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Abstract: Up to now, most of the forensics methods have attached more attention to natural content
images. To expand the application of image forensics technology, forgery detection for certificate
images that can directly represent people’s rights and interests is investigated in this paper. Vari-
able tampered region scales and diverse manipulation types are two typical characteristics in fake
certificate images. To tackle this task, a novel method called Multi-level Feature Attention Network
(MFAN) is proposed. MFAN is built following the encoder–decoder network structure. In order
to extract features with rich scale information in the encoder, on the one hand, we employ Atrous
Spatial Pyramid Pooling (ASPP) on the final layer of a pre-trained residual network to capture the
contextual information at different scales; on the other hand, low-level features are concatenated to
ensure the sensibility to small targets. Furthermore, the resulting multi-level features are recalibrated
on channels for irrelevant information suppression and enhancing the tampered regions, guiding the
MFAN to adapt to diverse manipulation traces. In the decoder module, the attentive feature maps are
convoluted and unsampled to effectively generate the prediction mask. Experimental results indicate
that the proposed method outperforms some state-of-the-art forensics methods.

Keywords: image forensics; certificate image; multi-level features; feature recalibration

1. Introduction

With the development of computer technology, image editing software is becoming
more and more popular, such as Photoshop, CorelDRAW and Fireworks. After simple
operations, you can create any images you want. We cannot deny that the popularity of
image editing tools has brought convenience to our life, but at the same time, the threshold
of tampering has been greatly reduced. Through the Internet and newspaper, a large
number of tampered images are used to spread rumors, fabricate fake news and obtain
illegal benefits. Therefore, digital image forensics emerges as the times require.

After more than ten years of development, image forensics technology has been
widely used in news, justice, criminal investigation and other fields. Techniques used
to identify image authenticity can be divided into two groups: active methods [1,2] and
passive methods [3,4]. In active methods, the embedded watermark is regarded as an image
fingerprint. The authenticity can be confirmed if the retrieved information is consistent
with the original one. Passive methods locate the tampered area by analyzing features left
by manipulations rather than the extrinsic information of test image. Due to the wider
application of passive techniques, they are playing a constructive role in image forensics.

Up to now, many passive forensics techniques have been reported. Among these meth-
ods, copy-move [5,6], splicing [7,8], removal [9], enhancement [10], face anti-spoofing [11]
and deepfake [12] are hot topics. Copy-move forgery is solved by searching two identical
regions in an image. Splicing, removal and enhancement detection depend on distinguish-
ing the abrupt spliced boundary and verifying a unique manipulation that is existed in
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tampered area. Depth and temporal information play vital roles in face anti-spoofing
tasks. Deepfake is a hotspot in recent years. Color cues, fingerprint of GAN and head pose
estimation are key properties for deepfake detection.

It is worth noting that during the COVID-19, some people tampered the nucleic acid
detection report to illegally obtain the freedom of movement, which brought great hidden
danger to public safety. However, the current forensics research is more focused on natural
content images. To promote the application of image forensics technology in broader areas,
in this paper, we identify the authenticity of certificate images, which can directly represent
people’s rights and interests. In order to make the dataset closer to those in the real world,
the tampered images in our experiments include arbitrary operations, such as splicing,
copy-move and object removal. Examples of tampered certificate images are illustrated in
Figure 1.

Original image Tampered image Ground truth mask

Figure 1. Examples of certificate images. From left to right, the first column is the original image; the
second column is the tampered certificate image, and the last column is the ground truth mask.

Obviously, fake certificate images have two remarkable characteristics. The first one is
the variable tampered region scales. The tampered region will be very small if only a single
word or number is modified, whereas the tampered area of the stamp can be much larger.
The second one is the diversity of manipulation types. Each fake certificate image in our
experiments contains at least one type of manipulation.

