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Abstract: We investigate the discrimination of pure-mixed (quantum filtering) and mixed-mixed
states and compare their optimal success probability with the one for discriminating other pairs
of pure states superposed by the vectors included in the mixed states. We prove that under the
equal-fidelity condition, the pure-pure state discrimination scheme is superior to the pure-mixed
(mixed-mixed) one. With respect to quantum filtering, the coherence exists only in one pure state and
is detrimental to the state discrimination for lower dimensional systems; while it is the opposite for
the mixed-mixed case with symmetrically distributed coherence. Making an extension to infinite-
dimensional systems, we find that the coherence which is detrimental to state discrimination may
become helpful and vice versa.

Keywords: mixed state discrimination; coherence; quantum filtering

1. Introduction

Quantum state discrimination is of great importance in quantum information process-
ing [1]. A fundamental result in quantum mechanics is the impossibility to distinguish
perfectly two or more non-orthogonal quantum states. It is then a key task to discriminate
the states with maximal success probability. Such state discrimination problems branch out
into two important streams: ambiguous [2–6] and unambiguous quantum state discrimina-
tion [7–17]. The study on minimization of the error in the ambiguous state discrimination
was pioneered by Helstrom who provided a lower bound on the error probability in dis-
tinguishing two quantum states. This bound can be attained through the ways presented
in [2–4]. While the unambiguous quantum state discrimination is error-free [7–12]. It plays
key roles in various contexts in quantum information theory, including quantum key distri-
bution [11,13,16], the study of quantum correlations [18–21], and the role of entanglement
in local discrimination of bipartite systems [22].

Quantum coherence is also a critical resource in quantum state discrimination and
is tightly related to quantum correlations such as quantum entanglement [23]. Recently,
the quantification of quantum coherence has been extensively studied in the framework
of quantum resource theory [24–27]. The role of coherence played in ambiguous state dis-
criminations [5,6] has been investigated. There are also a few results on unambiguous state
discriminations with coherence which is generated or consumed in auxiliary systems and
utilized as resources [28]. Actually, the coherence in [28] comes from the non-orthogonality
of the initial states.

In this work, different from the results in [28], we consider the effect of the coherence
encoded in the initial state on unambiguous state discriminations. We first apply a quantum
state filtering [29], which is the discrimination between a pure state from another rank-N
incoherent mixed state composed of N vectors. Then, we superpose these N vectors into a
new pure state and then do a pure-pure state discrimination. If the fidelity of the pure-pure
state equals the pure-mixed one, it can be proved that the pure-pure scheme is superior to
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the pure-mixed one; but the coherence is detrimental to the state discrimination for lower
dimensional systems. Furthermore, through the discrimination of two rank-N mixed states
and the comparison with the results of another pure-pure-state discrimination scheme,
as an extension of the results in [22], we prove that pure-pure scheme is still superior to
mixed-mixed one if the eigenvectors of the mixed states have a one-to-one overlap (an
equal-fidelity case); but there exists a great deal of symmetrically distributed coherence
which is helpful to state discrimination, in contrary to the result of quantum filtering.

Finally, we extend the results to infinite-dimensional systems where the vectors in-
cluded in the mixed states are mixed with each other via the probability factors coinciding
with the photon number distribution of two kinds of Gaussian states in quantum optics [30].
We find that corresponding to the well-known coherent state, the symmetrically (asymmet-
rically) distributed coherence may become detrimental (helpful) on the contrary, which
can be attributed to the fact that the well-known coherent state approaches the boundary
between classical and quantum physics.

The paper is organized as follows. In Section 2, we present the result of quantum state
filtering. Additionally, we compare its results with the one of the pure-pure state schemes.
In Section 3, we compare the discrimination of two rank-N mixed states with the scheme
for discriminating other two pure states having the same fidelity with the mixed ones. We
generalize the results to infinite systems associated with two kinds of Gaussian states in
Section 4. We summarize in the last section.

2. Quantum State Filtering

Consider a set of given N + 1 non-orthogonal quantum states {|Ψ1〉, |Ψi′〉} (i =

1, 2, . . . , N), occurring with prior probability P1, P2βi, where P1 + P2 = 1 and
N
∑

i=1
βi = 1,

βi ≥ 0. We want to find a procedure that unambiguously assigns the state of the quantum
system to one or the other of two complementary subsets of the set of the N + 1 given non-
orthogonal quantum states, namely, either |Ψ1〉 or {|Ψi′〉}. This is called quantum filtering
(pure-mixed state discrimination) [29] which is equivalent to the problem of discrimination
between a pure (rank-1) state ρ1 and an rank-N mixed state ρ2,

ρ1 = |Ψ1〉〈Ψ1|,

ρ2 =
N

∑
i=1

βi|Ψi′〉〈Ψi′ |, (1)

prepared with the prior probability P1 and P2 (P1 ≤ P2). For simplicity, we assume that the
following relations are fulfilled:

〈Ψ1|Ψi′〉 = s1i′ ≥ 0, 〈Ψi′ |Ψj′〉 = δij (2)

for i, j = 1, . . . , N. Let |Ψ‖1〉 be the component of |Ψ1〉 in the subspace spanned by the
vectors |Ψ1′〉, |Ψ2′〉, . . . , |Ψn′〉. We have

〈Ψ‖1 |Ψ
‖
1〉 =

N

∑
i=1

s2
1i′ < 1. (3)

In order to discriminate the two sets unambiguously, we couple the system with
an ancilla |ka〉 [15,17,29] via the tensor product method [31] and perform a joint unitary
transformation U,

U|Ψ1〉|ka〉 =
√

q1eiγ1 |φ0〉|0〉a +
√

1− q1|Φ1〉|1〉a,

U|Ψi′〉|ka〉 =
√

qi′ e
iγi′ |φ0〉|0〉a +

√
1− qi′ |Φi′〉|1〉a. (4)

Since we are aiming to discriminate |Ψ1〉 from |Ψi′〉 optimally, it is required that the
post-measured state |Φ1〉 is orthogonal to |Φi′〉, 〈Φ1|Φi′〉 = 0 for i = 1, 2, . . . , N, while



