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Abstract: We describe a first-order phase transition of a simple system in a process where the
volume is kept constant. We show that, unlike what happens when the pressure is constant, (i) the
transformation extends over a finite temperature (and pressure) range, (ii) each and every extensive
potential (internal energy U, enthalpy H, Helmholtz energy F, and Gibbs energy G), and the entropy
S is continuous across the transition, and (iii) the constant-volume heat capacity does not diverge
during the transition and only exhibits discrete jumps. These non-intuitive results highlight the
importance of controlling the correct variables in order to distinguish between continuous and
discontinuous transitions. We apply our results to describe the transition between ice VI and liquid
water using thermodynamic information available in the literature and also to show that a first-
order phase transition driven in isochoric condition can be used as the operating principle of a
mechanical actuator.

Keywords: thermodynamics; first-order phase transition; isochoric process; water; mechanical actuator

1. Introduction

Phase transitions (PT) are probably one of the most interesting and conceptually rich
phenomena approached by Thermodynamics and Statistical Mechanics. The classical tradi-
tional classification presented in 1933 by P. Ehrenfest [1] introduces the concept of transition
order: When at least one of the first order derivatives of the Gibbs energy G(T, p) with
respect to its natural variables, temperature T, and pressure p, shows a jump discontinuity,
the transition is said to be first order; if all the first-order derivatives are continuous but
at least one of the second-order derivatives shows a jump discontinuity, the transition is
said to be second order, and so on for higher-than-second-order transitions. Since then, this
scheme has become universally accepted due to its simplicity and conceptual content. Even
after the development of modern critical phenomena theories and related concepts such
as order parameter, correlation length, fluctuations, and symmetry, the classification has
remained valid in a simplified form: first-order or discontinuous transitions on one side and
continuous transitions on the other [2]. Though the classification was originally thought
for a simple system characterized by the variables T, p, and the volume V (of which only
two are independent), it can be generalized to include other variables such as electric and
magnetic fields or strain–stress effects, as long as the system remains thermodynamic: large
enough as to neglect surface and geometrical effects and without long-range interactions
that could invalidate the additive nature of the extensive variables.

From the experimental point of view, the first studies on PT conducted at constant
pressure and temperature realized the presence of a latent heat L and/or a volume change
∆V across the transition. In fact, it was the lack of any observable L or ∆V in the, at that
time, newly discovered superfluid transition what triggered the Ehrenfest work [2]. As the
latent heat L can be connected with the entropy S (L = T0∆S, where T0 is the transition
temperature), and entropy and volume V are first-order derivatives of the Gibbs energy, it
seems natural to give a classification in terms of G(T, p).
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In addition to this, there are additional reasons that point towards G(T, p) as a special
thermodynamic potential to analyze PT. These reasons naturally arise when examining
phase transitions under different experimental conditions. A first scenario to do this is
constant volume and temperature, but we will show in the following that a textbook first-
order transition, with finite L and ∆V, in a simple system cannot take place under constant
V and T conditions. A second scenario is constant volume only. We will examine this
process in detail and demonstrate that: (i) the transformation extends over a finite range
of T (and p), and (ii) each and every extensive potential (internal energy U, enthalpy H,
Helmholtz energy F, and Gibbs energy G) and the entropy S are continuous across the
transition when V is constant. After carefully analyzing the details of this transition two
examples will be presented: (1) a possible constant volume transformation between liquid
water and ice VI and (2) a process analogous to a mechanocaloric cycle but based on a
constant volume phase transformation that could be used as a mechanical actuator that
does work on a external system by changing the temperature.

2. Recapitulation of a Constant Pressure Transformation

Let us begin by recalling phase equilibrium and the characteristics of a first-order
transition at constant p = p0. Consider a simple system with a well-defined composition
and completely characterized by the variables p, T, and V(T, p). This macroscopic system
can exist in two different phases (β and γ) in the domain of interest of the p− T phase
diagram, and the transformation between these phases is a first-order transformation, with
finite enthalpy and volume changes associated with it. The classical analysis of phase
equilibrium in this case is typically made by plotting the characteristic Gibbs functions
of phases β and γ as a function of temperature at the constant pressure p0, as shown in
Figure 1.

p	=	p0	

Gγ

Gβ

Teq

G

T

Figure 1. Qualitative Gibbs energy curves of phases β and γ as a function of temperature at a constant
pressure p0. Both phases coexist in equilibrium at T = Teq. Solid (dash) lines correspond to stable
(metastable) states.

At each temperature T, the state of equilibrium of the system corresponds to the phase
that has the lower Gibbs energy, as equilibrium under constant T and p corresponds to
the state that minimizes the Gibbs energy. Therefore, for temperatures below Teq, β is the
stable phase, and above Teq, γ is the stable phase. At T = Teq, the Gibbs energy curves
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coincide, and phases β and γ can coexist in equilibrium (Figure 1). Hence, if the system is
slowly heated at constant pressure p0 starting in an equilibrium state in the β single phase
field at a temperature T0, it keeps in this phase until temperature Teq is reached. At this
temperature, phase transformation under equilibrium begins, and the system gradually
moves from the β phase to the γ phase. During this transformation, heat evolves according
to the enthalpy difference between phases β and γ, and the volume of the system changes
following the differences of molar volumes. The finite change of slope in passing from the
Gibbs energy of β phase to that of γ corresponds to the finite entropy change characteristic
of this first-order phase transformation.

