (X̃1,i, X̃2,i)− Zi. (119)

Introduce a uniformly distributed time-sharing random variable Q∼Unif[1 : n] that is
independent of other random variables, and define X=XQ, X̃1= X̃1,Q, X̃2= X̃2,Q, Y=YQ,
Z=ZQ, V1=V1,Q, V2=V2,Q, U1=(U1,Q,Q), U2=(U2,Q,Q), and f = fQ, so

(Q, V1)−U1 − X̃1 − X− (X̃2, Y, Z) (120)

(Q, V2)−U2 − X̃2 − X− (X̃1, Y, Z) (121)

form Markov chains. The proof of the outer bound follows by letting δn → 0.
Cardinality Bounds: We use the support lemma Lemma 15.4 of [40] to prove the

cardinality bounds and apply similar steps as in [18,20], so we omit the proof.



Entropy 2022, 24, 110 20 of 21

6. Conclusions

We considered the function computation problem, where three nodes observe cor-
related random variables and aim to compute a target function of their observations at
the fusion center node. We modeled the source of the correlation between these nodes
by positing that all three random variables are noisy observations of a remote random
source. Furthermore, we imposed one secrecy, two privacy, and two storage constraints
with operational meanings on this function computation problem to define a lossless
rate region by considering an eavesdropper that observes a correlated random variable.
The lossless function computation problem was extended by allowing the function com-
puted to be a distorted version of the target function, which defined the lossy function
computation problem.

We proposed inner and outer bounds for the lossless and lossy rate regions. The secrecy
leakage and privacy leakage rates that are measured with respect to the eavesdropper
were shown to be different due to the remote source considered, unlike in the literature.
Furthermore, we characterized a simplified rate region for functions that are partially
invertible with respect to one of the transmitting node observations as well as for invertible
functions. Moreover, we considered two different physical-degradation cases for the
measurement channels of the eavesdropper and fusion center when the function computed
was invertible. We derived the corresponding simplified rate regions, one of which is
evaluated as an example scenario, and proved that no auxiliary or time-sharing random
variable is necessary to characterize these regions.

In future work, we will propose inner and outer bounds for the lossless and lossy
multi-function computation problems with multiple transmitting nodes and characterize
the rate regions for multi-function computations when the function computed is invertible.
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