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Abstract: This paper aims to estimate an unknown density of the data with measurement errors as a
linear combination of functions from a dictionary. The main novelty is the proposal and investigation
of the corrected sparse density estimator (CSDE). Inspired by the penalization approach, we propose
the weighted Elastic-net penalized minimal `2-distance method for sparse coefficients estimation,
where the adaptive weights come from sharp concentration inequalities. The first-order conditions
holding a high probability obtain the optimal weighted tuning parameters. Under local coherence or
minimal eigenvalue assumptions, non-asymptotic oracle inequalities are derived. These theoretical
results are transposed to obtain the support recovery with a high probability. Some numerical
experiments for discrete and continuous distributions confirm the significant improvement obtained
by our procedure when compared with other conventional approaches. Finally, the application
is performed in a meteorology dataset. It shows that our method has potency and superiority in
detecting multi-mode density shapes compared with other conventional approaches.

Keywords: density estimation; Elastic-net; measurement errors; support recovery; multi-mode data

1. Introduction

Over the years, the mixture models have been extensively applied to model unknown
distributional shapes in astronomy, biology, economics, and genomics (see [1] and refer-
ences therein). The distributions of real data involving potential complex variables often
show multi-mode and heterogeneity. Due to the flexibility, it also appears in various
distribution-based statistical techniques, such as cluster analysis, discriminant analysis,
survival analysis, and empirical Bayesian inference. Flexible mixture models can naturally
represent how the data are generated as mathematical artifacts. Theoretical results show
that the mixture can approximate any density in the Euclidean space well, and the amount
of the mixture can also be finite (for example, a mixture of several Gaussian distribu-
tions). Although the mixture model is inherently attractive to the statistical modeling, it is
well-known that it is difficult to infer (see [2,3]). From the computational aspect, the opti-
mization problems of mixture models are non-convex. Although existing computational
methods, such as EM and various MCMC algorithms, can make the mixture model fit the
data relatively easily. It should be emphasized that the mixture problems are essentially
challenging, even unrecognizable, and the number of components (says, the order selection)
is hard to determine (see [4]). There is a large amount of literature on its approximation
theory, and various methods have been proposed to estimate the components (see [5] and
references therein).

The nonparametric method and combinatorial method in density estimation were well
studied in [6,7], as well as [8]. These can consistently estimate the number of the mixture’s
components when the components have known functional forms. When the number
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of candidate components is large, the non-parametric method becomes computationally
infeasible. Fortunately, the high-dimensional inference would compensate for this gap
and guarantee the corrected identification of the mixture components with a probability
tending to one. With the advancement of technology, high-dimensional problems have been
applied at the forefront of statistical research. The high-dimensional inference method has
been applied to the infinite mixture models with a sparse mixture of p→ ∞ components,
which is an interesting and challenging problem (see [9,10]). We propose an improvement
of the sparse estimation strategy proposed in [9], in which Bunea et al. propose a `1-type
penalty [11] to obtain a sparse density estimate (SPADES). At the same time, we add a
`2-type penalty and extend the oracle-inequality results to our new estimator.

In the real data, we often encounter the situation that the i.i.d. samples Xi = Zi + εi
are contained by some zero-mean measurement errors {εi}n

i=1; see [12–16]. For density
estimation of {Zi}n

i=1, if there exists orthogonal basis functions, the estimation method
is quite easy. In the measurement errors setting, however, finding an orthogonal-based
density function is not easy (see [17]). Ref. [17] suggests the assumption that the conditional
distribution function of Xi given Zi is known. This condition is somewhat strong since
most conditional distributions cannot obtain the explicit formula (except the Gaussian
distribution). To address this predicament, particularly with nonorthogonal base functions,
the SPADES model is attractive and makes the situation easier to deal with. Based on the
SPADES method, our approach is an Elastic-net calibration approach, which is simpler
and more interpreted than the conditional inference procedure proposed by [17]. In this
paper, we proposed the corrected loss function to debiasing the measurement errors, and
this is motivated by [18]. The main problem of considering measurement errors in various
statistical models is that they are responsible for the bias of the classical statistical estimates;
this is true, e.g., in linear regression, which has traditionally been the main focus of studies
related to measurement errors. Debiasing represents an important task in various statistical
models. In linear regression, it can be performed in the basic measurement errors (ME)
model, which is also denoted as the Errors-in-variables (EIV or EV) model, if it is possible
to estimate the variability of measurement errors (see [19,20]). We derive the real variable
selection consistency based on weighted `1+ `2 penalty [21]. At the same time, some
theoretical results of SPADES only contain the situation of the equal weights setting, which
is not plausible in the sense of adaptive (data-dependent) penalized estimation. Moreover,
we perform the Poisson mixture model to approximate the complex discrete distribution in
the simulation part, while existing papers only emphasize the performance of continuous
distribution models. Note that the multivariate kernel density estimator can only deal with
a continuous distribution, and it requires a multivariate bandwidths section, while our
method is dimensional-free (the number of the required tuning parameters is only two).
There has been quite a lot of work in this area, starting with [22].

There are several differences between our article and [9]. The first point is that the
upper bound of non-asymptotic oracle inequality in in our Theorems 1 and 2 is tighter than
Theorems 1 and 2 in [9], and the optimal weighted tuning parameters are derived. The
second point is that the `1-penalized techniques are applied in [9] to estimate the sparse
density. Still, this paper considers the estimation of density functions in the presence of a
classical measurement error. We opt to use an Elastic-net criterion function to estimate the
density, which is taken to be approximated by a series of basis functions. The third point
is that the tuning parameters are chosen by the coordinate descent algorithm in [9], and
the mixture weights are calculated by the generalized bisection method (GBM). However,
this paper directly calculates the optimal weights, so our algorithm is more accessible to
implement than [9].

This paper is presented as follows. Section 2 introduces the density estimator, which
can deal with measurement errors. This section introduces data-dependent weights for the
Lasso penalty, and the weights are derived by the event of KKT conditions holding a high
probability. In Section 3, we give a condition that can accurately estimate the weights of
the mixture, with a probability tending to 1. We show that, in an increasing dimensional
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mixture model under the local coherence assumption, if the tuning parameter is higher than
the noise level, the recovery of the mixture components can hold with a high probability.
In Section 4, we study the performance of our approach on artificial data generated from
mixture Gaussian or Poisson distributions compared with other conventional methods,
which indeed shows the improvement by employing our procedures. Moreover, the
simulation also demonstrates that our method is better than the traditional EM algorithm,
even under a low-dimensional model. Considering the multi-modal density aspect of
the meteorology dataset, our proposed estimator has a stronger ability to detect multiple
modes for the underlying distribution compared with other methods, such as SPADES or
un-weighted Elastic-net estimator. Section 5 is the summary, and the proof of theoretical
results is delivered in the Appendix A.

2. Density Estimation
2.1. Mixture Models

Suppose that {Zi}n
i=1 ∈ Rd are independent random variables with a common un-

known density h. However, the observations are contaminated with measurement errors
{εi}n

i=1 as latent variables, the observed data are actually Xi = Zi + εi. Let {hj}W
j=1 be

a series of density functions (such as Gaussian density or Poisson mass function), and
{hj}W

j=1 are also called basis functions. Assume that the h belongs to the linear combination

of {hj}W
j=1. The W := Wn is a function of n, which is particularly intriguing for us since

there may be W � n (the high-dimensional setting). Let β∗ := (β∗1, · · · , β∗W) ∈ RW be the
unknown true parameter. Assume that

• (H.1): the h := hβ∗ is defined as

Z ∼ h(z) := hβ∗(z) =
W

∑
j=1

β∗j hj(z), with
W

∑
j=1

β∗j = 1. (1)

If the base is orthogonal and there are no measurement errors, a perfectly natural method
is to estimate h by an orthogonal series of estimators in the form of hβ̃, where β̃ has the

coordinates β̃ j =
1
n ∑n

i=1 hj(Xi) (see [17]). However, this estimator depends on the choice of
W, and a data-driven selection of W or the threshold needs to be adaptive. This estimator
can only be applied to W ≤ n. Nevertheless, we want to solve more general problems for
W > n, and the base functions {hj}W

j=1 may not orthogonal.
We aim to achieve the best convergence for the estimator when the W is not necessarily

less than n. Theorem 33.2 in [5] states that any smooth density can be well-approximated
by a finite mixture of some continuous functions. However, Theorem 33.2 in [5] does not
confirm how many components W are required for the mixture. Thus, the hypothesis of the
increasing-dimensional W is reasonable. For discrete distributions, there is also a similar
mixture density approximation—see Remark of Theorem 33.2 in [5].

2.2. The Density Estimation with Measurement Errors

This subsection aims to construct a sparse estimator for the density h(z) := hβ∗(z) as
a linear combination of known densities.

Recall the definition of the L2(Rd) norm ‖ f ‖ =
(∫

Rd f 2(x)dx
) 1

2 . For f , g ∈ L2(Rd),
let < f , g >=

∫
Rd f (x)g(x)dx be the inner product. If two functions f and g satisfy

< f , g >= 0, then we call these two functions are orthogonal. Note that if the density h(z)
belongs to L2(Rd) and assume that {Xi}n

i=1 has the same distribution X, for any f ∈ L2,
we have < f , h >=

∫
Rd f (x)h(x)dx = E f (X). If h(x) is the density function for a discrete

distribution, the integral is replaced by summation, and we can define the inner product as
< f , h >:= ∑k∈Zd f (k)h(k).
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For true observations {Zi}n
i=1, we minimize the ‖hβ − h‖2 on β ∈ RW to obtain the

estimate of h(z) := hβ∗(z), i.e., minimizing

‖hβ − h‖2 = ‖h‖2 + ‖hβ‖2 − 2 < hβ, h >= ‖h‖2 + ‖hβ‖2 − 2Ehβ(Z) ∝ −2Ehβ(Z) + ‖hβ‖2,

which implies that minimizing the ‖hβ − h‖2 is equivalent to minimizing

−2Ehβ(Z) + ‖hβ‖2 ≈ − 2
n

n

∑
i=1

hβ(Zi) + ‖hβ‖2. (2)

It is plausible to assign more constrains for the candidate set of β in the optimization, for
example, the `1 constrains ‖β‖1 ≤ a, where a is the tuning parameter. More adaptively,
we prefer to use the weighted `1 restriction ∑W

j=1 ωj|β j| ≤ a, where the weights ωj’s
are data-dependent and will be specified later. From [23], we add Elastic-net penality
2 ∑W

j=1 ωj|β j|+ c ∑W
j=1 β2

j with tuning parameter c, which is in regards to the measurement
errors (see [24,25]) for a similar purpose. We would have c = 0 in the situation without
measurement errors. The c indeed becomes larger if the measurement errors become
more serious, i.e., we can say that the c is proportional to the increasing variability of the
measurement errors. It is different from SPADES since adjusting for the measurement
errors is important for accurately describing the relationship between the observed varables
and the outcomes of interest.