To further analyze the transition, it is useful to employ the concept of extent of reaction
(ξ). This parameter, first introduced by T. De Donder in 1920, is very helpful to describe the
amount of each reactive and product by a single parameter in a chemical reaction taking
place within a closed vessel [3]. The extent of the reaction can also be used to analyze the
evolution of a phase transition by considering the transformation from β phase to γ phase
as the following physicochemical reaction:

β 
 γ. (1)

By means of ξ, the number of moles of each phase is given by:

nβ = 1− ξ nγ = ξ, (2)

where, for simplicity, we are considering 1 mole of substance. Every extensive quantity of
the complete system can be expressed in terms of ξ and the corresponding molar quantity.
For example, the system volume and enthalpy are given by:

V(T, p) = Vβ
m(T, p) nβ + Vγ

m(T, p) nγ

= Vβ
m(T, p) +

[
Vγ

m(T, p)−Vβ
m(T, p)

]
ξ,

= Vβ
m(T, p) + ∆VPT

m (T, p)ξ, (3)

H(T, p) = Hβ
m(T, p) nβ + Hγ

m(T, p) nγ

= Hβ
m(T, p) +

[
Hγ

m(T, p)− Hβ
m(T, p)

]
ξ,

= Hβ
m(T, p) + ∆HPT

m (T, p)ξ. (4)

where ∆VPT
m (T, p) and ∆HPT

m (T, p) = L denote the volume and enthalpy changes (latent
heat) associated with the phase transformation, respectively. In fact, by measuring the heat
taken or released by the system (or the volume) during the phase transformation, the value
of ξ can be inferred, and from it, the value of any extensive quantity of the system can be
calculated by using expressions similar to Equations (3) and (4).

If the enthalpy of the complete system is analyzed as a function of temperature, at
T = Teq, the characteristic jump associated with the latent heat is found. It is interesting to
note that the jump or discontinuity is associated with the complete phase transformation.
During the transformation, continuous values of enthalpy can be attributed to the system at
T = Teq by means of the extent of transformation ξ following Equation (4). The temperature
derivative of this curve corresponds to the constant pressure heat capacity of the system
(defined by Cp =

(
∂H
∂T

)
p
= T

(
∂S
∂T

)
p
). The limits of this expression reaching the transition

point from the left or from the right are different because they correspond to the temperature
derivative of the enthalpy of β or γ phase, respectively. Additionally, during the transition,
there is a finite enthalpy change with no associated temperature change. Therefore, there is
a divergence in CP that, in an ideal representation of an equilibrium phase transformation,
can be described by a Dirac δ-function. A similar reasoning shows that the volume thermal-
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expansion coefficient α = 1
V

(
∂V
∂T

)
p

and the isothermal compressibility κ = − 1
V

(
∂V
∂p

)
T

exhibit similar behavior during a constant pressure transition.

3. Constant Volume Transformation
3.1. General Properties

Let us now consider an approach similar to the previous one, but applied to a constant
volume transition. As the equilibrium of the system under constant T and V is given by
the minimum of the Helmholtz potential, let us schematically represent typical Helmholtz
curves of phases β and γ as a function of temperature under constant V = V0 conditions
(Figure 2).

V	=	V0	

Fγ

Fβ

T*

F

T
Figure 2. Schematic Helmholtz energy curves of phases β and γ as a function of temperature at a
constant volume V0. At T = T∗, the energies of both phases match which, in general, is not associated
with a phase transition. See text for details.

By following a similar reasoning to that of Section 2, it could be concluded that phase β
is the stable phase below temperature T∗ and phase γ is the stable one above it. Additionally,
it could be thought that at T∗, both phases could coexist in equilibrium. However, this
argument has two flaws. First, nothing ensures that at volume V0 and T = T∗ the pressure
of phase β given by its equation of state matches that of phase γ. In fact, in general, this
condition is not met. Therefore, the equality of all the characteristic intensive variables
of each phase, a necessary requirement for the equilibrium of two phases, would not be
satisfied [4,5]. Secondly, nothing ensures that there is no other Helmholtz energy curve
that fulfills the constant volume condition and also lies below both single-phase Helmholtz
energy curves, so giving the actual minimum. This could be achieved, for example, by
combining different amounts of phases β and γ at each temperature, thanks to the fact
that volume is an extensive quantity. In fact, in the following we will see that such a curve
indeed exists!

This analogy highlights other aspects of the key role played by the Gibbs energy. First,
by exclusively depending on the intensive variables p and T, it can be assured that when
two Gibbs energy curves at constant p intersect at an equilibrium temperature (or two
curves at constant T intersect at an equilibrium pressure) the other intensive variable also
coincides, ensuring equilibrium. Secondly, the absence of natural extensive variables of G
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precludes the possibility of combining two single phase Gibbs energy curves into a new
curve that could lie below both single-phase characteristic G curves.