Entropy 2022, 24, 18 3 of 19

〈Φi′ |Φj′〉 6= 0 for i 6= j, i, j = 1, 2, . . . , N. Thus, after a von-Neumann measurement on the
ancilla, the vector |Ψ1〉 is distinguished from the set {|Ψi′〉} successfully if the measurement
outcome is |1〉a, otherwise the outcome |0〉a implies failure. The average failure probability
Q is given by

Q = P1q1 +
N

∑
i=1

P2βiqi′ , (5)

where the parameters q1 and qi′ satisfy q1qi′ = s2
1i′ according to Equation (4). Therefore, the

optimization of Q is given by

minimize Q = P1q1 +

N
∑

i=1
P2βis2

1i′

q1
, (6)

subject to q1 ∈ [〈Ψ‖1 |Ψ
‖
1〉, 1], (7)

where |Ψ‖1〉 is the component of |Ψ1〉which lies in the subspaces spanned by {|Ψ1′〉. . . |ΨN′〉}.
The constraint (7) for the quantum filtering is acquired based on the semidefinite property of
the Gram matrix given by the vectors {|Φ1〉, |Φ1′〉, . . . , |Φi′〉} [29]. Set S = (s11′ , s12′ , . . . , s1N′).
We have the optimal solution,

(i) : Qmin=2

√√√√P1P2

N

∑
i=1

βis2
1i′, when S ∈ Λ(i); (8a)

(ii) : Qmin=P1〈Ψ
‖
1|Ψ
‖
1〉+

P2(
N
∑

i=1
βis2

1i′)

〈Ψ‖1 |Ψ
‖
1〉

, when S ∈ Λ(ii); (8b)

(iii) : Qmin=P1+P2(
N

∑
i=1

βis2
1i′), when S ∈ Λ(iii), (8c)

where

Λ(i) = {S : 〈Ψ‖1 |Ψ
‖
1〉 ≤ q∗1 ≤ 1}, (9a)

Λ(ii) = {S : 0 < q∗1 < 〈Ψ‖1 |Ψ
‖
1〉}, (9b)

Λ(iii) = {S : q∗1 > 1}, (9c)

and

q∗1 =

√√√√P2

P1

N

∑
i=1

βis2
1i′ . (10)

Corresponding to this optimal solution, for case (i) and (ii), both |Ψ1〉 and |Ψi′〉 (i =
1, 2, . . . , N) are identified; for case (iii), the state |Ψ1〉 is required to be neglected.

Since the fidelity has been found to be closely correlated with the state discrimination
problems [32], Terry et al. [33] give a lower bound of the optimal failure probability for the
quantum filtering scheme,

Qmin = 2
√

P1P2F(ρ1, ρ2), (11)

where F(ρ1, ρ2) is the fidelity between ρ1 and ρ2 given by [33],

F(ρ1, ρ2) = F(|Ψ1〉〈Ψ1|, ρ2)

=
√
〈Ψ1|ρ2|Ψ1〉 =

√√√√ N

∑
i=1

βis2
1i′ . (12)
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One can see that this lower bound is saturated for case (i) in Equation (8a).
To see the essential difference between quantum superposition and classical mixture,

and the role played by quantum coherence in high-dimensional mixed state discrimination,
we replace the classical probability βi with quantum probability amplitudes. Then, the
vectors |Ψ′i〉 (i = 1, . . . , N) in the decomposition of ρ2 are superposed into a pure state [22],

|Ψ2〉 =
N

∑
i=1

√
βieiθi |Ψi′〉, (13)

where 0 ≤ θi ≤ 2π.
After the first results on characterization and quantification of coherence [24,25],

Baumgratz et al. [34] put forward the resource-theoretic framework of coherence and
formulated a set of axioms or preconditions for a measure of coherence. As the bona fide
measures for coherence, the l1 norm of coherence is defined by

Cl1(ρ) = ∑
i 6=j
|ρij|, (14)

and the relative entropy of coherence is given by

Crel(ρ) = S(ρdiag)− S(ρ), (15)

where ρ = ∑ij ρij|i〉〈j| is the density matrix and ρdiag = ∑ii ρii|i〉〈i| is the diagonal part of
ρ. Both l1 norm and relative entropy coherence measures are bases dependent. Below we
consider the coherence under the fixed orthogonal basis {|Ψi′〉} given in ρ2. Thus, the l1
norm coherence of |Ψ2〉 is given by

Cl1(|Ψ2〉) = ∑
i 6=j
|ρij| = 2

N

∑
i>j

√
βiβ j. (16)

The failure probability corresponding to the optimal discrimination between |Ψ1〉 and
|Ψ2〉 is

(i′) : Q′min = 2
√

P1P2|s∗|, when S ∈ Λ(i′), (17a)

(ii′) : Q′min = P1 + P2|s∗|2, when S ∈ Λ(ii′), (17b)

where

s∗ = 〈Ψ1|Ψ2〉 =
N

∑
i=1

√
βis1i′ e

iθi ,

Λ(i′) = {S : 0 ≤ |s∗| ≤

√
P1

P2
},

Λ(ii′) = {S :

√
P1

P2
< |s∗| ≤ 1}. (18)

Focusing on the difference between the result of classical mixture and quantum super-
position, we consider ∆Q = Qmin − Q′min with respect to the following five cases, as the
case S ∈ Λ(i′) ∩Λ(iii) corresponds to an empty set according to (9) and (18),

case (a) : S ∈ Λ(i′) ∩Λ(i); case (b) : S ∈ Λ(i′) ∩Λ(ii);

case (c) : S ∈ Λ(ii′) ∩Λ(i); case (d) : S ∈ Λ(ii′) ∩Λ(ii);

case (e) : S ∈ Λ(ii′) ∩Λ(iii), (19)

see Figure 1 for N = 2, P1 = 0.15 and β1 = 0.1.
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case (d)

case (e)

Figure 1. Set P1 = 0.15 and β1 = 0.1. For N = 2, we have five regions corresponding to cases (a)–(e),
respectively, with respect to different values of s11′ and s12′ . The dashed line for q∗1 = s2

11′ + s2
12′ ,

dot-dashed line is for q∗1 = 1, dotted line for s∗ =
√

P1
P2

, and orange solid line for s2
11′ + s2

12′ = 1.