From the discussion above, now we propose the following Corrected Sparse Density
Estimator (CSDE):

β̂ := β̂(ω1, · · · , ωW) = arg min
β∈RW

{
− 2

n

n

∑
i=1

hβ(Xi) + ‖hβ‖2 + 2
W

∑
j=1

ωj|β j|+ c
W

∑
j=1

β2
j

}
(3)

where the c is the tuning parameter for `2-penalty, and the c also presents the correction for
adjusting the measurement errors in our observations.

For CSDE, if {hj}W
j=1 is an orthogonal system, it can be clearly seen that the CSDE

estimator is consistent with the soft thresholding estimator, and the explicit solution is

β̂ j =
(1−ωj/|β̃ j |)+ β̃ j

1+c , where β̃ j = 1
n ∑n

i=1 hj(Xi) and x+ = max(0, x). In this case, we
can see that ωj is the threshold of the j-th component of the simplest mean estimator
β̃ = (β̃1, · · · , β̃W).

From the sub-differential of the convex optimization, the corresponding Karush–
Kuhn–Tucker conditions (necessary and sufficient first-order condition) for the minimizer
in Equation (3) is

Lemma 1 (KKT conditions, Lemma 4.2 of [26]). Let k ∈ {1, 2, · · · , W} and c > 0. Then, a
necessary and sufficient condition for CSDE to be a solution of Equation (3)

1. β̂k : 6= 0 if 1
n ∑n

i=1 hk(Xi)−∑W
j=1 β̂ j < hj, hk > −cβ̂k = wksign(β̂k).

2. β̂k = 0 if
∣∣∣ 1

n ∑n
i=1 hk(Xi)−∑W

j=1 β̂ j < hj, hk > −cβ̂k

∣∣∣ ≤ wk.

Since all values of β∗j are non-negative, when conducting minimization in Equation (3),
we have to put a non-negative restriction for optimizing Equation (3).

Due to the computational feasibility and optimal first-order conditions, we prefer an
adaptively weighted Lasso penalty as a convex adaptive `1 penalization. We require that the
larger weights are assigned to the coefficients of unimportant covariates, while significant
covariates accompany the smaller weights. So, the weights represent the importance of
the covariates. The larger (smaller) weights shrink to zero more easily (difficultly) than
the unweighted Lasso, with appropriate or even optimal weights, leading to less bias and
more efficient variable selection. The derivation of the weights will be given in Section 3.1.
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In the end of this part, we will illustrate that in the mixture models, even with-
out measurement errors, Equation (1) cannot be partially transformed into the linear
model Y = XT β + ε, where Y is the n-dimensional response variables, X is the W × n-
dimensional fixed design matrix, β is a W-dimensional vector of model parameters,
the ε is a n × 1-dimensional vector for random error terms with zero mean and finite
variance. Consider the least square objective function U(β) for estimating β, U(β) =
(Y − XT β)T(Y − XT β) = −2YTXT β + βTXXT β + YTY. Minimizing U(β) is equivalent to
minimizing U∗(β) in Formula (4)

U∗(β) = −2YTXT β + βTXXT β. (4)

Comparing the objective function in Formula (4) with Equation (2), it is easy to obtain Y =

( 1
n , 1

n , · · · , 1
n )

T , β = (β1, β2, · · · , βW)T , X =

 h1(X1) · · · h1(Xn)
...

. . .
...

hW(X1) · · · hW(Xn)

. Substituting Y,

X and β into a linear regression model, we obtain
1
n
...
1
n


n×1

=

 h1(X1) · · · hW(X1)
...

. . .
...

h1(Xn) · · · hW(Xn)


n×W

 β1
...

βW


W×1

+

 ε1
...

εn


n×1

.

Then,

εi =
1
n
−

W

∑
j=1

β jhj(Xi), i = 1, 2, · · · , n. (5)

It can be seen from Equation (5) that the value of εi is no longer random if X was the
fixed design matrix. Furthermore, even for a random design X, take the expectation
on both sides of Equation (5), and one can find that the left side is not equal to the
right side, that is, E(εi) = 0 = 1

n −∑W
j=1 β jEhj(Xi). It leads to an additional requirement

∑W
j=1 β jEhj(Xi)=

1
n → 0, which is meaningless as n → ∞, since all β j and hj are positive.

This is a contradiction to ∑W
j=1 β jEhj(Xi) > 0 for all n.

Both of the two situations above contradict the definition of the assumed linear regres-
sion model. Hence, we cannot convert the estimation of Equation (1) into the estimation
problem of linear models. Thus, the existing oracle inequalities are not applicable anymore,
and we will propose new ones later. However, we can transform the mixture models
to a corrected score Dantzig selector, such as in [27]. Although [10] studies the oracle
inequalities for adaptive Dantzig density estimation, their study does not contain the
error-in-variables framework and the support recovery content.

3. Sparse Mixture Density Estimation

In this section, we will present the oracle inequalities for estimators β̂ and hβ̂. The
core of this section consists of five main results corresponding to the oracle inequali-
ties for estimated density (Theorems 1 and 2), upper bounds on `1-estimation error
(Corollaries 1 and 2) and support consistency (Theorem 3) as the byproduct of Corollary 2.

3.1. Data-Dependent Weights

The weights ωj’s are chosen adequately such that the KKT conditions for stochastic
optimization problems have a high probability of being satisfied.

As mentioned before, the weights in Equation (3) rely on the observed data since
we calculate the weights, ensuring the KKT conditions hold with a high probability. The
weighted Lasso estimates could have less `1 estimation error than Lasso estimates (see the
simulation part and [28]). Next, we need to consider what kind of data-dependent weight
configuration can enable the KKT conditions to be satisfied with a high probability. A way
to obtain data-dependent weights is to apply a concentration inequality for a weighted sum
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of independent random variables. Moreover, the weights should be a known data function
without any unknown parameters. A criterion can help obtain the weights grounded on
McDiarmid’s inequality (see [29] for more details).

Lemma 2. Suppose X1, · · · , Xn are independent random variables, and all values belong to a set
A. Let f : An → R be a function and satisfy the bounded difference conditions

supx1,··· ,xn ,x′s∈A | f (x1, · · · , xn)− f (x1, · · · , xs−1, x
′
s, xs+1, · · · , xn)| ≤ Cs,

then for all t > 0, P{| f (X1, · · · , Xn)− E f (X1, · · · , Xn)| ≥ t} ≤ 2 exp
{
− 2t2

∑n
s=1 C2

s

}
.

We define the KKT conditions of optimization evaluated at β∗ (it is from the sub-
gradient of the optimization function evaluated at β∗) by the events below:

Fk(ωk) :=

{∣∣∣∣∣ 1n n

∑
i=1

hk(Xi)−
W

∑
j=1

β∗j < hj, hk > −cβ∗k

∣∣∣∣∣ ≤ ωk

}
, k = 1, 2, · · · , W.

Assume that

• (H.2): ∃ Lk > 0 s.t. ‖hk‖∞ = max
1≤i≤n

|hk(Xi)| ≤ 2Lk;

• (H.3): 0 < max
1≤j≤W

|β∗j | ≤ B.

(H.2) is an assumption in sparse `1 estimation, and the assumption (H.3) is a classical
compact parameter space assumption in sparse high-dimensional regressions (see [9,25]).

Next, we check that the event Fk(ωk) is hold with high probability. Note that
Ehk(Xi) = ∑W

j=1 β∗j < hj, hk > (which is free of Xi), we find

1
n

∣∣∣∣∣ n

∑
i=1

hk(Xi)− (
n

∑
i 6=s

hk(Xi) + hk(X
′
s))

∣∣∣∣∣ = 1
n

∣∣∣hk(Xs)− hk(X
′
s)
∣∣∣ ≤ 1

n
(|hk(Xs)|+ |hk(X

′
s)|) ≤

4Lk
n

,

where the last inequality is due to |hk(Xi)| ≤ max
1≤i≤n

|hk(Xi)| ≤ 2Lk.

Next, we apply the McDiarmid’s inequality on the event F c
k (ωk) by (H.3). Then

P(F c
k (ωk)) = P

{∣∣∣∣∣ 1n n

∑
i=1

hk(Xi)−
W

∑
j=1

β∗j < hj, hk > −cβ∗k

∣∣∣∣∣ ≥ ωk

}

(by (H.3)) ≤ P

{∣∣∣∣∣ 1n n

∑
i=1

hk(Xi)− Ehk(Xi)

∣∣∣∣∣ ≥ ωk − cB

}

(define ω̃k := ωk − cB > 0) ≤ 2 exp

{
−

2ω̃2
k

16L2
k/n

}
= 2 exp

{
−

nω̃2
k

8L2
k

}
=:

δ

W
, 0 < δ < 1.

Considering the previous line,

ωk := 2
√

2Lk

√
1
n

log
2W

δ
+ cB =: 2

√
2Lkv(δ/2)+ cB, where v = v(δ) :=

√
1
n

log
W
δ

. (6)

The weight ωk in our paper is different from [9], which gives the un-shift version

(ω̌k = 4Lk

√
1
n log W

δ/2 ), due to the Elastic-net penalty. Define the modified KKT conditions:

Kk(ωk) := {| 1
n

n

∑
i=1

hk(Xi)−
W

∑
j=1

β∗j < hj, hk > | ≤ ω̃k}, k = 1, 2, · · · , W (7)

which hold with probability of at least 1− 2 exp
{
− nω̃2

k
8L2

k

}
.
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3.2. Non-Asymptotic Oracle Inequalities

Introduced by [30], oracle inequality is a powerful non-asymptotic and analytical tool
that seeks to provide the distance between the obtained estimator and a true estimator.
The sharp oracle inequality connects the optimal convergence of an obtained estimator
compared with the true parameter (see [31,32]).