In order to identify the authenticity of certificate images, variable tampered area scales
and diverse manipulations are two important issues to be solved. For the first problem,
Atrous Spatial Pyramid Pooling (ASPP) [13] is a common technique for multi-scale features
extraction in deep learning based methods. A recent work [14] made use of ASPP on the
last attention module and fused features by element-wise product. DOA-GAN [15] applied
two ASPP operations with different parameters on a concatenated feature to capture two
types of information on different scales. In terms of the second problem, each type of
manipulation leaves its own unique traces. Copy-move forgery could be distinguished by
finding at least two similar objects in the image [15]. The differences of features between
host image and spliced region were exploited in splicing detection [16,17]. Object removal
detection depends on the similarity among image patches’ features [9,18,19]. However,
the exiting forensic methods have two drawbacks: (1) The local information would become
very weak with the increase of network layers, making the discriminative features especially
in small targets difficult to retain. As a result, small tampered region would be hard to
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discover. (2) Most methods don’t work well when identifying image which contains more
than one type of manipulation.

In this paper, we address the above issues and propose a multi-level features attention
network for fake certificate image detection. We employ a pre-trained residual network
to obtain rich features by three steps. Firstly, ASPP module is applied to capture the
contextual information at different scales. Secondly, high-level semantic features are
concatenated with low-level features to prevent the properties of a small target from losing
after pooling. Finally, we recalibrate the weights of feature map channels to make the
network more discriminative for variable manipulation traces. Experimental results verify
that the proposed method outperforms the state-of-the-art image forensics methods.

Our contributions are summarized in three-fold. (1) To preserve more information
and avoid failures in localizing small tampered objects, low-level convolution layers are
made use of to fuse the final feature map. (2) We implement recalibration on feature
channels to effectively capture traces of different types of manipulations. (3) We propose a
novel network called MFAN for fake certificate images detection, which outperforms some
state-of-the-art detection methods.

The rest of the paper is organized as follows. Section 2 presents a brief review of
forensics technology and attention mechanism. The proposed method for fake certificate
image detection is described in Section 3. Section 4 shows our experimental results, and we
conclude this paper in Section 5.

2. Related Work

In this section, related works are briefly introduced. Some state-of-the-art methods
for image forgery including copy-move, splicing, removal, enhancement and nonspecific
manipulation types are illustrated in Section 2.1. Some recent works about attention
mechanism are given in Section 2.2.

2.1. Image Forgery Detection and Localization

Copy-move: A common pipeline for copy-move forgery detection algorithms has three
essential stages: feature extraction, matching and post-processing. There are two types
of traditional features: block-based and keypoint-based features. Block-based methods
such as DCT [20], FT [21], PCA [22] and Zernike moments [23] divided image into several
overlapping blocks and extracted features for each block. Keypoint-based methods include
SIFT [5,24], SURF [25], LBP [26] and DAISY [27] relied on selecting the extreme value in scale
space. Recently, CNN based methods have played an important role in copy-move forgery
detection. Wu et al. [28] designed a two-branch CNN-based solution called BusterNet to
localize source/target regions separately. Islam et al. [15] proposed a dual-order attention
model with two ASPP operations to extract contextual features.

Splicing: The most effective tools which splicing detection approaches are based on
can be divided into two categories: (1) statistical characteristics; (2) deep features. Color
Filter Array (CFA) demosaicking artifacts, Photo Response Non-Uniformity (PRNU) and
noise discrepancy are the most widely used statistical characteristics. Ferrara et al. [16]
made advantages of CFA model at a local level to obtain the forgery map. In the paper [29],
they could get tampering probability map by calculating the correlations of PRNU on
nonoverlapped patches. Liu et al. [30] proposed an adaptive-SVD method to estimated
local and global noise. Nowadays, deep features have shown their capability in detecting
spliced images. By adopting the consistency of EXIF, Huh et al. [17] introduced a self-
supervised method to judge whether the input patches come from the same image. Mayer
et al. [31] localized the spliced patches by exploring whether they were captured by the
same camera model.

Removal: Object removal is a common way of tampering, which can be simply and
effectively achieved by image inpainting. Due to the difficulties in feature extraction,
the works on inpainting forensics is limited. Considering the similarity among blocks,
Chang et al. [18] proposed a two-stage searching algorithm to detect the tampered images
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containing uniform areas. Liang et al. [19] exploited the central pixel mapping, greatest
zero-connectivity component labeling and fragment splicing detection to improve the
performance. With the label matrix and designed loss function, an encoder–decoder
network was guided to learn the inpainting features [9].