To find out the role played by quantum supposition in our state discrimination, we
consider the difference of the optimal success probability between the pure-pure and
pure-mixed state discrimination. We have the following theorem.

Theorem 1. The minimum failure probability Q′min of pure-pure state discrimination is upper
bounded by the one of quantum state filtering Qmin, namely, ∆Q = Qmin − Q′min ≥ 0, if the
following equal-fidelity condition holds, F(ρ1, ρ2) = F(|Ψ1〉, |Ψ2〉).

Proof of Theorem 1. Since the fidelity between the two pure states |Ψ1〉 and |Ψ2〉 is given
by

F(|Ψ1〉, |Ψ2〉) = |s∗|, (20)

combining with Equations (8), (10), (12), (17) and (18), we have the following results
corresponding to the five different cases listed in (19). With respect to the case (a), we have

(∆Q)2 = Q2
min −Q′2min

= 4P1P2

N

∑
i=1

βis2
1i′ − 4P1P2|s∗|2

= 4P1P2[F2(ρ1, ρ2)−F2(|Ψ1〉, |Ψ2〉)]=0. (21)

For the case (b), we have

∆Q = P1〈Ψ
‖
1 |Ψ
‖
1〉+ P2

N
∑

i=1
βis2

1i′

〈Ψ‖1 |Ψ
‖
1〉
−2
√

P1P2|s∗|

= P1〈Ψ
‖
1 |Ψ
‖
1〉+P2

F2(ρ1, ρ2)

〈Ψ‖1 |Ψ
‖
1〉
−2
√

P1P2F(|Ψ1〉,|Ψ2〉)

= [

√
P1〈Ψ

‖
1 |Ψ
‖
1〉 −

√
P2

〈Ψ‖1 |Ψ
‖
1〉

F(ρ1, ρ2)]
2 ≥ 0. (22)

Corresponding to the case (c), we obtain that
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S ∈ Λ(ii′) ∩Λ(i)

= {S : |s∗| >

√
P1

P2
} ∩ {S : 〈Ψ‖1 |Ψ

‖
1〉 ≤ q∗1 ≤ 1}

= {S : F(|Ψ1〉, |Ψ2〉) >

√
P1

P2
} ∩ {S :

√
P1

P2
〈Ψ‖1 |Ψ

‖
1〉≤F(ρ1, ρ2)≤

√
P1

P2
}, (23)

which is just an empty set under the equal-fidelity condition. For the case (d) we have

S ∈ Λ(ii′) ∩Λ(ii)

= {S :

√
P1

P2
< |s∗| ≤ 1} ∩ {S : 0 < q∗1 < 〈Ψ‖1 |Ψ

‖
1〉}

= {S : F(|Ψ1〉, |Ψ2〉) >

√
P1

P2
} ∩ {S : 0 < F(ρ1, ρ2) <

√
P1

P2
〈Ψ‖1 |Ψ

‖
1〉}, (24)

which is again an empty set under the equal-fidelity condition. With respect to the case (e),
we get

∆Q = P1 + P2

N

∑
i=1

βis2
1i′ − (P1 + P2|s∗|2)

= P2[F2(ρ1, ρ2)− F2(|Ψ1〉, |Ψ2〉)] = 0. (25)

From the above results, we have that ∆Q = Qmin −Q′min ≥ 0 under the equal-fidelity
condition F(ρ1, ρ2) = F(|Ψ1〉, |Ψ2〉).

From the proof of Theorem 1, we see that the superiority of a pure-pure state scheme
versus a pure-mixed one may only possibly occur for case (b). Concerning the equal-fidelity
condition in Theorem 1, we have the following conclusion.

Corollary 1. For the comparison of pure-mixed and pure-pure state discrimination scheme, the
equal-fidelity condition F(|Ψ1〉, |Ψ2〉) = F(ρ1, ρ2) is satisfied if and only if

N

∑
i>j

√
βiβ js1i′ s1j′ cos(θi − θj) = 0. (26)

As for an illustration, consider N = 2, s1i′ 6= 0 and s1j′ 6= 0. According to Equation (26),
we have

cos(θ1 − θ2) = 0. (27)

Then, from Equations (9), (19) and (27), the case (b) is also rejected. Namely, ∆Q > 0 is
impossible in this situation. As for another example, let us consider the following case,

s1i′ = δits1t, (28)

which satisfies the equal-fidelity relation (26) obviously. We have

∆Q = (
√

P1s1t′ −
√

P2βt)
2.

Figure 2a shows the relations between ∆Q and the coherence in this case.
Instead of the equal-fidelity condition, if we set the all phases in Equation (13) to equal

to each other, θi = θj (i 6= j, and i, j = 1, 2, . . . , N), then we have the following theorem.

Theorem 2. If θi = θj, the pure-pure state discrimination scheme is inferior to quantum state
filtering, i.e., ∆Q = Qmin−Q′min ≤ 0 for all the cases except for the case (b). When s1i′ = s1j′ = s0,
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∆Q (∆Q2) is proportional to Cl1(|Ψ1〉) for the case (e) (case (a)), and the upper bound of ∆Q is
proportional to Cl1(|Ψ1〉) for cases (c) and (d).

Proof of Theorem 2. For cases (a), (b) and (d), the expressions of ∆Q are the same as the
ones in Equations (21), (22) and (25). For the case (a), we have

∆Q2 = Q2
min −Q′2min = −4P1P2 ∑

i 6=j

√
βiβ js1i′ s1j′ e

i(θi−θj)

= −8P1P2 ∑
i>j

√
βiβ js1i′ s1j′ .