For ∀β ∈ RW , let I(β) = {j ∈ {1, · · · , W} : β j 6= 0} be the indices corresponding to the
non-zero components of the vector β, i.e., the support in mathematical jargon. If there is no
ambiguity, we would like to write I(β∗) as I∗ for simplicity. Define W(β) = ∑W

j=1 I(β j 6= 0)
as the number of its non-zero components, where I(·) represents the indicative function.
Let σ2

j = Var(hj(X1)), 1 ≤ j ≤W.
Below, we will state the non-asymptotic oracle inequalities for hβ̂ (with the probability

at least1− δ(W, n) for any integer W and n), which measures the L2 distance between hβ̂

and h. For β ∈ RW , define the correlation for the two base densities: hi and hj, ρW(i, j) =
<hi ,hj>

‖hi‖‖hj‖
, i, j = 1, · · · , W. Our results will be established under the local coherence condition,

and we define the maximal local coherence as:

ρ(β) = maxi∈I(β) maxj 6=i |ρW(i, j)|.

It is easy to see that ρ(β) measures the separation of the variables in the set I(β)
from one another and the rest. The degree of separation is measured in terms of the
size of the correlation coefficients. However, the regular condition introduced by this
coherence may be too strong. It may exclude cases that the “correlation” can be relatively
significant for a small number of pairs (i, j) and almost zero otherwise. Thus, we consider
the definition of the cumulative local coherence given by [9]: ρ∗(β) = ∑i∈I(β) ∑j>i |ρW(i, j)|.

Define H(β) = maxj∈I(β)
ωj

v(δ/2)‖hj‖
, F = max1≤j≤W

v(δ/2)‖hj‖
ω̃j

= max1≤j≤W
‖hj‖

2
√

2Lj
, where

ω̃j := 2
√

2Ljv(δ/2).
By using the definition of ρ∗(β) and the notations above, we present the main results

of this paper, which lays the foundation for the oracle inequality of the estimated mixture
coefficients.

Theorem 1. Under (H.1)–(H.3), let c =
min1≤j≤W{ω̃j}

B and a given constant 0 < γ ≤ 1. If the
true base functions {hj}W

j=1 conform to the cumulative local coherence assumption for all β ∈ RW ,

12FH(β)ρ∗(β)
√

W(β) ≤ γ, (8)

then the β̂ of the optimization problem in Equation (3) has the following oracle inequality with a
probability at least 1− δ,

‖hβ̂ − h‖2 +
αopt1(1− γ)

(αopt1 − 1)

W

∑
j=1

ω̃j|β̂ j − β j|+
αopt1

αopt1 − 1

W

∑
j=1

c(β̂ j − β j)
2

≤
αopt1 + 1
αopt1 − 1

‖hβ − h‖2 +
18α2

opt1

αopt1 − 1
H2(β)v2(δ/2)W(β),

where αopt1 = 1 +
√

1 +
‖hβ−h‖2

9H2(β)v2(δ/2)W(β)
.

It is worthy to note that here we use
√

W(β) instead of W(β), and the latter is used
in [9]. The upper bound of the oracle inequality by Theorem 1 is sharper than the upper
bound of Theorem 1 in [9]. Further, we give the value of the optimal αopt1, but [9] did not
give it. The reason for this phenomenon is quite clean actually: from the proof, it is due
to ineuqality (A5). Now, let us address the sparse Gram matrix ΨW = (< hi, hj >)1≤i,j≤W
with a small number of non-zero elements in off-diagonal positions, define ψW(i, j) as the
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element (i, j)-th of position ψW . Condition (8) in Theorem 1 can be transformed to the
condition

12SH(β)
√

W(β) ≤ γ,

where the number S is called the sparse index of matrix ΨW , which is defined as S =
|{(i, j) : i, j ∈ {1, · · · , W}, i > j and ψW(i, j) 6= 0}|, where |A| is the number of elements of
set A.

Sometimes the assumption in Condition (8) does not imply the positive definiteness
of ΨW . Next, we give a similar oracle inequality that is valid under the hypothesis that the
Gram matrix ΨW is positive definite.

Theorem 2. Under the assumption of (H.1)–(H.3) and that the Gram matrix ΨW is positive
definite with a minimum eigenvalue greater than or equal to λW > 0. For all β ∈ RW , the β̂ of the
optimization problem in Equation (3) has the following oracle inequality with probability at least
1− δ,

‖hβ̂ − h‖2 +
αopt2

αopt2 − 1

W

∑
j=1

ω̃j|β̂ j − β j|+
αopt2

αopt2 − 1

W

∑
j=1

c(β̂ j − β j)
2

≤
αopt2 + 1
αopt2 − 1

‖hβ − h‖2 +
576α2

opt2

αopt2 − 1
G

λW
v2(δ/2),

where G = G(β) := ∑j∈I(β) L2
j and αopt2 = 1 +

√
1 +

‖hβ−h‖2

288 G
λW

v2(δ/2)
.

Remark 1. The argument and result of Theorem 1 in this paper is more refined than the conclusion
of Theorem 1 in [9] for Lasso by letting γ = 1/2 and c = 0. In addition, Theorems 1 and 2 of this
paper, respectively, give the optimal α value of the density estimation oracle inequalities, namely
αopt1, αopt2. It provides a potentially sharper bound for the `1-estimation error bound.

Next, we will present the `1-estimation error for the estimator β̂ by Equation (3), and the
weights are defined by Equation (6). For the technical point, we consider that ‖hj‖ = 1 for all j
in Equation (3), i.e., the base functions are normalized. This normalization mimics the covariates’
standardization procedure when doing penalized estimations in generalized linear models. For
simplicity, we put L := max1≤j≤W Lj.

For any other choice of v(δ/2) greater than or equal to
√

1
n log 2W

δ , the conclusions
of Section 3 are valid with a high probability. It imposes a restriction on the predictive
performance of CSDE. As pointed out in [33], for the `1-penalty in the regression, the
adjusted sequence ωj required for the corrected selection is usually larger than the adjusted
sequence ωj that produces a good prediction. The selection of the mixture density shown
below is also true. Specifically, we will take the value β = β∗ and v = v(δ/2W) =√

log(2W2/δ)
n , then αopt1, αopt2 = 2. Below, we give the Corollaries of Theorems 1 and 2.

Corollary 1. Given the same conditions as Theorem 1 with ‖hj‖ = 1 for all j, let αopt1 = 2, then
we have the following `1-estimation error oracle inequality:

W

∑
j=1
|β̂ j − β∗j | ≤

72
√

2v(δ/2W)W(β∗)

1− γ

(L + Lmin)
2

Lmin
(9)

with probability at least 1− δ/W, where Lmin = min1≤j≤W Lj.
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Corollary 2. Given the same conditions as Theorem 2 with ‖hj‖ = 1 for all j, let αopt2 = 2, then
we have the following oracle inequality, with probability at least 1− δ/W,

∑W
j=1 |β̂ j − β∗j | ≤

288
√

2v(δ/2W)G∗
LminλW

, where G∗ = ∑j∈I∗ L2
j .

If the number W(β∗) of the mixture indicator elements is much smaller than
√

n,
then inequality (9) guarantees that the estimated β̂ is close to the true β∗, and the `1-
estimation error will be presented in the numerical simulation in Section 4. Our results of
Corollaries 1 and 2 are non-asymptotic for any W and n. The oracle inequalities are

guiders for us to find an optimal tuning parameter with order O(
√

log W
n ) for a sharper

estimation error and better prediction performance. This is also an intermediate and crucial
result, which leads to the main results of correctly identifying the mixture components in
Section 3.3. In the following section, we turn to cope with the identification of I∗. Corrected
components are selected by the proposed oracle inequality for the weighted `1+ `2 penalty.

3.3. Corrected Support Identification of Mixture Models

In this section, we will study the results of the support recovery of our CSDE estimator.
There are few results on support recovery, while most of the results are the consistency of
the `1-error and prediction errors. Here, we borrow the framework of [25,33]. They give
many proof techniques to deal with the corrected support identification in linear models by
`1 + `2 regularization. Let Î be the set of indicators consisting of non-zero elements of β̂ in
the given Equation (3). In other words, Î is an estimate of the true support set I(β∗) := I∗.
We will study P( Î = I(β∗)) ≥ 1− ε for a given 0 < ε < 1 under some mild conditions.

To identify the I∗ consistently, we need more assumptions about some special correla-
tion conditions than `1-error consistency.

Condition (A): ρ∗(β∗) ≤ LLminλW
288G∗ .

Moreover, we need an additional condition that the minimal signal should be higher
than a threshold level and quantified by order of tuning parameter. Therefore, we state it
as follows:

Condition (B): minj∈I∗ |β∗j | ≥ 4
√

2v( δ
2W )L, where v( δ

2W ) :=
√

1
n log 2W2

δ .
When performing simulation, Condition (B) is the theoretical guarantee that the minor

magnitude of β j must be greater than a threshold value as a minimal signal condition. It is
also called the Beta-min condition (see [26]).

Theorem 3. Let 0 < δ < 1
2 and define εk := |E[hk(X1)] − E[hk(Z1)]|. Assume that both

conditions (A) and (B) are true and give the same conditions as Corollary 2, then

P( Î = I∗) ≥ 1−
(

4W
(

δ
2W2

)(1−ε∗k )
2

+ 2δ

)
, where ε∗k = εk/

√
2v(δ/2W)L.