Enhancement: Image enhancement includes many kinds of operations, the general
ones are JPEG compression, blurring, contrast enhancement, resampling and additive noise.
Choi et al. [32] proposed a CNN-based architecture to learn the statistical information. Wen
et al. [33] utilized the significant differences in the image pixel histogram to find traces left
by contrast enhancement. Bayar et al. [34] developed a constrained convolutional layer to
make the extracted features less affected by the image content. Chen et al. [10] introduced
a rotation-invariant CNN for image enhancement forensics. Moreover, they employed
isotropic architecture to the network to reduce the required number of parameters.

Nonspecific manipulation types: Most works detect forgeries by the unique char-
acteristic, which is corresponding to a specific manipulation type. This usually leads to
mistakes if irrelevant manipulation has been applied to the test image. Some recent papers
such as RGB-N [35], ManTra-Net [8] and RRU-Net [36] proposed more general forensics
methods that didn’t need to specify the type of tampering. RGB-N built a two-stream
Faster R-CNN network, which contained RGB stream and noise stream for forensics. RGB
stream was employed to capture unnatural tampered boundaries, and the purpose of the
noise stream was to find the discriminative features from noise information. The limitation
of [35] is that the prediction mask is a rectangular box rather than the pixel level localization.
ManTra-Net treated image forensics as a task of local anomaly detection. The backbone ar-
chitecture of the feature extractor was VGG that was trained by 385 types of manipulations.
The local anomaly detection network designed a Z-score feature to measure the difference
between a local feature and its references. Paper [36] designed an RRU-Net to solve the
gradient degradation problem and differentiate image attributes between the original and
tampered regions.

2.2. Attention Mechanism

The basic idea of attention mechanism is making the neural network learn to pay
more attention to the important information instead of giving the same weight to all
words or regions of the input. The application of the attention mechanism has improved
the performance a lot in many tasks, such as machine translation, image caption, image
classification and semantic segmentation.

Some recent works employed the attention mechanism into image forgery detection.
DOA-GAN [15] introduced a dual-order attention module to localize copy-move forgery.
The first-order attention is for location information, and the second-order attention is for
patches co-occurrence. Rao et al. [14] proposed a conditional random field-based attention
network to generate a series of multi-scale attention maps where the interdependence
between pixels are taken into account. To achieve good performance for face forgery
detection, PRRNet [37] took advantage of the spatial attention mechanism to learn more
competitive features on manipulated regions and the original regions.

3. Proposed Method
3.1. Overview

There are two obvious characteristics in fake certificate images. The first one is the
variable tampered region scales. Due to the complex content in the certificate image,
the tampered area can be as small as a single letter or as large as a stamp. The second one is
that each tampered image contains more than one type of manipulation. Recent studies
have shown that applying atrous convolution with different rates can obtain multi-scale
information with fewer parameters. In terms of deep learning networks, with the increase
of the network layers, the local information becomes weaker, causing the discrimination of
features, especially in the small objects, to become weaker and difficult to retain. Taking
advantage of low-level features can help to capture extra local information for small objects.
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Different types of manipulation leave different tampering traces. Feature map channels
calculated by different convolution kernels contain different traces of manipulations, but not
all channels contain useful signals. Hence, feature recalibration on channels is beneficial to
obtaining more competitive features.

In order to solve the above difficulties, we propose a novel approach following
the encoder–decoder network structure called MFAN to detect fake certificate images.
The framework of MFAN is illustrated in Figure 2. MFAN is composed of two sub-networks,
i.e., the encoder network for feature extraction and the decoder network for localizing
forgery regions. In the encoder network, we employ a pre-trained residual network as the
backbone architecture. The last layer with ASPP and two low-level layers are resized to
the same size and concatenated. Then, the feature recalibration module is for irrelevant
information suppression and enhancing the tampered regions, guiding the MFAN to adapt
to diverse manipulation traces. At last, the final attentive feature map is fed into decoder
network to generate the prediction mask.
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Figure 2. The framework of Multi-level Feature Attention Network (MFAN). There are two sub-
network in MFAN: the encoder is used to extract rich features and the decoder is designed to generate
binary localization map.