For s1i′ = s1j′ = s0, we have

∆Q2 = −8P1P2s2
0

N

∑
i>j

√
βiβ j = −4P1P2s2

0Cl1(|Ψ2〉) < 0. (29)

Similarly, for the case (c), we have

∆Q = P1〈Ψ
‖
1 |Ψ
‖
1〉+ P2

N
∑

i=1
βis2

1i′

〈Ψ‖1 |Ψ
‖
1〉
− (P1+P2|s∗|2).

According to that 〈Ψ‖1 |Ψ
‖
1〉 ≤ 1, we have

∆Q ≤ P1 + P2

N

∑
i=1

βis2
1i′ − (P1 + P2|

N

∑
i=1

√
βis1i′ e

iθi |2)

= −2P2

N

∑
i>j

√
βiβ js1i′ s1j′ cos(θi − θj) = −P2s2

0Cl1(|Ψ2〉) < 0.

For the case (d), we get

∆Q = 2

√√√√P1P2

N

∑
i=1

βis2
1i′ − P1 − P2|

N

∑
i=1

√
βis1i′ e

iθi |2

≤ P1 + P2

N

∑
i=1

βis2
1i′ − P1 − P2|

N

∑
i=1

√
βis1i′ e

iθi |2

= −2P2

N

∑
i>j

√
βiβ js1i′ s1j′ cos(θi − θj) = −P2s2

0Cl1(|Ψ2〉) < 0.

For the case (e), we obtain

∆Q = P1 + P2

N

∑
i=1

βis2
1i′ − [P1 + P2|

N

∑
i=1

√
βis1i′ e

iθi |2]

= −2P2

N

∑
i>j

√
βiβ js1i′ s1j′ cos(θi − θj) = −P2s2

0Cl1(|Ψ2〉) < 0.

The inequality ∆Q < 0 does not always hold under the condition in Theorem 2 for the
case (b), which also can be seen from Theorem 1, where it is indicated that ∆Q ≥ 0 under
the equal-fidelity condition. To illustrate the role played by the quantum coherence in our
procedure, we show the difference ∆Q as a function of coherence of |Ψ2〉 in Figure 2. One
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can see that for the equal-phase cases shown in Figure 2a,b, the quantum coherence is not a
critical recourse but detrimental to the unambiguous state discrimination even for the cases
where the pure-pure state scheme is superior to pure-mixed one as guaranteed by the equal-
fidelity condition. This result is different from the one in [28] where the coherence generated
in the auxiliary system is positively correlated with the optimal success probability of state
discrimination.

Nevertheless, when the phases θi turn to be unequal (shown in Figure 2c), the following
two conclusions may be drawn: (i) the optimal success probability of the pure-mixed
scheme may be surpassed by the pure-pure state one, on the contrary; (ii) some of the
coherence encoded in the pure state is not detrimental but helpful to state discrimination
(shown in Figure 2c). Namely, one can acquire helpful coherence via adjusting the phase
factors in the superposed state |Ψ2〉. By a straightforward calculation, it is easily known that
this superiority of the pure-pure state discrimination scheme versus the pure-mixed one, as
shown in Figure 2c, can be attributed to the fact that F(ρ1, ρ2) ≥ F(|Ψ1〉, |Ψ2〉) according
to Equations (12) and (20). The reverse is also true for the results in Figure 2b. Since the
state with a lower fidelity is easier to be discriminated, the superiority of pure-pure state
discrimination versus pure-mixed one occurs without surprise. Then, we try to find some
significant results by comparison of mixed-mixed versus pure-pure state discrimination
under equal-fidelity conditions in the following section.

0.0 0.1 0.2 0.3 0.4 0.5
0.00

0.01

0.02

0.03

0.04

coherence

Δ
Q

(a)

0.0 0.2 0.4 0.6 0.8 1.0
-0.10

-0.08

-0.06

-0.04

-0.02

0.00

coherence

Δ
Q

(b)

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

coherence

Δ
Q

(c)

Figure 2. The difference ∆Q of the optimal success probabilities between the pure-mixed and pure-
pure schemes as functions of the coherence encoded in the state |Ψ2〉 for N = 2, P1 = 0.15 and
s12′ = 0.5. (a–c) correspond to equal-fidelity case (s11′ = 0), equal-phase case (s11′ = 0.2, θ1 = θ2 = 0)
and unequal-phase case (s11′ = 0.2, θ1 = π/2, θ2 = −π/2), respectively. Solid, dotted, dashed, and
dot-dashed lines correspond to the cases (a), (b), (d) and (e) in Figure 1, respectively; while the case
(c) does not match with here. Blue (red) lines correspond to the coherence detrimental (helpful) to
state discrimination (the same for Figures 3–7).
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3. Discrimination of Two Rank-N Mixed States

We have studied the quantum filtering problem as a special instance for the discrimi-
nation of two mixed states. It indicates that a pure-pure state discrimination scheme with a
same fidelity as the pure-mixed one tends to be more possible to succeed. This prompts us
to investigate the discrimination of two rank-N mixed states of the following form,

ρ1 =
N

∑
i=1

αi|Ψi〉〈Ψi|, ρ2 =
N

∑
i=1

βi|Ψi′〉〈Ψi′ |, (30)

where αi > 0, βi > 0,
N
∑

i=1
αi =

N
∑

i=1
βi = 1. The orthonormal bases {|Ψi〉} and {|Ψi′〉} satisfy

〈Ψi|Ψj〉=δij, 〈Ψi′ |Ψj′〉=δij, 〈Ψi|Ψj′〉= sii′δij (31)

with i, j = 1, . . . , N and sii′ = 〈Ψi|Ψi′〉 > 0. The state ρi occurs with a priori probability Pi
(i = 1, 2, P1 + P2 = 1, P1αi ≤ P2βi).

The relation (31) means that the vectors composing ρ1 are one to one overlapped with
the ones of ρ2 and is satisfied for the following example:

|Ψi〉= |2i−2〉, |Ψi′〉= sii′ |2i−2〉+
√

1−|sii′ |2|2i−1〉, (32)

where {|2i − 1〉} and {|2i〉} (i = 1, . . . , N) are orthonormal bases in a 2N dimensional
Hilbert space.