Under the Beta-min condition, the support estimation is very close to the true support
of β∗j . The probability of the event { Î = I∗} is high when W is growing. The β̂ recovers

the corrected support with probability at least 1− (4W( δ
2W2 )

(1−ε∗k )
2
+ 2δ). The result is

non-asymptotic and it is true for any fixed W and n. There is a similar conclusion about
support consistency (see Theorem 6 of [25]).
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4. Simulation and Real Data Analysis

Ref. [9] proposes the SPADES estimation to deal with the samples for sparse mixture
density, and they also derive an algorithm from complementing their theoretical result.
Their findings successfully handle the high-dimensional adaptive density estimation to
some degree. However, their algorithm is costly and unstable. In this section, we deal with
the tuning parameter directly and compare our CSDE method with the SPADES method
in [9] and other similar methods. In all cases here, we fix n = 100 for W = 81, 131, 211, 321,
which is known as the dimension of the unknown parameter β∗. The performance of
each estimator is evaluated by the `1-estimation error and the total variation (TV) distance
between the estimator and the true value of β∗. The total variation (TV) error is defined as:
TV(hβ∗ , hβ̂) =

∫
|hβ∗(x)− hβ̂(x)| dx.

4.1. Tuning Parameter Selection

In [9], the λ1 is chosen by the coordinate descent method, while the mixture weights
are detected by GBM. However, in our article, the optimal weights can be computed directly.
Thus, it is much easier to carry out than [9]. The `1-penalty term ∑W

j=1 ωj|β j| with optimal

weights are defined by ωk := 2
√

2Lkv(δ/2) + cB, where Lj = ‖hj‖∞, which usually can be
computed easily for a continuous hj.

For a discrete base density {hj}W
j=1, it can be estimated as the following approxima-

tion by using concentration inequalities from Exercise 4.3.3 of [34]: |med(X)− E(X)| ≤√
2Var(X), x̄ ≈ xmed

(
1 + O(n−1)

)
≈ h−1(Lj)

(
1 + O(n−1)

)
, where x̄ and xmed represent

the sample mean and sample median, respectively, in each simulation, then we only need
to select the λ1 and c = λ2, and they can be detected by the nesting coordinate descent
method. Moreover, the precision level is assigned as ξ = 0.001 in our simulation.

4.2. Multi-Modal Distributions

First, we examine our method in a multi-modal Gaussian model that is similar to the
first model in [9]. However, our mixture Gaussian has a different variance, which leads the
meaningful weights to our estimation. The density function for the i.i.d. sample Z1, . . . , Zn
is assigned as follows:

h∗β(x) =
W

∑
j=1

β∗j φ
(

x|aj, σj
)
, (10)

where φ
(

x|aj, σj
)

is the density of N(aj, σ2
j ). However, to estimate β∗, we only observe i.i.d.

data X1, . . . , Xn with density gβ∗j
(x) = ∑W

j=1 β∗j φ(x|aj,
√

1.1σj). Put a = 0.5, n = 100 and

β∗ =
(

0T
8 , 0.2, 0T

10, 0.1, 0T
5 , 0.1, 0T

10, 0.1, 0T
10, 0.1, 0T

5 , 0.15, 0T
10, 0.15, 0T

10, 0.1, 0T
W−76

)T
, (11)

with σ =
(
1T

20, 0.8T
6 , 0.6T

11, 0.4T
11, 0.6T

6 , 0.8T
11, 1.2T

W−76
)T .

We replicate the simulation N = 100 times. Simulation results are presented in
Table 1, from which we can see our method has more and more excellent performances as
the W increases, which matches the non-asymptotic results in the previous section. The
best performance is far better than the other three methods when W = 321. It is worthy to
note that the better approximation follows the increase in W, matching Equation (7) and
Theorem 3 in our previous section.

We plot the solution path to compare the performance of the four estimators in
β j ∈ I(β) for every W in Figure 1 (the result of Elastic-net in W = 321 is not be shown due
to its poor performance.). These figures also provide strong support for the above analysis.
Meanwhile, we plot the probability densities of the several estimators and the true density
to complement the visual sensory of the advantage in our method in Figure 2. The robust
competency of detecting the multi-mode is shown (whereas other methods only find the
most strongest signal, ignoring other meaningful but relatively weak signals).
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Figure 1. The simulation result in Section 4.2. The estimated support of β∗ by the four types of
estimators, and the W is varying. The circles represent the means of the estimators under the four
specific approaches, while the half vertical lines mean the standard deviations.

Table 1. The simulation results in Section 4.2. The mean and standard deviation of the errors in the
four estimators of β∗ under N = 100 simulations, with n = 100. The quasi-optimal λ2 is c = 0.002
for Elastic-net, while c = 0.027 is for the CSDE.

W λ1 L1 Error TV Error

Lasso

81

0.065
2.133 (2.467) 1.137 (1.115)

Elastic-net 2.061 (1.439) 1.114 (0.805)

SPADES
0.053

1.922 (2.211) 1.258 (1.296)

CSDE 2.191 (4.812) 1.405 (2.329)

Lasso

131

0.068
2.032 (0.985) 1.352 (0.712)

Elastic-net 2.236 (2.498) 1.409 (1.056)

SPADES
0.056

1.880 (2.644) 0.972 (1.204)

CSDE 1.635 (0.342) 0.863 (0.402)



Entropy 2022, 24, 30 12 of 28

Table 1. Cont.

W λ1 L1 Error TV Error

Lasso

211

0.071
2.572 (4.187) 1.605 (2.702)

Elastic-net 2.061 (1.883) 1.353 (1.516)

SPADES
0.058

1.764 (1.041) 0.832 (0.610)

CSDE 1.648 (0.168) 0.791 (0.415)

Lasso

321

0.074
2.120 (2.842) 1.146 (1.115)

Elastic-net 10.173 (82.753) 7.839 (67.887)

SPADES
0.061

2.106 (4.816) 0.818 (1.565)

CSDE 1.623 (0.085) 0.634 (0.199)
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Figure 2. The simulation results in Section 4.2. The density map of the four estimators. The result of
Elastic-net in W = 321 is not be shown due to its poor performance.
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4.3. Mixture of Poisson Distributions

We study the mixture of discrete distribution: the mixture Poisson distribution

hβ∗(x) =
W

∑
j=1

β∗j p
(
x|λj = a · j

)
, (12)

where p
(

x|λj = a · j
)

is the probability mass function (p.m.f.) of the Poisson distribution
with mean λj. We set a = 0.1 and

β∗ =
(

0T
8 , 0.2, 0T

10, 0.1, 0T
5 , 0.1, 0T

10, 0.1, 0T
10, 0.1, 0T

5 , 0.15, 0T
10, 0.15, 0T

10, 0.1, 0T
W−75

)T
. (13)

The adjusted weights are calculated by Equation (3), and in discrete distributions, we
define 〈 f , g〉 = ∑∞

k=1 f (k)g(k). Meanwhile, the Poisson random variable with measurement
errors can be treated as a negative binomial random variable. Let n(x|λj, r) be the p.m.f.
of the Poisson distribution with the mean λj and dispersion parameter r. Suppose the
observed data with sample size n = 100 has the p.m.f.

gβ∗(x) =
W

∑
j=1

β∗j n
(
x|λj = a · j, r

)
, (14)

where r = 6, which leads to an increment of variance from Poisson to the negative
binomial distribution. Similarly, we replicate each simulation to estimate the parameter
N = 100 times with the sample from the mixture negative binomial distribution above.
The result is shown in Table 2. The result is actually akin to that in the previous mixture
Gaussian distribution, while the strong performance of our method is shown clearly when
W is considerable.

Table 2. The simulation result in Section 4.3. The mean and standard deviation of the errors in the
four estimators of β∗ under N = 100 simulations. The λ2 is chosen as c = 0.005 for Elastic-net, while
c = 0.203 for the CSDE.

W λ1 L1 Error TV Error

Lasso

81

0.048
1.796 (0.006) 0.002 (0.001)

Elastic-net 1.796 (0.006) 0.002 (0.001)

SPADES
0.138

1.811 (0.013) 0.002 (0.005)

CSDE 1.806 (0.008) 0.003 (0.005)

Lasso

131

0.051
1.828 (0.006) 0.003 (0.001)

Elastic-net 1.830 (0.009) 0.004 (0.002)

SPADES
0.145

1.880 (0.006) 0.002 (0.005)

CSDE 1.854 (0.006) 0.002 (0.004)

Lasso

211

0.053
1.935 (0.010) 0.005 (0.003)

Elastic-net 2.061 (0.014) 0.007 (0.008)

SPADES
0.152

1.935 (0.008) 0.005 (0.003)

CSDE 1.861 (0.005) 0.003 (0.002)

Lasso

321

0.055
1.927 (0.031) 0.005 (0.002)

Elastic-net 2.123 (0.026) 0.009 (0.009)

SPADES
0.158

1.938 (0.008) 0.005 (0.003)

CSDE 1.852 (0.002) 0.002 (0.001)
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4.4. Low-Dimensional Mixture Model

Surprisingly, our method has more competitive efficacy than some popular meth-
ods (such as EM algorithm), even the dimension W is relatively small. To see this,
we introduce the following numerical experiments to estimate the weights of the low-
dimensional Gaussian mixture model: the samples X1, · · · , Xn come from the model:
hβ∗(x) = ∑W

j=1 β∗j φ
(

x|µj, σj
)
. The updated equation for the EM algorithm in t-th step is:

ω
(t)
ij =

p(t)j φ(xi; µt, σt)

∑W
s=1 p(t)s φ(xi; µs, σs)

, β
(t+1)
j =

∑W
i=1 ω

(t)
ij

∑n
i=1 ∑W

j=1 ω
(t)
ij

.

Here, we consider two scenarios:

(1) W = 6, β = (0.3, 0, 0, 0.3, 0, 0.4)T , µ = (0, 10, 20, 30, 40, 50)T , σ = (1, 2, 3, 4, 5, 6)T ;

(2) W = 7, β = (0.1, 0, 0, 0.8, 0, 0, 0.1)T , µ = (0, 1, 2, 3, 4, 5, 6)T ,

σ = (0.3, 0.2, 0.2, 0.1, 0.2, 0.2, 0.3)T .

For each scenario n = 50, and the fitter levels (cessation level) in the EM approach
and our method are both ξ = 10−4. A well-advised initial value in the EM approach is the
equal weight.

We replicate the simulation N = 100 times, and the optimal tuning parameters stem
from the cross-validation (CV). Thus, under each simulation, they are not the same, albeit
they are very close to each other. The result can be seen in Table 3.

Table 3. The low-dimensional simulation result in Section 4.4.