3.2. Encoder

Multi-level features fusion module is designed for forming more powerful features
which contain rich information. Given an input image I ∈ RH×W×3, features are extracted
by feeding it into a pre-trained ResNet-50. There are four groups of blocks in ResNet-50.
B1, B2, B3 and B4 are feature maps output by four blocks from the first one to the last one.
The sizes decrease by ratio 2 for every block from B1 to B4. Motivated by [13], in order
to capture multi-scale information, ASPP is applied on the final layer B4 of the backbone.
The ASPP consists of one 1× 1 convolution, three 3× 3 convolutions with atrous rates 12,
24, and 36, and an average pooling. Then, by passing through a 1× 1 convolution, feature
representation B4

′ is obtained with less channels.
To prevent the information of small objects from losing when the network architecture

is deeper, low-level features are utilized. We found through experiments that taking
advantage of B1 and B2 is helpful to gain richer features. After another 1× 1 convolution,
the corresponding features B1

′ and B2
′ are obtained, respectively. Then, we resize B1

′, B4
′

to the same size as B2
′ and concatenate them to form a fused feature Ff use =

{
B1
′, B2

′, B4
′},

where Ff use ∈ Rc×h×w, c is the sum of the channels of three features. For time efficiency, we
set h = H

4 and w = W
4 in our implement.

Feature recalibration module is motivated by [38], which is the first paper that pro-
posed to improve the quality of feature representations by fusing channel-wise information.
Some channels of feature maps can be regarded as responses to one or more manipulations,
whereas some are noise. Besides, not all channels contain useful signals. By strengthening
the weights of manipulation-related channels, the learning ability of various manipula-
tions would be improved. Therefore, the feature recalibration module is built to capture
multi-manipulations traces more accurately by adjusting the weights on channels.
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The detailed structure of feature recalibration module is illustrated in Figure 3a.
The final output FRM of the feature recalibration module is defined as:

FRM =
[

AF′f use

]
reshape

+ Ff use

=
[
so f tmax

(
F′f useF′Tf use

)
F′f use

]
reshape

+ Ff use
(1)

where A is the attention matrix calculated by a series of operations on channel, F′f use ∈
Rc×(hw) is a flattened matrix of Ff use, F′Tf use is the transpose of F′f use and [·]reshape means
reshaping the dimensions of tensors. We first perform a matrix product between F′f use and

F′Tf use. After a softmax layer, a channel attention matrix A with dimension c× c is generated,
where Ai,j represents the effect on the ith channel from the jth channel. Then, we reshape
the dimensions of the result of matrix multiplication between A and F′f use to the same as
that of Ff use. Finally, the recalibrated feature FRM is obtained after a element-wise sum.
Figure 3b shows the visualization of Ff use and FRM on two fake images. As illustrated in
Figure 3b, the FRM generated by adjusting the impacts of channels highlights the tampered
regions more prominently than that of Ff use.

softmax

(a) Structure of feature recalibration module. 

FRMImage Ground truth fuseF

reshape

(b) Visualization of         and           on two fake images. fuseF

FRM

A

cc

fuseF

fuseF 

T
fuseF 

FRM

Figure 3. The structure of feature recalibration module and visualization of Ff use and FRM.

3.3. Decoder and Loss Functions

The decoder network shown in Figure 4 is designed to predict the forgery map of
the input image. The encoder features are computed with 4 output stride. It recovers the
encoder features FRM to the original size by three convolution layers and an upsample
layer. Three convolution layers consist of two 3× 3 layers with 512 filters and one 1× 1
layers with 2 filters. Each convolution layer is followed by ReLU activation. The stride
of the convolution layers is 1. As a result, the spatial dimension of the feature map can
stay at H

4 ×
W
4 even if passing through three convolution layers. In the last upsample

layer, the feature map is bilinearly upsampled by a factor of 4. Therefore, after the decoder
network, the spatial dimension of prediction mask can be the same as the input’s.
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The loss function Ltotal in MFAN is composed of localization loss and auxiliary loss.
The localization loss Lloc is the binary cross-entropy loss calculated between the prediction
mask and the ground truth label:

Lloc = ygtlog(yp) + (1− ygt)log(1− log(yp)) (2)

where ygt = 1 if the pixel is tampered, otherwise ygt = 0, and yp is the prediction mask.
The auxiliary loss Laux is added after the third block of ResNet-50, which helps to optimize
the learning process. It is also a binary cross-entropy loss defined as follows:

Laux = ygtlog(yb) + (1− ygt)log(1− log(yb)) (3)

where yb is the result of feature map B3 after several convolution layers and resizing.
Lloc takes the major responsibility, while Laux is used to assist the network with training.