If we compare the above results with the discrimination of a pair of the following pure
states,

|Φ1〉 =
N

∑
i=1

√
αi|Ψi〉, |Φ2〉 =

N

∑
i=1

√
βi|Ψi′〉, (33)

occurring with a priori probability P1 and P2, respectively, the relation (31) guarantees the
equal-fidelity condition

F(ρ1, ρ2) = F(|Φ1〉, |Φ2〉) =
N

∑
i=1

√
αiβi〈Ψi|Ψi′〉.

The conditions in Equation (31) also ensure that the discrimination of ρ1 and ρ2 can be
carried out in N independent subspaces through optimal POVM operators which can be
written as a direct sum of N corresponding parts, just like the results for the discrimination
of rank-two mixed state in [14,22]. Then, concerning the optimal discrimination of ρ1 and
ρ2, we have the following remark.

Remark 1. The successful probability of discrimination between the two rank-N states ρ1 and ρ2
in Equation (30) satisfying the relation (31) is equivalent to a weighed average of the one for the
discrimination between the ith pair of eigenvectors {|Ψi〉, |Ψi′〉} (i = 1, . . . , N).

Thus, if 0 < sii′ ≤
√

P1αi
P2βi

(1 ≤ i ≤ m),
√

P1αi
P2βi

< sii′ ≤ 1 (m + 1 ≤ i ≤ N), where m is
an integer satisfies 1 < m < N, the minimum failure probability for discriminating ρ1 from
ρ2 is given by

Qmin =
m

∑
i=1

2
√

P1P2αiβisii′+
N

∑
i=m+1

(P1αi+P2βis2
ii′).

Here, the vectors {|Ψi〉, |Ψi′〉} (1 ≤ i ≤ m) are all identified while |Ψi〉 (m < i ≤ N) are
neglected in the optimal solution for the discrimination between ρ1 and ρ2.
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For the discrimination of pure-pure states, optimal failure probability is of the same
form as Equation (17). Set

s∗ =
N

∑
i=1

√
αiβisii′ . (34)

We have the following theorem as an extension of the work for the discriminating
rank-two mixed states in [22].

Theorem 3. For the discrimination of two rank-N mixed states in Equation (30), the minimum fail-
ure probability Q′min corresponding to the optimal discrimination of the pure states in Equation (33)
is upper bounded by Qmin for the mixed states.

Proof of Theorem 3. Corresponding to different values of sii′ , we have the following four
cases.

Case (i): 0 < sii′ ≤
√

P1αi
P2βi

, which implies that s∗ ≤
√

P1
P2

(i = 1, 2, . . . , N). Here, all
vectors included in ρ1 and ρ2 are identified. We have

Qmin =
N

∑
i=1

√
P1P2

√
αiβisii′ =

√
P1P2

N

∑
i=1

√
αiβisii′ =

√
P1P2s∗ = Q′min.

Case (ii):
√

P1αi
P2βi

< sii′ < 1, which gives rise to s∗ >
√

P1βi
P2αi

. All of the vectors included
in ρ1 are neglected in the optimal solution for discrimination of ρ1 and ρ2. According to the
Cauchy–Schwarz inequality, the optimal failure probability for succeeding in discriminating
|Ψ1〉 from |Ψ2〉 satisfies

Q′min = P1 + P2(
N

∑
i=1

√
αiβisii′)

2 ≤ P1 + P2(
N

∑
j=1

αi)(
N

∑
i=1

βis2
ii′)

= P1 + P2(
N

∑
i=1

βis2
ii′) = Qmin. (35)

This upper bound is saturated when

α1

β1s2
11′

=
α2

β2s2
22′

= . . . =
αN

βNs2
NN′

.

Case (iii): 0 < sii′ ≤
√

P1αi
P2βi

(1 ≤ i ≤ m),
√

P1αi
P2βi

< sii′ ≤ 1 (m + 1 ≤ i ≤ N) and

s∗ ≤
√

P1
P2

, where 1 < m < N.
The difference ∆Q between the two schemes is given by

∆Q = Qmin −Q′min

=
m

∑
i=1

2
√

P1P2αiβisii′+
N

∑
i=m+1

(P1αi+P2βis2
ii′)−2

√
P1P2

N

∑
i=1

√
αiβisii′

=
N

∑
i=m+1

(
√

P1αi −
√

P2βisii′)
2 > 0. (36)

Case (iv): 0 < sii′ ≤
√

P1αi
P2βi

(1 ≤ i ≤ m),
√

P1αi
P2βi

< sii′ ≤ 1 (m + 1 ≤ i ≤ N) and

s∗ >
√

P1
P2

. We have

∆Q =
m

∑
i=1

2
√

P1P2αiβisii′+
N

∑
i=m+1

(P1αi+P2βis2
ii′)−P1−P2(

N

∑
i=1

√
αiβisii′)

2. (37)
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We prove ∆Q ≥ 0 via mathematical induction. First, consider the case for m = 1. We
have

∆Q1 =
√

P1P2α1β1s11′+
N

∑
i=2

(P1αi+P2βis2
ii′)− P1 − P2s∗2. (38)

This expression is a quadric function of the variable s11′ with a negative quadratic

coefficient −P2α1β1. Since 0 < s11′ ≤
√

P1α1
P2β1

, ∆Q achieves its minimum (lower limit) at the

boundary points s11′ → 0 and s11′ =
√

P1α1
P2β1

.