L1 Error TV Error

Scenario 1
EM 0.255 (0.122) 0.205 (0.098)

CSDE 0.206 (0.145) 0.185 (0.104)

Scenario 2
EM 0.111 (0.055) 0.111 (0.055)

CSDE 0.109 (0.037) 0.108 (0.037)

4.5. Real Data Examples

Practically, we consider using our method to estimate some densities in the environ-
mental science field. Wind, which is mercurial, has been an advisable object to study for a
long time in meteorology. Please note that the wind’s speed at one specific location may
not be diverse so we will use the wind’s azimuth angle with a more sparse density at two
sites in China. Many types of research about the estimated density for wind exist, so there
is a possibility of using our approach to cope with some difficulties in meteorology science.

There have been some very credible meteorological dataset. We used the ERA5 hourly
data in [35] to continue our analysis. We want chose a continental area and a coastal area in
China, so we chose Beijing Nongzhanguan and Qingdao Coast. The locations of these two
areas are: (116.3125◦ E, 116.4375◦ E) × (39.8125◦ N , 39.8125◦ N). Take notice that the wind
in one day may be highly correlated. Therefore, using the data at a specific time point of
each day in a consecutive period as i.i.d. samples is reasonable. The sample histograms
at 6 am in Beijing Nongzhanguan and at midnight on the Qingdao Coast are shown in
Figure 3. Here, we used the data from 1 January 2013 to 12 December 2015.

As we can see, their density does multi-peak (we used 1095 samples). Now, we can
use our approach to estimate the multi-mode densities based on a relatively small size of
samples, which is only a tiny part of the whole data from 1 January 2013 to 12 December
2015. Because one year has about 360 days, we may assume that every day is a latent factor
that forms the base density. Thus, the model is designed as hβ∗(x) = ∑360

j=1 β∗j φ
(

x|µj, σj
)

with the mean and variance parameters µ = (1, 2, . . . , 360)T , σ = t · 1T
360,, where t is the
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bandwidth (or tuning parameter). With the different sub-samples, the computed values
are different.

Another critical issue is how to choose the tuning parameters λ1 and λ2. Then,
we apply the cross-validation criterion, namely choosing λi, to minimize the difference
between the two estimators derived from the separated samples in a random dichotomy.

Now, start to construct the samples for the estimating procedure. Assume that an
observatory wants to figure out some information about the two areas’ wind. However, it
does not have intact data due to the limited budget at its inception. The only samples it has
are several days’ information each month for the two areas, and these days scatter randomly.
Furthermore, sample size n = 168 exactly. These imperfect data increase the challenge of
estimating a trustworthy density. We compared our method with other previous methods,
in which appraising the difference between the complete data sample histogram and the
estimated density under each method is for the evaluation. Notice that the samples are
only a tiny part of the data, so the n = 168 < M(= 360) is relatively small. The small
sample and large dimension setting coincide with the non-asymptotic theory provided in
the previous section. The estimated density has been shown in Figure 4.

In this practical application, our method vindicates its more efficient estimating
performance and stability from its propinquity of the complete sample histogram, namely
the productive capacity of detecting the shape of the multi-mode density and the stronger
inclination to bear a resemblance to each other sub-sample (although some subtle nuances
do exist because of the different sub-sample). An alternative approach can be to consider
principles and tools of circular statistics, which has been reviewed in [36].

Area−1: Beijing Nongzhanguan, 6am Area−2: Qingdao Coast, 12am

0 100 200 300 0 100 200 300

Azimuth (degree measure)

de
ns

ity

Figure 3. The sample histogram of the azimuth in Beijing Nongzhanguan at 6am and Qingdao Coast
at 12 am.
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Figure 4. The density map of the four estimators’ approaches for the three random sub-samples from
the real-world data in Section 4.5.

5. Summary and Discussions

The paper deals with the deconvolution problem using Lasso-type methods: the
observations X1, · · · , Xn are independent and generated from Xi = Zi + εi, and the goal is
to estimate the unknown density h of the Zi. We assume that the function h can be written
as h(·) = hβ∗(·) = ∑W

j=1 β∗j hj(·) based on some functions {hj}W
j=1 from a specific dictionary

and propose estimating the coefficients of this decomposition with the Elastic-net method.
For this estimator, we show that under some classical assumptions of the model, such as
coherence of the Gram matrix, finite sample bounds for the estimation and the prediction
errors valid with a relatively high probability can be obtained. Moreover, we prove a
variable selection consistency result under a beta-min condition and conduct an extensive
numerical study. The following estimation problem is also similar to the CSDE.

For future study, it is also interesting and meaningful to do hypothesis testing about
the coefficients β∗ ∈ RW in sparse mixture models. For a general function h : RW 7→ Rm

and a nonempty closed set Ω ∈ Rm, we can consider

H0 : h(β∗) ∈ Ω vs. H1 : h(β∗) /∈ Ω.

It is possible to use [37] as a general approach to hypothesis testing within models with
measurement errors.
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Appendix A

For convenience, we first give a preliminary lemma and proof. Define the random
variables Mj =

1
n ∑n

i=1
{

hj(Xi)− Ehj(Xi)
}

. Consider the event E by E =
⋂W

j=1{2|Mj| ≤ ω̃j},

where ω̃k := 2
√

2Lk

√
1
n log W

δ/2 =: 2
√

2Lkv(δ/2). Then, we have the following lemma,
which is cornerstone for the proofs in below.

Lemma A1. Suppose max
1≤j≤W

Lj < ∞ and c =
min1≤j≤W{ω̃j}

B , for any β ∈ RW on the event E , we

have ‖hβ̂ − h‖2 + ∑W
j=1 ω̃j|β̂ j − β j|+ ∑W

j=1 c(β̂ j − β j)
2 ≤ ‖hβ − h‖2 + 6 ∑j∈I(β) ωj|β̂ j − β j|.

Appendix A.1. Proof of Lemma A1

According to the definition of β̂, for any β ∈ RW , we find − 2
n ∑n

i=1 hβ̂(Xi) + ‖hβ̂‖
2 +

2 ∑W
j=1 ωj|β̂ j|+ c ∑W

j=1 β̂2
j ≤ −

2
n ∑n

i=1 hβ(Xi) + ‖hβ‖2 + 2 ∑W
j=1 ωj|β j|+ c ∑W

j=1 β2
j . Then

‖hβ̂‖
2 − ‖hβ‖2 ≤ 2

n

n

∑
i=1

hβ̂(Xi)−
2
n

n

∑
i=1

hβ(Xi) + 2
W

∑
j=1

ωj|β j| − 2
W

∑
j=1

ωj|β̂ j|+ c
W

∑
j=1

β2
j − c

W

∑
j=1

β̂2
j .

Note that

‖hβ̂ − h‖2 = ‖hβ̂ − hβ + hβ − h‖2 = ‖hβ̂ − hβ‖2 + ‖hβ − h‖2 + 2 < hβ − h, hβ̂ − hβ >

= ‖hβ − h‖2 − 2 < h, hβ̂ − hβ > +2 < hβ, hβ̂ − hβ > +‖hβ̂ − hβ‖2

= ‖hβ − h‖2 − 2 < h, hβ̂ − hβ > +‖hβ̂‖
2 − ‖hβ‖2.

Combining the two result above, we obtain

‖hβ̂ − h‖2 ≤ ‖hβ − h‖2 + 2
W

∑
j=1

ωj|β j| − 2
W

∑
j=1

ωj|β̂ j|+ c
W

∑
j=1

β2
j − c

W

∑
j=1

β̂2
j

− 2 < h, hβ̂ − hβ > +
2
n

n

∑
i=1

hβ̂(Xi)−
2
n

n

∑
i=1

hβ(Xi). (A1)

https://songxichen.com/
https://songxichen.com/
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According to the definition of hβ(x), it gives hβ(x) = ∑W
j=1 β jhj(x) with β = (β1, · · · , βW).

For the three terms in Equation (A1), we have

− 2 < h, hβ̂ − hβ > +
2
n

n

∑
i=1

hβ̂(Xi)−
2
n

n

∑
i=1

hβ(Xi)

= 2 · 1
n

n

∑
i=1

(
W

∑
j=1

β̂ jhj(Xi)−
W

∑
j=1

β jhj(Xi)

)
− 2E(hβ′ − hβ)(Xi)|β′=β̂

= 2
W

∑
j=1

1
n

n

∑
i=1

hj(Xi)(β̂ j − β j)− 2
W

∑
j=1

E[hj(Xi)](β̂ j − β j)

= 2
W

∑
j=1

(
1
n

n

∑
i=1

hj(Xi)− E[hj(Xi)]

)
(β̂ j − β j).

Then

‖hβ̂ − h‖2 ≤ ‖hβ − h‖2 + 2
W

∑
j=1

(
1
n

n

∑
i=1

hj(Xi)− E[hj(Xi)]

)
(β̂ j − β j)

+ 2
W

∑
j=1

ωj|β j| − 2
W

∑
j=1

ωj|β̂ j|+ c
W

∑
j=1

β2
j − c

W

∑
j=1

β̂2
j .

Conditioning on E , we have ‖hβ̂ − h‖2 ≤ ‖hβ − h‖2 + ∑W
j=1 ω̃j|β̂ j − β j|+ 2 ∑W

j=1 ωj(|β j| −
|β̂ j|) + c ∑W

j=1(β2
j − β̂2

j ). We add ∑W
j=1 ω̃j|β̂ j − β j| + c ∑W

j=1(β j − β̂ j)
2 to both sides of the

inequality, it gives

‖hβ̂ − h‖2 +
W

∑
j=1

ω̃j|β̂ j − β j|+ c
W

∑
j=1

(β j − β̂ j)
2

≤ ‖hβ − h‖2 + 2
W

∑
j=1

ω̃j|β̂ j − β j|+ 2
W

∑
j=1

ωj(|β j| − |β̂ j|) + c
W

∑
j=1

(β2
j − β̂2

j ) + c
W

∑
j=1

(β j − β̂ j)
2.