In order to balance the importance between them, the weight α is added to Laux:

Ltotal = Lloc + αLaux (4)

3.4. Implementation Details

The MFAN is implemented by PyTorch on a computer with NVIDIA GeForce RTX 2080
Ti GPU. The ResNet-50 in the encoder is pretrained on the ImageNet dataset. The dilation
rate in ASPP is 1, 12, 24, and 36. The learning rates in encoder and decoder module are
both 0.01. α is set to 0.2 in Equation (4). Limited by the computer condition, we resize the
input images to 512× 512, and our proposed model is trained with a batch size of 8 by
minimizing the loss function Ltotal .

4. Experimental Results

In this section, extensive experiments are conducted to evaluate the performance of
the proposed method for fake certificate image detection. We first introduce the dataset and
evaluation metrics. Afterward, the demonstration of effectiveness on multi-features fusion
and feature recalibration is described in ablation study. Moreover, MFAN is compared
with some state-of-the-art forgery detection methods under different cases. Finally, we also
carry out experiments on image splicing benchmark datasets to evaluate the universality of
MFAN on natural content images.

4.1. Dataset and Evaluation Metrics

In 2020, a security AI challenger program called Forgery Detection on Certificate Im-
age was co-sponsored by Alibaba Security and Tsinghua University [39]. This competition
provided a TIANCHI dataset that contains tampered certificate images and their corre-
sponding ground truth masks, where part of the data comes from real business scenarios.
The image sizes range from 513× 513 to 1536× 1536, and we make use of 1000 images from
TIANCHI for the experiments. There are seven types of certificate images in TIANCHI
dataset: copyright declaration, contract, business license, trademark registration, book
cover, honorary certificate and work registration. Tampering manipulations are composed
of splicing, copy-move, object removal and text insertion. The challenging thing is that
each fake certificate image contains more than one type of manipulation.

The details of experimental data are listed in Table 1. We randomly select 800 images
as training data, 100 images as validation data and 100 images for plain testing. What is
more, in order to evaluate the robustness of the proposed method, four attacks including
JPEG compression, Gaussian noise, resize and median blur are considered on plain testing
set. The quality factor of JPEG compression ranges from 60 to 100 with step 10; the Gaussian
noise varies in standard deviation from 0.02 to 0.1 with step 0.02; the resize scale ranges
from 0.8 to 1.2 with step 0.1 and blur kernel sizes are 3× 3, 5× 5, 7× 7. Thus, 1800 images
are generated for robustness evaluation.
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Table 1. The details of of training, validation and testing data on TIANCHI dataset.

Sets Attacks Parameter Range Step Criterion Number

Training N/a - - - 800

Validation N/a - - - 100

Testing

Plain N/a - - - 100

Robust

JPEG compression 60∼100 10 Quality factor 500
Gaussian noise 0.02∼0.1 0.02 Standard deviation 500

Resize 0.8∼1.2 0.1 Rate 500
Median blur 3∼7 2 Kernel size 300

To comprehensively evaluate the performance of MFAN, we also conduct experiments
on CASIA [40], Columbia [41] and NC2016 [42] to show the universality of our method
on natural content images. CASIA is an image forgery benchmark dataset that has two
versions, i.e., CASIA v1.0 and CASIA v2.0. In CASIA v1.0, there are 921 compressed images
with size 384× 256. CASIA v2.0 contains 5123 images. Forgeries from both versions are
manipulated by splicing or copy-move operations. Columbia consists 180 uncompressed
spliced images. In NC2016, images in an average resolution 3561× 2516 are with finely
and fine-grained detailed editing.