Then, according to Equation (38), s∗ >
√

P1
P2

, s11′ → 0,
N
∑

i=1
βi = 1 and the Cauchy–

Schwarz inequality, we have

∆Q1 =
N

∑
i=2

P1αi+

P2
N
∑

i=2
αi

N
∑

i=2
βis2

ii′

1− α1
−P1−P2s∗2

≥ P1(1−α1)+P2(
1

1−α1
−1)

N

∑
i=2

√
αiβisii′−P1

> −P1α1 +
P2α1

1− α1

√
P1

P2
> −P1α1 +

P2α1

1− α1

P1

P2
=

P1α2
1

1− α1
> 0. (39)

Corresponding to another boundary point s11′ =
√

P1α1
P2β1

, we have

∆Q1 = 2

√
P1α1

P2β1

√
P1α1P2β1 +

N

∑
i=2

(P1αi + P2βis2
ii′)− P1 − P2(

N

∑
i=1

√
αiβisii′)

2

= 2P1α1 + P1(1− α1) +

P2
N
∑

i=2
αi

N
∑

i=2
βis2

ii′

1− α1
− P1 − P2(

√
P1

P2
α1 +

N

∑
i=2

√
αiβisii′)

2

≥ P1α1 +
P2

1− α1
(

N

∑
i=2

√
αiβisii′)

2 − P2(

√
P1

P2
α1 +

N

∑
i=2

√
αiβisii′)

2

=
α1

1− α1
[
√

P1(1− α1)−
√

P2

N

∑
i=2

√
αiβisii′ ]

2 ≥ 0. (40)

As an induction hypothesis, we suppose that our conclusion holds for m = k, 1 < k < N,

∆Qk = T + 2
√

P1αkP2βkskk′ + P1αk+1 + P2βk+1s2
k+1,(k+1)′ + M− P1 − P2(

N

∑
i=1

√
αiβisii′)

2 > 0, (41)

where

T = 2
√

P1P2(
k−1

∑
i=1

√
αiβisii′), M =

N

∑
i=k+2

(P1αi + P2βis2
ii′).

Then, for m = k + 1, we have

∆Qk+1 = T + 2
√

P1αkP2βkskk′ + 2
√

P1αk+1βk+1s(k+1)′ ,k+1 + M− P1 − P2(
N

∑
i=1

√
αiβisii′)

2.

Here, ∆Qk+1 can also be considered as a quadratic function of x (x = s(k+1)′ ,k+1) with
a minus coefficient of quadratic term. Thus, we also can acquire the minimum ∆Qmin at

the boundary points x = 0 and
√

P1αk+1
P2βk+1

. For x = 0, according to that s∗ >
√

P1
P2

, we have
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∆Qk+1|x=0 − ∆Qk

∣∣∣∣
x=
√

P1αk+1
P2βk+1

= P1α2
k+1 + 2

√
P1P2( ∑

i 6=k+1

√
αiβisii′)αk+1− 2P1αk+1

= P1α2
k+1 + 2

√
P1P2s∗αk+1− 2P1αk+1 > P1α2

k+1 ≥ 0. (42)

Hence, we have

∆Qk+1
∣∣
x=0 > ∆Qk

∣∣∣∣
x=
√

P1αk+1
P2βk+1

> 0

according to the relation (41). For another boundary point x =
√

P1αk
P2βk

, we have

∆Qk+1

∣∣∣∣
x→
√

P1αk
P2βk

=∆Qk

∣∣∣∣
x=
√

P1αk
P2βk

> 0.

Therefore, ∆Qk+1 > 0.

Hence, it can be concluded that the discrimination of the pure superposed states
is bound to be more possible to succeed than the mixed ones due to the equal-fidelity
condition (31). Namely, the results of Theorem 1 in [22] can be generalized to this rank-N
system successfully. Set N = 3, β1 = α1 and αi = βi =

1−α1
2 (i = 2, 3). Here, different from

filtering, coherence exists symmetrically in the two pure states |Φ1〉 and |Φ2〉. Then, let us
consider the difference ∆Q = Qmin −Q′min as a function of the global coherence measured
by the l1 norm. It shows that there are much more non-vanishing and helpful coherence
regions in which ∆Q > 0 than that for quantum filtering problems, see Figure 3. The
superiority of pure-pure scheme is inferior to the results of quantum filtering obviously.

0.0 0.5 1.0 1.5
0.000
0.001
0.002
0.003
0.004
0.005

coherence

Δ
Q

(a)

0.0 0.5 1.0 1.5
0.00
0.01
0.02
0.03
0.04
0.05

coherence

Δ
Q

(b)

Figure 3. The difference ∆Q of the minimum failure probability between the two schemes as functions
of the global coherence Cl1 (|Ψi〉) (i = 1, 2) corresponding to the cases for N = 3, P1 = 0.15, and
P2 = 0.85. (a,b) correspond to s11′ = 0.2, s22′ = 0.5, s33′ = 0.5 and s11′ = 0.5, s22′ = 0.2, and s33′ = 0.2,
respectively. The solid and dotted line corresponds to case (ii) and (iii) in Theorem 3, respectively.
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4. Infinite-Dimensional Systems

Now, we aim to extend the above state discrimination problems to infinite-dimensional
systems associated with two Gaussian states in quantum optics. First, we consider the fol-
lowing examples including the results for binomial states [35] as an intermediate transition
from finite to infinite-dimensional system problems.

Example 1. Equal-fidelity cases for comparison of pure-mixed and pure-pure state discrimination.

In this example, we discriminate a pure state |Ψ1〉 from one of the following two states:

(1) a rank-N mixed state with the eigenvalues corresponding to the binomial
distribution [35], which is equivalent to the expression of the Poisson distribution for
N → ∞:

ρ0
2 =

N

∑
i=0
| f0(α, i)|2|Ψi′〉〈Ψi′ |, (43)

where

f0(α, i) =

√
N!

i!(N − i)!
(

α2

N
)i(1− α2

N
)N−i; (44)

(2) a rank-∞ mixed state:

ρ2 =
∞

∑
i=0
| f (α, i)|2|Ψi′〉〈Ψi′ |, (45)

where the function f (α, i) corresponds to the photon number distribution of a given
Gaussian state (the well-known coherent or squeezed vacuum state) which is notable
in quantum optics. For the case associated with the well-known coherent state, we
have

f (α, i) = e−|α|
2/2αi/

√
i!, (46)

where α = |α|eiθ = reiθ ; for the one with respect to the squeezed vacuum state, one
has

f (α, i) =
[−eiθ tanh r(|α|)]i(2i!)1/2√

cosh r(|α|)i!2i
(47)

with
r(|α|) = ln(|α|+

√
|α|2 + 1). (48)

As the binomial distribution of photon numbers is equivalent to Poisson distribution
when N → ∞, we obtain that

lim
N→∞

| f0(α, i)| = |α|
i

√
i!

e−|α|
2/2. (49)

From the relation (48), we see that sinh2[r(|α|)] = |α|2, which guarantees the equiv-
alence of average photon number between the generalized coherent and the squeezed
vacuum states.