Note that

c[
W

∑
j=1

(β2
j − β̂2

j ) +
W

∑
j=1

(β j − β̂ j)
2] = c[

W

∑
j=1

(β2
j − β̂2

j + β2
j − 2β j β̂ j + β̂2

j )]

= 2c
W

∑
j=1

β j(β j − β̂ j) = 2c ∑
j∈I(β)

β j(β j − β̂ j) ≤ 2cB ∑
j∈I(β)

|β j − β̂ j| ≤ 2 ∑
j∈I(β)

ω̃j|β j − β̂ j|,

where the last inequality is due to the assumption c =
min1≤j≤W{ω̃j}

B ≤ ω̃j
B . Thus, we obtain

‖hβ̂ − h‖2 +
W

∑
j=1

ω̃j|β̂ j − β j|+ c
W

∑
j=1

(β̂ j − β j)
2

≤ ‖hβ − h‖2 + 2
W

∑
j=1

ω̃j|β̂ j − β j|+ 2
W

∑
j=1

ωj(|β j| − |β̂ j|) + 2 ∑
j∈I(β)

ω̃j|β̂ j − β j|

≤ ‖hβ − h‖2 + 2
W

∑
j=1

ωj|β̂ j − β j|+ 2
W

∑
j=1

ωj(|β j| − |β̂ j|) + 2 ∑
j∈I(β)

ωj|β̂ j − β j|,

where the last inequality follows from ω̃j ≤ ωj for all j.
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We know β j 6= 0 if j ∈ I(β), and β j = 0 if j /∈ I(β). Considering |β j| − |β̂ j| ≤ |β̂ j − β j|
for all j, we have 2 ∑W

j=1 ωj|β̂ j − β j|+ 2 ∑W
j=1 ωj(|β j| − |β̂ j|) ≤ 4 ∑j∈I(β) ωj|β̂ j − β j|. Then

‖hβ̂ − h‖2 +
W

∑
j=1

ω̃j|β̂ j − β j|+ c
W

∑
j=1

(β̂ j − β j)
2

≤ ‖hβ − h‖2 + 4 ∑
j∈I(β)

ωj|β̂ j − β j|+ 2 ∑
j∈I(β)

ωj|β̂ j − β j|

= ‖hβ − h‖2 + 6 ∑
j∈I(β)

ωj|β̂ j − β j|.

Appendix A.2. Proof of Theorems

According to ω̃j = 2
√

2Lj

√
1
n log 2W

δ in Equation (6), the sum of the independent
random variables ζij = hj(Xi) − Ehj(Xi) is determined by Hoeffding’s inequality, and
|hj(Xi)| ≤ 2Lj. We obtain

P(E c) = P

 W⋃
j=1

{2|Mj| > ω̃j}

 ≤ W

∑
j=1

P(2|Mj| > ω̃j) ≤ 2
W

∑
j=1

exp

(
−

2n2 · ω̃2
j /4

4nL2
j

)

= 2
W

∑
j=1

exp
(
− log

2W
δ

)
= 2W · δ

2W
= δ.

Appendix A.3. Proof of Theorem 1

By Lemma A1, we need an upper bound on ∑j∈I(β) ωj|β̂ j − β j|. For easy notation, let
qj = β̂ j − β j, Q(β) = ∑j∈I(β) |qj|‖hj‖, Q = ∑W

j=1 |qj|‖hj‖. According to the definition

of H(β), that is, H(β) = maxj∈I(β)
ωj

v(δ/2)‖hj‖
, we have

∑
j∈I(β)

ωj|β̂ j − β j| ≤ v(δ/2)H(β)Q(β). (A2)

Let Q∗(β) :=
√

∑j∈I(β) q2
j ‖hj‖2. Using the definition of hβ(x), we obtain Q2

∗(β) =

∑j∈I(β) q2
j ‖hj‖2 = ‖hβ̂ − hβ‖2 − ∑i,j/∈I(β) qiqj < hi, hj > −(2 ∑i/∈I(β) ∑j∈I(β) qiqj < hi, hj >

+ ∑ ∑
i,j∈I(β),i 6=j

qiqj < hi, hj >). As i, j /∈ I(β), βi = β j = 0, it is easy to see ∑ ∑
i,j/∈I(β)

< hi, hj >

qiqj ≥ 0. Observe that

2 ∑
i/∈I(β)

∑
j∈I(β)

qiqj < hi, hj > + ∑ ∑
i,j∈I(β),i 6=j

qiqj < hi, hj >

= 2 ∑
i/∈I(β)

∑
j∈I(β)

qiqj < hi, hj > +2 ∑ ∑
i,j∈I(β),j>i

qiqj < hi, hj >= 2 ∑ ∑
i∈I(β),j>i

qiqj < hi, hj > .

By the definitions of ρW(i, j) and ρ∗(β), then

Q2
∗(β) ≤ ‖hβ̂ − hβ‖2 + 2 ∑ ∑

i∈I(β),j>i
|qi||qj|‖hi‖‖hj‖

< hi, hj >

‖hi‖‖hj‖

≤ ‖hβ̂ − hβ‖2 + 2ρ∗(β) max
i∈I(β),j>i

|qi|‖hi‖|qj|‖hj‖.
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By maxi∈I(β) |qi|‖hi‖ ≤
√

∑j∈I(β) q2
j ‖hj‖2 = Q∗(β), maxi∈I(β),j>i |qj|‖hj‖ ≤ ∑W

j=1 |qj|‖hj‖,

Q2
∗(β) ≤ ‖hβ̂ − hβ‖2 + 2ρ∗(β)Q∗(β)

W

∑
j=1
|qj|‖hj‖ = ‖hβ̂ − hβ‖2 + 2ρ∗(β)Q∗(β)Q. (A3)

By Equation (A3), we can obtain Q2
∗(β)− 2ρ∗(β)Q∗(β)Q− ‖hβ̂ − hβ‖2 ≤ 0.

To find the upper bound of Q∗(β), applying the properties of the quadratic inequality
to the above formula, we obtain that

Q∗(β) ≤ ρ∗(β)Q +
√

ρ2∗(β)Q2 + ‖hβ̂ − hβ‖2 ≤ ρ∗(β)Q + [ρ∗(β)Q + ‖hβ̂ − hβ‖]

≤ 2ρ∗(β)Q + ‖hβ̂ − hβ‖. (A4)

Note that W(β) = |I(β)| = ∑W
j=1 I(β j 6= 0), employing the Cauchy–Schwarz inequalities,

we have

W(β) ∑
j∈I(β)

|qj|2‖hj‖2 = ∑
j∈I(β)

I2(j ∈ I(β)) ∑
j∈I(β)

|qj|2‖hj‖2

≥ ( ∑
j∈I(β)

I({j ∈ I(β))|qj|‖hj‖)2 = Q2(β).

Then, Q2
∗(β) = ∑j∈I(β) |qj|2‖hj‖2 ≥ Q2(β)/W(β). In combination with Equation (A4), we

can obtain Q(β)/
√

W(β) ≤ Q∗(β) ≤ 2ρ∗(β)Q + ‖hβ̂ − hβ‖. Therefore,

Q(β) ≤ 2ρ∗(β)
√

W(β)Q +
√

W(β)‖hβ̂ − hβ‖. (A5)

By Lemma A1 and Equation (A2), we have the following inequality with probability
exceeding 1− δ,

‖hβ̂ − h‖2 +
W

∑
j=1

ω̃j|β̂ j − β j|+
W

∑
j=1

c(β̂ j − β j)
2 ≤ ‖hβ − h‖2 + 6 ∑

j∈I(β)

ωj|β̂ j − β j|

≤ ‖hβ − h‖2 + 6v(δ/2)H(β)Q(β)

≤ ‖hβ − h‖2 + 6v(δ/2)H(β)[2ρ∗(β)
√

W(β)
W

∑
j=1
|qj|‖hj‖+

√
W(β)‖hβ̂ − hβ‖] (by (A5))

=
∥∥hβ − h

∥∥2
+ 12v(δ/2)H(β)ρ∗(β)

√
W(β)

W

∑
j=1

ω̃j|β̂ j − β j|
∥∥hj
∥∥

ω̃j

+ 6v(δ/2)H(β)
√

W(β)‖hβ̂ − hβ‖

≤
∥∥hβ − h

∥∥2
+ 12FH(β)ρ∗(β)

√
W(β)

W

∑
j=1

ω̃j|β̂ j − β j|+ 6v(δ/2)H(β)
√

W(β)‖hβ̂ − hβ‖

≤
∥∥hβ − h

∥∥2
+ γ

W

∑
j=1

ω̃j|β̂ j − β j|+ 6v(δ/2)H(β)
√

W(β)‖hβ̂ − hβ‖,

where the second last inequality follows from the definition of F := max
1≤j≤W

v(δ/2)‖hj‖
ω̃j

, and

the last inequality is derived by the assumption 12FH(β)ρ∗(β)
√

W(β) ≤ γ, (0 < γ ≤ 1).
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Further, we can find that, with probability at least 1− δ,

‖hβ̂ − h‖2 + (1− γ)
W

∑
j=1

ω̃j|β̂ j − β j|+
W

∑
j=1

c(β̂ j − β j)
2

≤ ‖hβ − h‖2 + 6v(δ/2)H(β)
√

W(β)‖hβ̂ − hβ‖

= ‖hβ − h‖2 + 6v(δ/2)H(β)
√

W(β)‖hβ̂ − h + h− hβ‖

≤ ‖hβ − h‖2 + 6v(δ/2)H(β)
√

W(β)‖hβ̂ − h‖+ 6v(δ/2)H(β)
√

W(β)‖h− hβ‖.

Using the elementary inequality 2st ≤ s2/α + αt2 (s, t ∈ R, α > 1) to the last two terms of
the above inequality, it yields

2{3v(δ/2)H(β)
√

W(β)}‖hβ̂ − h‖ ≤ α · 9v2(δ/2)H2(β)W(β) + ‖hβ̂ − h‖2/α,

2{3v(δ/2)H(β)
√

W(β)}‖hβ − h‖ ≤ α · 9v2(δ/2)H2(β)W(β) + ‖hβ − h‖2/α.

Thus,

‖hβ̂ − h‖2 + (1− γ)
W

∑
j=1

ω̃j|β̂ j − β j|+
W

∑
j=1

c(β̂ j − β j)
2

≤ ‖hβ − h‖2 + 18αv2(δ/2)H2(β)W(β) + ‖hβ̂ − h‖2/α + ‖hβ − h‖2/α.