To evaluate the performance of our method for certificate image forensics, IoU and F1
score are applied as evaluation metrics in measuring the accuracy of tampered regions lo-
calization.

4.2. Ablation Study

In this subsection, a series of experiments are conducted to explore the effectiveness
of some essential components. Table 2 summarizes the localization results by employing
multi-level feature fusion, feature recalibration and auxiliary loss, respectively. For multi-
level feature fusion, we create a baseline named “B4” by only feeding the feature map
of the fourth block of ResNet-50 into decoder network. For simplicity, “+B1 + B2” and
“+B1 + B2 + B3” indicate that low-level features B1, B2 and B3 are concatenated to “B4” in
different ways of combination, respectively. We can see that “+B1 + B2” achieves 0.6274 IoU
and 0.7710 F1 score, which is the best way for multi-level feature fusion. The visualization
results of “B4” and “+B1 + B2” are shown in Figure 5a. We can see that “+B1 + B2”
performs better than “B4” in locating small targets. Furthermore, a quantitative analysis of
small targets localization is given in Table 3. We calculate the localization accuracy of “B4”
and “+B1 + B2” for different scales of tamper regions. Obviously, “+B1 + B2” overcomes
“B4” from “6 20× 20” to “6 60× 60”.

Table 2. The localization performance comparisons for ablation study.

Methods IoU F1

Multi-level feature fusion
B4 0.6176 0.7636
+B1 + B2 0.6274 0.7710
+B1 + B2 + B3 0.6255 0.7696

Feature recalibration +B1 + B2 + ASPP-Att 0.6202 0.7656
+B1 + B2 + Concat-Att 0.6346 0.7765

Auxiliary loss +B1 + B2 + Concat-Att + aux-0.1 0.6357 0.7773
+B1 + B2 + Concat-Att + aux-0.2 0.6360 0.7775
+B1 + B2 + Concat-Att + aux-0.3 0.6352 0.7767
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Table 3. The localization performance of small targets.

Methods
Scales of Tampered Regions (Pixel)

620 × 20 630 × 30 640 × 40 650 × 50 660 × 60

B4 0.1903 0.2387 0.3106 0.3793 0.4661

+B1 + B2 0.2053 0.2423 0.3312 0.3986 0.4948

Image Ground truth With 
Concat-Att 

Without 
Concat-Att 

Image Ground truth 21 BB 4B

(b) Feature recalibration.(a) Multi-level feature fusion.

Figure 5. Visualization results of (a) multi-level feature fusion and (b) feature recalibration.

One of the remarkable characteristics of fake certificate images is a mixture of various
manipulations. Channels on the feature maps have different emphases for different types
of manipulations. Therefore, we recalibrate feature maps on channels on the basis of
“+B1 + B2”. “ASPP-Att” represents employing attention mechanism after ASPP module.
“Concat-Att” means applying attention mechanism on the fusion feature Ff use. From Table 2,
it is obvious that the performance of “+B1 + B2+Concat-Att” is better than that of “+B1 + B2
+ ASPP-Att”. Since some channels of feature maps can be regarded as responses to one or
more specific types of manipulations, whereas some are noise, “Concat-Att” can benefit
from capturing richer manipulations-related features. The effectiveness of the feature
recalibration module is demonstrated in Figure 5b. It can be clearly seen that the localization
performance of “With Concat-Att” is better than that of “Without Concat-Att”, especially
in the bounding boxes.

Furthermore, we investigate the effect of auxiliary loss weight on the result. “aux-
0.1”, “aux-0.2” and “aux-0.3” indicate the auxiliary loss weight α = 0.1, α = 0.2 and
α = 0.3, respectively. Obviously, “+B1 + B2 + Concat-Att + aux-0.2” gets the best result
with 0.6360 IoU and 0.7775 F1 score. As a result, we use it as the proposed method in the
following experiments.