The relations (2) and (28) are also satisfied for both ρ0
2 and ρ2. That is, the vector |Ψ1〉

is only overlapped with the tth vector |Ψt′〉 in ρ2 (ρ0
2). Then, we discriminate the state |Ψ1〉

from a superposed state |Ψ0
2〉 and a generalized Gaussian state |Ψ2〉 given by

|Ψ0
2〉 =

N

∑
i=0

f0(α, i)|Ψi′〉; (50)

|Ψ2〉 =
∞

∑
i=0

f (α, i)|Ψi′〉. (51)
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One can easily obtain that F(|Ψ1〉〈Ψ1|, ρ0
2) = F(|Ψ1〉, |Ψ0

2〉) and F(|Ψ1〉〈Ψ1|, ρ2)
= F(|Ψ1〉, |Ψ2〉), corresponding to the equal-fidelity condition (28).

Example 2. Equal-fidelity cases for comparison of mixed-mixed and pure-pure state discrimination.

In this example, we consider the discrimination of the two pairs of states occurring
with prior probabilities P1 and P2:

(1) rank-N mixed states

ρ0
1 =

N

∑
i=0
| f0(α, i)|2|Ψi〉〈Ψi|, ρ0

2 =
N

∑
i=0
| f0(α, i)|2|Ψi′〉〈Ψi′ |; (52)

(2) rank-∞ mixed states

ρ1 =
∞

∑
i=0
| f (α, i)|2|Ψi〉〈Ψi|, ρ2 =

∞

∑
i=0
| f (α, i)|2|Ψi′〉〈Ψi′ |, (53)

where |Ψi〉 and |Ψi′〉 are orthonormal bases satisfying Equation (31) for 0 ≤ i < ∞.

Then, we consider the discrimination of pure states with the two sets of bases super-
posed as follows:

|Φ0
1〉 =

N

∑
i=0

f0(α, i)|Ψi〉, |Φ0
2〉=

N

∑
i=0

f0(α, i)|Ψi′〉; (54)

|Φ1〉 =
∞

∑
i=0

f (α, i)|Ψi〉, |Φ2〉=
∞

∑
i=0

f (α, i)|Ψi′〉, (55)

where |Φ0
j 〉 (|Φj〉) (j = 1, 2) is a superposed binomial state (generalized Gaussian state) that

satisfies F(ρ0
1, ρ0

2) = F(|Φ0
1〉, |Φ0

2〉) (F(ρ1, ρ2) = F(|Φ1〉, |Φ2〉)) obviously.
Concerning the role played by the coherence in the above two examples, we choose

the relative entropy coherence [30,34] defined by Equation (15), since the l1-norm coherence
does not fulfill that the coherence is finite for N → ∞. Calculating the global coherence of
|Φ0

j 〉 and |Φj〉 (j = 1, 2) measured by the relative entropy, we have

Crel = −
N

∑
i=0
| f0(α, i)|2 log | f0(α, i)|2; Crel = −

∞

∑
i=0
| f (α, i)|2 log | f (α, i)|2. (56)

For the two examples above, the difference ∆Q of the optimal success probabili-
ties between the pure (mixed)-mixed and pure-pure state discrimination is presented in
Figures 4–7, corresponding to different schemes respectively. It shows that the pure-pure
state discrimination scheme is also superior to the pure (mixed)-mixed one and the coher-
ence which is detrimental and helpful to state discriminations coexists irrespective of any
schemes involved in the above two examples.
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Figure 4. Results for Example 1 (a): the difference ∆Q of the optimal success probabilities between
the pure-mixed (|Ψ1〉 and ρ0

2) and pure-pure state (|Ψ1〉 and |Ψ0
2〉) discrimination as a function of

the coherence for the finite dimensional state |Ψ0
2〉 with binomial distributed probability amplitude.

Dotted line for N = 10 and solid line for N = 100, where P1 = 0.15, t = 0 and s1t′ = 0.5.
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Figure 5. Results for Example 1 (b): the difference ∆Q of the optimal success probabilities between
the pure-mixed (|Ψ1〉 and ρ2) and pure-pure (|Ψ1〉 and |Ψ2〉) state discrimination as a function of the
coherence for the infinite dimensional state |Ψ2〉, with P1 = 0.15 and s1t′ = 0.5. (a,b) correspond to
the scheme with generalized well-known coherent and squeezed vacuum states, respectively. Solid
line: t = 0; dashed line: t = 3; dotted line: t = 5.

For the quantum filtering including finite-dimensional systems associated with the
binomial distribution of photon numbers (shown in Figure 4), the quantum coherence
which is helpful to state discriminations can be acquired for larger N, which is not the
case for the quantum filtering scheme in Figure 2. Then, we make an extension to infinite-
dimensional systems corresponding to the generalized Gaussian states in Figure 5. As
N → ∞, the results of quantum filtering corresponding to the mixed states (43) and (45)
gives rise to the same results due to the relation (49). In addition, from the results in
Figure 5, it is indicated that as the parameter t increases, the helpful coherence encoded in
the well-known coherent state decreases by the contrary. While for the scheme with the
generalized squeezed vacuum state, despite the superiority of the pure-pure state scheme
versus the pure-mixed one, the coherence contributes very little to this superiority, as is
shown in Figure 5b.
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Figure 6. Results for Example 2 (a): the difference ∆Q of the optimal success probabilities between
the mixed-mixed (ρ0

1 and ρ0
2) and pure-pure (|Ψ0

1〉 and |Ψ0
2〉) state discrimination as a function of

the coherence of |Ψ0
j 〉 (j = 1, 2) with P1 = 0.15. Solid line: N = 10, sii′ = 0.5 >

√
P1
P2

(i = 1, . . . , 4),

sii′ = 0.2 ≤
√

P1
P2

(i = 5, . . . , 10); dotted line: N = 50, sii′ = 0.5 >
√

P1
P2

(i = 1, . . . , 4), sii′ = 0.2 ≤
√

P1
P2

(i = 5, . . . , 50).