Simplifying, we have

‖hβ̂ − h‖2 +
α(1− γ)

(α− 1)

W

∑
j=1

ω̃j|β̂ j − β j|+
α

α− 1

W

∑
j=1

c(β̂ j − β j)
2

≤ α + 1
α− 1

‖hβ − h‖2 +
18α2

α− 1
H2(β)v2(δ/2)W(β), α > 1, 0 < γ ≤ 1. (A6)

Optimizing α to obtain the sharp upper bounds for the above oracle inequality

αopt1 : = arg min
α>1

{
α + 1
α− 1

‖hβ − h‖2 +
18α2

α− 1
H2(β)v2(δ/2)W(β)

}

= 1 +

√
1 +

‖hβ − h‖2

9H2(β)v2(δ/2)W(β)

by the first order condition. To date, Theorem 1 is proved by substituting αopt1 into
Equation (A6).

Appendix A.4. Proof of Theorem 2

By the minimal eigenvalue assumption for ψW , we have

‖hβ‖2 = ‖
W

∑
j=1

β jhj(x)‖2 = βTψW β ≥ λW‖β‖2 ≥ λW ∑
j∈I(β)

β2
j . (A7)

Using the definition of ωj and assumption Lmin := min
1≤j≤W

Lj > 0,

ωj = 2Lj

(√
2 log(2W/δ)

n
+

cB
2Lj

)
≤ 2Lj

(√
2 log(2W/δ)

n
+

cB
2Lmin

)
.
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Since cB = ω̃min = 2
√

2Lminv(δ/2) and v(δ/2) =
√

log(2W/δ)
n , we have ωj ≤ 4

√
2Ljv(δ/2).

Let G(β) = ∑j∈I(β) L2
j , by the Cauchy–Schwartz inequality, we obtain

6 ∑
j∈I(β)

ωj|β̂ j − β j| ≤ 24
√

2v(δ/2) ∑
j∈I(β)

Lj|β̂ j − β j|

≤ 24
√

2v(δ/2)
√

∑
j∈I(β)

L2
j

√
∑

j∈I(β)

(β̂ j − β j)2 ≤ 24
√

2v(δ/2)

√
G(β)

λW
‖hβ̂ − hβ‖, (A8)

where the last inequality above is from Equation (A7) due to

‖hβ̂ − hβ‖2 = ∑ ∑
1≤i,j≤W

(β̂i − βi)(β̂ j − β j) < hi, hj >≥ λW ∑
j∈I(β)

(β̂ j − β j)
2.

Let b(β) := 12
√

2v(δ/2)
√

G(β)
λW

, Lemma 2 implies

‖hβ̂ − h‖2 +
W

∑
j=1

ω̃j|β̂ j − β j|+
W

∑
j=1

c(β̂ j − β j)
2 ≤ ‖hβ − h‖2 + 2b(β)‖hβ̂ − hβ‖

= ‖hβ − h‖2 + 2b(β)(‖hβ̂ − h + h− hβ‖) ≤ ‖hβ − h‖2 + 2b(β)‖hβ̂ − h‖+ 2b(β)‖hβ − h‖.

Using the inequality 2st ≤ s2/α + αt2 (s, t ∈ R, α > 1) for the last two terms on the
right side of the above inequality, we find

2b(β)‖hβ̂ − h‖+ 2b(β)‖hβ − h‖ ≤ ‖hβ̂ − h‖2/α + b2(β)α + ‖hβ − h‖2/α + b2(β)α

= ‖hβ̂ − h‖2/α + ‖hβ − h‖2/α + 2b2(β)α.

Thus,

‖hβ̂ − h‖2 +
W

∑
j=1

ω̃j|β̂ j − β j|+
W

∑
j=1

c(β̂ j − β j)
2 ≤ ‖hβ − h‖2 + ‖hβ̂ − h‖2/α

+ ‖hβ − h‖2/α + 2b2(β)α

gives α−1
α ‖hβ̂− h‖2 +∑W

j=1 ω̃j|β̂ j− β j|+∑W
j=1 c(β̂ j− β j)

2 ≤ α+1
α ‖hβ− h‖2 + 2αb2(β). There-

fore,

‖hβ̂ − h‖2 +
α

α− 1

W

∑
j=1

ω̃j|β̂ j − β j|+
α

α− 1

W

∑
j=1

c(β̂ j − β j)
2

≤ α + 1
α− 1

‖hβ − h‖2 +
2α2

α− 1
b2(β)

=
α + 1
α− 1

‖hβ − h‖2 +
576α2

α− 1
G(β)

λW
v2(δ/2).

To obtain the sharp upper bounds for the above oracle inequality, we optimize α

αopt2 : = arg min
α>1

{
α + 1
α− 1

‖hβ − h‖2 +
576α2

α− 1
G(β)

λW
v2(δ/2)

}
= 1 +

√√√√1 +
‖hβ − h‖2

288 G(β)
λW

v2(δ/2)
,

by the first-order condition. This completes the proof of Theorem 2.
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Appendix A.5. Proof of Corollory 1

Let ω̃min := min1≤j≤W ω̃j. We replace v(δ/2) in Theorem 1 by the larger value
v(δ/2W). Substituting β = β∗ in Theorem 1, we have

αopt1(1− γ)

αopt1 − 1

W

∑
j=1

ω̃j|β̂ j − β∗j | ≤
18α2

opt1

αopt1 − 1
H2(β∗)v2(δ/2W)W(β∗)

by h = hβ∗ . Since ω̃j ≥ ω̃min for all j, we obtain

W

∑
j=1
|β̂ j − β∗j | ≤

18αopt1

1− γ
· 1

ω̃min
· max

j∈I(β)

ω2
j

‖hj‖2 ·W(β∗).

In this case, αopt1 = 2, and ‖hj‖ = 1; thus,

‖β̂− β∗‖ ≤ 36
1− γ

· max
j∈I(β)

ω2
j

ω̃min
·W(β∗)

=
72
√

2v(δ/2W)W(β∗)
1− γ

max
j∈I(β)

(Lj + Lmin)
2

Lmin
≤ 72

√
2v(δ/2W)W(β∗)

1− γ

(L + Lmin)
2

Lmin

from ω̃min = 2
√

2v(δ/2W)Lmin and

ω2
j = [2

√
2v(δ/2W)]2

[
Lj +

ω̃min
2
√

2v(δ/2W)

]2
= [2
√

2v(δ/2W)]2[Lj + Lmin]
2.

This completes the proof of Corollary 1.

Appendix A.6. Proof of Corollary 2

Let β = β∗ in Theorem 2, with αopt2 = 2, we replace v(δ/2) in Theorem 2 by the larger

value v(δ/2W), then ∑W
j=1 ω̃min|β̂ j − β∗j | ≤ ∑W

j=1 ω̃j|β̂ j − β∗j | ≤
576αopt2G∗

λW
v2(δ/2W). By the

definition of ω̃min, we can obtain

W

∑
j=1
|β̂ j − β∗j | ≤

576αopt2G∗v2(δ/2)
ω̃minλW

=
576 · 2G∗v2(δ/2W)

2
√

2v(δ/2W)LminλW
=

288
√

2G∗v(δ/2W)

LminλW
.

This concludes the proof of Corollary 2.

Appendix A.7. Proof of Theorem 3

The following lemma is by virtue of the KKT conditions. It derives a bound of
P(I∗ " Î), which is easily analyzed.

Lemma A2 (Proposition 3.3 in [33]). P(I∗ " Î) ≤W(β∗)maxk∈I∗ P(β̂k = 0 and β∗k 6= 0).

To present the proof of Theorem 3, we first notice that P( Î 6= I∗) ≤ P(I∗ " Î) + P( Î "
I∗). Next, we control the probability on the right side of the above inequality.

For the control of P(I∗ " Î), by Lemma A2, it remains to bound P(β̂k = 0 and β∗k 6= 0).
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Below, we will use the conclusion of Lemma 2 (KKT conditions). Recall that E[hk(Z1)] =

∑j∈I∗ β∗j < hk, hj >= ∑W
j=1 β∗j < hk, hj >. Since we assume that the density of Z1 is the

mixture density hβ∗ = ∑j∈I∗ β∗j hj. Therefore, for k ∈ I∗, we have,

P(β̂k = 0 and β∗k 6= 0) = P

(∣∣∣∣∣ 1
n

n

∑
i=1

hk(Xi)−
W

∑
j=1

β̂ j < hj, hk >

∣∣∣∣∣ ≤ 2
√

2v(δ/2W)Lk; β∗k 6= 0

)

= P

(∣∣∣∣∣ 1
n

n

∑
i=1

hk(Xi)− E[hk(Z1)] + E[hk(Z1)]−
W

∑
j=1

β̂ j < hj, hk >

∣∣∣∣∣ ≤ 2
√

2v(δ/2W)Lk; β∗k 6= 0

)

= P

(∣∣∣∣∣ 1
n

n

∑
i=1

hk(Xi)− E[hk(Z1)]−
W

∑
j=1

(β̂ j − β∗j ) < hj, hk >

∣∣∣∣∣ ≤ 2
√

2v(δ/2W)Lk; β∗k 6= 0

)

= P

(∣∣∣∣∣ 1
n

n

∑
i=1

hk(Xi)− E[hk(Z1)]−
W

∑
j 6=k

(β̂ j − β∗j ) < hj, hk > +β∗k‖hk‖2

∣∣∣∣∣ ≤ 2
√

2v(δ/2W)Lk

)

≤ P

(
|β∗k‖hk‖2 − 2

√
2v(δ/2W)Lk ≤

∣∣∣∣∣ 1
n

n

∑
i=1

hk(Xi)− E[hk(Z1)]

∣∣∣∣∣+
∣∣∣∣∣ W

∑
j 6=k

(β̂ j − β∗j ) < hj, hk >

∣∣∣∣∣
)

≤ P

(∣∣∣∣∣ 1
n

n

∑
i=1

hk(Xi)− E[hk(Z1)]

∣∣∣∣∣ ≥ |β∗k |‖hk‖2

2
−
√

2v(δ/2W)Lk

)
(A9)