4.3. Comparison against Other Methods

To evaluate the performance of the proposed method, we compare it with a number
of state-of-the-art methods, which are listed in Table 4. We select three kinds of compet-
ing algorithms. The first one is traditional forensics including CFA [16] and NOI [43].
The second one is deep learning based forensics including RRU-Net [36], ManTra-Net [8],
MVSS-Net [44] and a top solution TianchiRank-3 [45] in the Tianchi competition, where the
ManTra-Net model is pretrained on a private large scale dataset, the MVSS-Net model is
pretrained on CASIA v2.0, and TianchiRank-3 is trained with a batch size of 10 and 300
epochs. The last one is semantic segmentation method EncNet [46].
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Table 4. The competing methods.

Category Method Ref. Feature/Network

Traditional forensics CFA [16] CFA artifact
NOI [43] Noise artifact

Deep learning based forensics
RRU-Net [36] U-Net based network

ManTra-Net [8] Manipulation tracing network
MVSS-Net [44] Multi-view multi-scale network

TianchiRank-3 [45] U-Net with Se-Resnext50

Semantic segmentation method EncNet [46] Context encoding network

Table 5 lists the localization results on TIANCHI dataset compared with CFA [16],
NOI [43], RRU-Net [36], ManTra-Net [8], MVSS-Net [44], TianchiRank-3 [45] and Enc-
Net [46]. It can be seen that the proposed algorithm achieves the highest score in IoU
and F1 compared with other detection methods, outperforming the second best approach
EncNet [46] by 9.49% IoU and 5.80% F1. Some detection results are shown in Figure 6. It is
clear that our proposed MFAN can localize tampered regions more accurately than other
detection methods.

Table 5. The localization results on TIANCHI dataset.

Method IoU F1

CFA [16] 0.0509 0.0969
NOI [43] 0.0782 0.1450

RRU-Net [36] 0.4114 0.5340
ManTra-Net [8] 0.0651 0.1223
MVSS-Net [44] 0.0037 0.0073

TianchiRank-3 [45] 0.1794 0.3042
EncNet [46] 0.5809 0.7349

MFAN 0.6360 0.7775

The good performance of our method in fake certificate image detection is benefited
from two main factors. (1) In the feature extraction step, we not only take advantage of the
last layer of backbone, but also concatenate it with other low-level features to form a richer
feature. (2) The fusion feature was applied by attention mechanism on channels to pay
more attention to channels that are associated with the tampered traces of manipulations.

In order to verify the robustness of the proposed method, experiments are carried
out and compared with two hand-crafted methods (CFA [16], NOI [43]) and two best
performing CNN-based methods (RRU-Net [36], EncNet [46]) under four common attacks
including JPEG compression, Gaussian noise, resize and median blur. The details of
attacking parameters are illuminated in Table 1. The comparative experiment results
under different attacks are shown in Figure 7. Ordinates in Figure 7 represent the F1 score.
From all subfigures in Figure 7, we can clearly see that the proposed method has the
best localization performance under different attacks. Figure 7a is the result under JPEG
compression. It can be observed that the slopes of all lines are very small, which indicates
that these approaches are robust against JPEG compression with quality factors varying
from 60 to 100. Figure 7b exhibits the performance under Gaussian noise. With the increase
of standard deviation, the F1 scores of the proposed MFAN and EncNet [46] drop down
gradually, and EncNet [46] degrades more rapidly than the proposed method. Figure 7c is
the experiment result under resize. All approaches except for NOI [43] show small slopes.
The localization result under median blur is demonstrated in Figure 7d. The performances
of RRU-Net [36], EncNet [46] and the proposed method get worse when the kernel size
becomes larger, among which RRU-Net [36] is less sensitive. The performance of CFA [16]
in the Figure 7a–d is relatively stable. We consider that this is because CFA [16] is almost
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invalid for fake certificate detection, so the interferential influence on CFA [16] is very
limited. From the above analysis, it can be found that the proposed MFAN has better and
robust performance.

Image

Ground truth

CFA

NOI

RRU-Net

ManTra-Net

TianchiRank-3

MVSS-Net

EncNet

MFAN

Figure 6. Some detection results on TIANCHI dataset. From top to bottom: tamper images, ground
truth masks, CFA [16], NOI [43], RRU-Net [36], ManTra-Net [8], MVSS-Net [44], TianchiRank-3 [45],
EncNet [46] and the proposed MFAN.
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(a) (b)

(c) (d)

Figure 7. Comparison results under four attacks. JPEG compression: (a), Gaussian noise: (b), resize:
(c) and median blur: (d). Ordinates represent the F1 score.