For the results corresponding to mixed-mixed state discrimination schemes shown in
Figures 6 and 7, compared with the results of quantum filtering in Figures 4 and 5, it can be
concluded that the symmetrically (asymmetrically) distributed coherence is always helpful
(detrimental) to state discrimination for lower dimensional systems. As the dimension
increases, symmetrically (asymmetrically) distributed coherence may become detrimental
(helpful) on the contrary. For N → ∞, just like quantum filtering, the result for the binomial
state is also equivalent to the one of the well-known coherent states for this mixed-mixed
state discrimination scheme.

We also see that only a small range of helpful coherence is vital for state discrimination,
while the others have little effect for the schemes with high-dimensional binomial and the
generalized well-known coherent states, as shown in Figures 6 and 7a (solid line). In the
cases including the generalized squeezed vacuum states, Figure 7b shows that there are
more regions of helpful coherence for the mixed-mixed scheme. Since the well-known
coherent state is the eigenstate of the annihilation operator, it saturates the lower bound of
the quantum uncertainty relation for momentum and position exactly (∆p∆q = h̄/2). That
is, the well-known coherent state approaches the boundary between classical and quantum
physics. Just because of this property, the coherence encoded in the infinite-dimensional
systems associated with this well-known state exhibits so many abnormal behaviors in
unambiguous state discrimination, different from the results for both finite-dimensional
systems and infinite ones associated with the squeezed vacuum states.

Concerning the related experiments in quantum optics, the discrimination of infinite di-
mensional quantum states such as the well-known coherent states is a subject of research sig-
nificance [36–40]. The phases in the well-known coherent state |α〉 = e−|α|

2/2 ∑∞
i=0 αi/

√
i!|i〉

(α = |α|eiθ) are randomized under quantum decoherence. Then taking the average over the
variable θ, one has

1
2π

∫ 2π

0
|α〉〈α|dθ =

∞

∑
i=0

1
i!
|α|2i|i〉〈i|.

Hence, the mixed state in (45) can be prepared successfully. Otherwise, the state can
also be acquired via local measurements on a two-mode well-known coherent state.



Entropy 2022, 24, 18 17 of 19

0.0 0.5 1.0 1.5 2.0 2.5
0.000
0.001
0.002
0.003
0.004

coherence

Δ
Q

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.000
0.001
0.002
0.003
0.004

coherence

Δ
Q

(b)

Figure 7. Results for Example 2 (b): the difference ∆Q of the optimal success probabilities between
the mixed-mixed (ρ1 and ρ2) and pure-pure (|Ψ1〉 and |Ψ2〉) state discrimination as functions of the
coherence Cre(|Ψi〉). (a,b) correspond to the scheme with generalized well-known coherent and

squeezed vacuum states, respectively, for P1 = 0.15 and P2 = 0.85. Solid line: sii′ = 0.5 >
√

P1
P2

(i = 1, . . . , 4), sii′ = 0.2 ≤
√

P1
P2

(i = 5, . . . , ∞); dotted line: sii′ = 0.2 (i = 1, . . . , 4), sii′ = 0.5
(i = 5, . . . , ∞).

5. Conclusions

We have investigated the discrimination between a pure state and a rank-N mixed
state (quantum filtering) and compared its optimal successful probability with the one for
discriminating another two pure states. One state involved in the pure-pure scheme is
identical to the one in quantum filtering; the other one is superposed by the eigenvectors of
the above-mentioned mixed state. As the pure-mixed and pure-pure states have the same
fidelity, we prove that the optimal success probability of a pure-pure state scheme is superior
to quantum filtering. For lower dimensional systems, e.g., N = 2, 3, the coherence encoded
in the pure state is detrimental to state discrimination. If the equal-fidelity restriction is
relaxed and the phases in the constructed coherent pure states are identical to each other,
the superiority of the pure-pure state scheme is impaired severely. As we adjust the phases
to proper values, the superiority of the pure-pure scheme revives, and helpful coherence is
acquired. However, this superiority emerges not surprisingly because of a lower fidelity
between the two pure states versus the pure-mixed one.

After discriminating two rank-N (N is a finite positive integer) mixed states whose
eigenvectors have one-to-one non-zero overlaps (mixed-mixed state scheme), we also
consider the discrimination of two pure states which are superposed by the eigenvectors.
Thus, the pure-pure and mixed-mixed states also have the same fidelity. We also prove
that the pure-pure state scheme is bound to be superior to the mixed-mixed one. Namely,
the result of Theorem 1 in Ref. [22] confined to rank-two systems is generalized to rank-N
systems successfully. Due to the symmetrical distribution of coherence encoded in the two
pure superposed states, different from the result of quantum filtering, the coherence is
always helpful to state discrimination for lower-dimensional systems.

Finally, in order to generalize our results to infinite-dimensional systems, we have first
considered the examples of discriminating binomial states. For higher dimensional systems,
we remark that some asymmetrically (symmetrically) distributed coherence which is helpful
(detrimental) to state discrimination occurs, which turns to be more apparent after we made
an extension to infinite-dimensional systems (N → ∞) associated with the well-known
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coherent rather than squeezed-vacuum states. These results can be attributed to the fact that
the well-known coherent state which saturates the lower bound of the quantum uncertainty
relation for momentum and position approaches the boundary between classical and
quantum physics.

Sequential state discrimination (SSD) provided in [13] is a scheme for discriminating
one sender’s quantum states via N observers who are separately located. SSD is investi-
gated sequentially in [16,17,22,41]. As a next step, we plan to investigate another interesting
problem corresponding to SSD including quantum filtering and rank-N mixed states dis-
criminations and consider the role played by quantum correlation and coherence in the
procedure.
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