+ P

(∣∣∣∣∣ W

∑
j 6=k

(β̂ j − β∗j ) < hj, hk >

∣∣∣∣∣ ≥ |β∗k |‖hk‖2

2
−
√

2v(δ/2W)Lk

)
. (A10)

Similar to Lemma 2, for Equation (A9), we use Hoeffding’s inequality. Since ‖hk‖ = 1
for all k. Put εk := |E[hk(X1)] − E[hk(Z1)]|. Consider Condition (B), mink∈I∗ |β∗k | ≥
4
√

2v(δ/2W)L and L ≥ max1≤k≤W Lk, then we have

P

(∣∣∣∣∣ 1
n

n

∑
i=1

hk(Xi)− E[hk(Z1)]

∣∣∣∣∣ ≥ |β∗k |‖hk‖2

2
−
√

2v(δ/2W)Lk

)

= P

(∣∣∣∣∣ 1
n

n

∑
i=1

hk(Xi)− E[hk(X1)] + E[hk(X1)]− E[hk(Z1)]

∣∣∣∣∣ ≥ |β∗k |‖hk‖2

2
−
√

2v(δ/2W)Lk

)

≤ P

(∣∣∣∣∣ 1
n

n

∑
i=1

hk(Xi)− E[hk(X1)]

∣∣∣∣∣ ≥ |β∗k |2
−
√

2v(δ/2W)L− εk

)

≤ P

(∣∣∣∣∣ 1
n

n

∑
i=1

hk(Xi)− E[hk(X1)]

∣∣∣∣∣ ≥ 2
√

2v(δ/2W)L−
√

2v(δ/2W)L− εk

)

= P

(∣∣∣∣∣ 1
n

n

∑
i=1

hk(Xi)− E[hk(X1)]

∣∣∣∣∣ ≥ √2v(δ/2W)L− εk

)

= P

(∣∣∣∣∣ 1
n

n

∑
i=1

hk(Xi)− E[hk(X1)]

∣∣∣∣∣ ≥ √2v(δ/2W)L(1− ε∗k )

)
(let ε∗k = εk/

√
2v(δ/2W)L)

≤ 2 exp

{
−

4n2v2(δ/2W)L2(1− ε∗k )
2

4nL2

}

= 2 exp
{
−n(1− ε∗k )

2 log(2W2/δ)

n

}
= 2

(
δ

2W2

)(1−ε∗k )
2

. (A11)
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For the upper bound of Equation (A10), using Condition (A) and Condition (B), by the
definitions of ρ∗(β∗) and W(β∗), we obtain

P

(∣∣∣∣∣ W

∑
j 6=k

(β̂ j − β∗j ) < hj, hk >

∣∣∣∣∣ ≥ |β∗k |‖hk‖2

2
−
√

2v(δ/2W)Lk

)

= P

(∣∣∣∣∣ W

∑
j 6=k

(β̂ j − β∗j ) < hj, hk >

∣∣∣∣∣ ≥ |β∗k |2
−
√

2v(δ/2W)Lk

)

≤ P

(∣∣∣∣∣ W

∑
j 6=k

(β̂ j − β∗j )
< hj, hk >

‖hj‖‖hk‖
· ‖hj‖‖hk‖

∣∣∣∣∣ ≥ 2
√

2v(δ/2W)L−
√

2v(δ/2W)L

)

≤ P

(
ρ∗(β∗)

W

∑
j 6=k

∣∣∣β̂ j − β∗j

∣∣∣ ≥ √2v(δ/2W)L

)
≤ P

(
W

∑
j=1

∣∣∣β̂ j − β∗j

∣∣∣ ≥ √2v(δ/2W)L
ρ∗(β∗)

)

≤ P

(
W

∑
j=1

∣∣∣β̂ j − β∗j

∣∣∣ ≥ 288
√

2G∗v(δ/2W)

LminλW

)
≤ δ

W
.

where the second last inequality is by Condition (A), and the last inequality above is by
using the `1-estimation oracle inequality in Corollary 2.

Therefore, by the definition of W(β∗), W(β∗) = |I∗| ≤W, we find

P(I∗ " Î) ≤W(β∗)max
k∈I∗

P(β̂k = 0) ≤W(β∗)2
(

δ

2W2

)(1−ε∗k )
2

+ W(β∗)
δ

W

≤ 2W
(

δ

2W2

)(1−ε∗k )
2

+ W
δ

W
= 2W

(
δ

2W2

)(1−ε∗k )
2

+ δ.

For the control of P( Î " I∗), let

η̃ = arg min
η∈RW(β∗)

z(η), (A12)

where z(η) = − 2
n ∑n

i=1 ∑j∈I∗ ηjhj(Xi) + ‖∑j∈I∗ ηjhj‖2 + ∑j∈I∗(4
√

2v(δ/2)Lj + 2cB)|ηj| +
c ∑j∈I∗ η2

j . Consider the following random event

⋂
k/∈I∗

{∣∣∣∣∣− 1
n

n

∑
i=1

hk(Xi) + ∑
j∈I∗

η̃j < hj, hk >

∣∣∣∣∣ ≤ 2
√

2v(δ/2)Lk

}

⊆
⋂

k/∈I∗

{∣∣∣∣∣− 1
n

n

∑
i=1

hk(Xi) + ∑
j∈I∗

η̃j < hj, hk >

∣∣∣∣∣ ≤ 2
√

2v(δ/2W)L

}
:= Ψ. (A13)

Let η̄ ∈ RW be a vector corresponding to the component of the index set I∗ having η̃ given
by Equation (A12), and the component at other corresponding positions is 0. By Lemma 1,
we know that η̄ ∈ RW is a solution of Equation (3) on the event Ψ. It is recalled that β̂ ∈ RW ,
which is also a solution of Equation (3). Through the definition of the indicator set Î, we
have β̂k 6= 0 for k ∈ Î. By construction, we obtain η̃k 6= 0 for some subset T j I∗. The
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KKT conditions indicate that any two solutions have non-zero components at the same
positions. Therefore, Î = T j I∗ on the event Ψ. Further, we can write

P( Î * I∗) ≤ P(Ψc) = P

( ⋃
k/∈I∗

{∣∣∣∣∣− 1
n

n

∑
i=1

hk(Xi) + ∑
j∈I∗

η̃j < hj, hk >

∣∣∣∣∣ ≥ 2
√

2v(δ/2W)L

})

≤ ∑
k/∈I∗

P

{∣∣∣∣∣− 1
n

n

∑
i=1

hk(Xi) + ∑
j∈I∗

η̃j < hj, hk >

∣∣∣∣∣ ≥ 2
√

2v(δ/2W)L

}

= ∑
k/∈I∗

P

{∣∣∣∣∣− 1
n

n

∑
i=1

hk(Xi) + E[hk(Z1)]− E[hk(Z1)] + ∑
j∈I∗

η̃j < hj, hk >

∣∣∣∣∣ ≥ 2
√

2v(δ/2W)L

}

= ∑
k/∈I∗

P

{∣∣∣∣∣ 1
n

n

∑
i=1

hk(Xi)− E[hk(Z1)]− ∑
j∈I∗

(η̃j − β∗j ) < hj, hk >

∣∣∣∣∣ ≥ 2
√

2v(δ/2W)L

}

≤ ∑
k/∈I∗

P

{∣∣∣∣∣ 1
n

n

∑
i=1

hk(Xi)− E[hk(Z1)]

∣∣∣∣∣ ≥ √2v(δ/2W)L

}
(A14)

+ ∑
k/∈I∗

P

{
∑
j∈I∗

|η̃j − β∗j |
∣∣< hj, hk >

∣∣ ≥ √2v(δ/2W)L

}
. (A15)

According to the previously proven Formula (A11), we find

∑
k/∈I∗

P

{∣∣∣∣∣ 1n n

∑
i=1

hk(Zi)− Ehk(Z1)

∣∣∣∣∣ ≥ √2v(δ/2W)L

}

≤ ∑
k/∈I∗

P

{∣∣∣∣∣ 1n n

∑
i=1

hk(Xi)− Ehk(X1)

∣∣∣∣∣ ≥ √2v(δ/2W)L− εk

}

=
W

∑
k=1

P

{∣∣∣∣∣ 1n n

∑
i=1

hk(Xi)− Ehk(X1)

∣∣∣∣∣ ≥ √2v(δ/2W)L(1− ε∗k )

}
≤ 2W(

δ

2W2 )
(1−ε∗k )

2
.

For the upper bound of Equation (A15), observe Theorem 2, we can use a larger v(δ/2W)
instead of v(δ/2). Consider the construction of η̃ in Equation (A12), we obtain

P

(
∑
j∈I∗

|η̃j − β∗j | ≥
288
√

2G∗v(δ/2W)

LminλW

)
≤ δ

W
.

Similarly, we have

∑
k/∈I∗

P

{
∑
j∈I∗

|η̃j − β∗j |
∣∣< hj, hk >

∣∣ ≥ √2v(δ/2W)L

}

≤
W

∑
k=1

P

{
∑
j∈I∗

|η̃j − β∗j |
∣∣∣∣∣< hj, hk >

‖hj‖‖hk‖
‖hj‖‖hk‖

∣∣∣∣∣ ≥ √2v(δ/2W)L

}

≤
W

∑
k=1

P

{
∑
j∈I∗

|η̃j − β∗j |ρ∗(β∗) ≥
√

2v(δ/2W)L

}

=
W

∑
k=1

P

{
∑
j∈I∗

|η̃j − β∗j | ≥
√

2v(δ/2W)L
ρ∗(β∗)

}

(using Condition (A)) ≤
W

∑
k=1

P

{
∑
j∈I∗

|η̃j − β∗j | ≥
288
√

2G∗v(δ/2W)

LminλW

}
≤

W

∑
k=1

δ

W
= δ.
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Combining all the bounds above, we can obtain

P( Î 6= I∗) ≤ P(I∗ " Î) + P( Î " I∗) ≤ 2W
(

δ

2W2

)(1−ε∗k )
2

+ δ + 2W
(

δ

2W2

)(1−ε∗k )
2

+ δ

= 4W
(

δ

2W2

)(1−ε∗k )
2

+ 2δ.

This completes the proof of Theorem 3.
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