4.4. Performance on Natural Content Image

In addition, more experiments are conducted in this subsection to evaluate the univer-
sality of our method on natural content images. Three image forgery benchmark datasets
including CASIA v1.0, CASIA v2.0 and Columbia are used. Some examples of detection
results are shown in Figure 8. From a subjective perspective, the proposed algorithm
localizes tampered areas better than the other four detection approaches.

Image

Ground truth

CFA

NOI

ManTra-Net

ENCNet

MFAN

MVSS-Net

Figure 8. Some detection results on natural content images. From top to bottom: tamper images,
ground truth masks, CFA [16], NOI [43], ManTra-Net [8], MVSS-Net [44], EncNet [46] and the
proposed MFAN.
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In order to accurately evaluate the effectiveness of algorithms, experimental results
compared with CFA [16], NOI [43], ManTra-Net [8], MVSS-Net [44] and EncNet [46] on
IoU and F1 score are listed in Tables 6–9. Tables 6–9 report the detection performance on
CASIA v1.0, CASIA v2.0, Columbia and NC2016, respectively. As illustrated in Tables 6–9,
it can be observed that the proposed method performs better than others in terms of IoU
and F1 score. The traces of splicing areas in Columbia dataset are very obvious, and all
images are uncompressed. As a result, forgery detection on Columbia is easier than other
datasets. To identify tampered regions, CFA [16] employs CFA artifacts, and NOI [43] takes
advantages of noise consistency. Both of them are based on hand-crafted methods that are
hard to generate discriminative features. From the above analysis, it can be clearly seen that
the proposed MFAN can detect not only fake certificate images well, but also be effective
for natural content images. In the future work, we will consider applying our algorithm to
images manipulated from GANs and extend it for detecting manipulation in videos.

Table 6. The localization results on CASIA v1.0 dataset.

Method IoU F1

CFA [16] 0.0721 0.1346
NOI [43] 0.0833 0.1538

ManTra-Net [8] 0.1517 0.2635
MVSS-Net [44] 0.2511 0.4015

EncNet [46] 0.3733 0.5439
MFAN 0.4257 0.5972

Table 7. The localization results on CASIA v2.0 dataset.

Method IoU F1

CFA [16] 0.0803 0.1486
NOI [43] 0.0614 0.1158

ManTra-Net [8] 0.0910 0.1669
EncNet [46] 0.4584 0.6286

MFAN 0.4790 0.6478

Table 8. The localization results on Columbia dataset.

Method IoU F1

CFA [16] 0.2292 0.3729
NOI [43] 0.1131 0.2033

ManTra-Net [8] 0.2484 0.3982
MVSS-Net [44] 0.2511 0.4015

EncNet [46] 0.8980 0.9463
MFAN 0.9303 0.9639

Table 9. The localization results on NC2016 dataset.

Method IoU F1

CFA [16] 0.0506 0.0964
NOI [43] 0.0102 0.0202

ManTra-Net [8] 0.0984 0.1791
MVSS-Net [44] 0.1632 0.2807

EncNet [46] 0.8383 0.9120
MFAN 0.8480 0.9177
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5. Conclusions

In this paper, we pay attention to the security of certificate images that are directly
related to people’s rights and interests, and propose an effective network MFAN for fake
certificate image detection. The proposed model is built following the encoder–decoder
structure. In the encoder, a pre-trained residual network is used as the backbone to
extract rich features by three steps. Firstly, we employ ASPP module on the final layer of
residual network to capture contextual information at different scales. Secondly, to keep the
information of small objects from being lost, multi-level features are generated by fusing the
ASPP feature and two low-level layers from the backbone. Finally, we recalibrate the feature
maps on channels to suppress irrelevant information and highlight the tampered regions.
In the decoder, the attentive features are fed into a convolutional network with an upsample
layer to recover the original size and generate the localization mask. Extensive experiments
are conducted to show the effectiveness and robustness of the proposed method in fake
certificate image detection.
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