Therefore, how can a constant volume phase transformation be analyzed? The first
thing to notice is that a constant volume first-order transformation must occur over a
temperature range. To see this, let us go back to our simple system analyzed in Section 2.
A V − T phase diagram for this system (Figure 3, left panel) shows two single-phase
regions and an area in the V − T plane where β and γ phases coexist. The existence of an
area instead of a line is a consequence of the finite jump in volume at each temperature
associated with the first order PT. If we want the system now to transform from phase β to
phase γ at a constant volume V0, the temperature during the phase transformation must
necessarily change. By starting in the β single-phase field at V0(T0, p0) and warming up
the system at constant volume, γ will start nucleating at T1, but the phase transformation
will not end until temperature T2 is reached (Figure 3). During the coexistence, both phases
must be at equilibrium. This condition requires the equality of temperature, pressure, and
chemical potential [4,5]. These conditions are met if the system evolves along the p− T
coexistence line in the p− T phase diagram (Figure 3, right panel). Therefore, during phase
coexistence at constant volume, p and T change and are linked by the coexistence line. As
the volume is fixed by the isochoric condition, only one degree of freedom survives.

T3

V0

Vγ

γ

β

T2T1T0

Vβ

β	+	γ

V

T

p0

T3

γ

β

T2T1T0

p

T
Figure 3. Volume–Temperature (left) and Pressure–Temperature (right) schematic phase diagrams of
a simple system. Two phases, β and γ, transform each other via a first-order transition. The dash-line
corresponds to a constant volume process starting at V0(T0, p0).

Algebraically, the need for phase coexistence to occur over a finite range of temper-
atures can be seen by taking the differential of the system volume (3) and imposing the
constant volume condition:

0 = dV = dVβ
m(T, p) nβ + dVγ

m(T, p) nγ + Vβ
m(T, p) dnβ + Vγ

m(T, p) dnγ. (5)

Using the extent of transformation ξ (Equation (2)), the volume thermal-expansion coeffi-
cient α and the isothermal compressibility κ for each phase, Equation (5) can be rewritten as:

0 = (αβVβ
mnβ + αγVγ

mnγ)dT − (κβVβ
mnβ + κγVγ

mnγ)dp + (Vγ
m −Vβ

m)dξ, (6)

where, for readability, the dependence of α, κ, and the molar volumes on pressure and
temperature has not been explicitly written. As we mentioned before, the equilibrium
between the β and γ phases during the transition makes temperature and pressure non-



Entropy 2022, 24, 31 6 of 15

independent quantities. At each temperature, the pressure is given by the coexistence line
p = pc(T). Therefore, Equation (6) can be rewritten as:

0 =

[
αβVβ

mnβ + αγVγ
mnγ − (κβVβ

mnβ + κγVγ
mnγ)

dpc

dT

]
dT

+(Vγ
m −Vβ

m)dξ. (7)

We can see here that for the constant volume transformation to advance (dξ 6= 0), the
temperature (and pressure) must change (dT 6= 0). In other words, as the β and γ molar
volumes are different, due to the first-order nature of the transition, the only way of
keeping the volume constant during a phase transformation is by changing temperature
and pressure in order to compensate for the differences in molar volumes. Therefore, in a
general isochoric first-order transformation, the transition takes place over a temperature
range. Only in the very special case of two phases with no volume change across the
transition, i.e., if Vβ

m(T∗) = Vγ
m(T∗) = V0, the transformation would take place at a single

equilibrium temperature T∗ (as sketched in Figure 2). As mentioned before, in a general
isochoric transformation, the temperature and pressure coexistence range poses no problem
to the equilibrium conditions. The evolution along the coexistence p− T curve ensures the
equality of the chemical potentials of β and γ.

During the transition, the extent of reaction ξ can be expressed as a function of T.
By imposing the constant volume condition in Equation (3) and taking into account that
during the transition p = pc(T), ξ can be expressed as:

ξ(T) =
V0 −Vβ

m[T, pc(T)]

Vγ
m [T, pc(T)]−Vβ

m[T, pc(T)]
=

V0 −Vβ
m(T)

∆VPT
m (T)

. (8)

Two straightforward conclusions can be drawn from this equation: (i) ξ(T1) = 0 and
ξ(T2) = 1, since Vβ

m(T1) = V0 and Vγ
m(T2) = V0, respectively; (ii) ξ(T) is a continuous

function since V0 is constant and the molar volumes of both phases are continuous functions.
Between T1 and T2, the mole numbers of each phase are explicitly given by

nβ(T) =
Vγ

m(T)−V

Vγ
m(T)−Vβ

m(T)
nγ(T) =

V −Vβ
m(T)

Vγ
m(T)−Vβ

m(T)
. (9)

3.2. Calculation of Thermodynamic Quantities

Let us consider now a general extensive variable Z and calculate its value during
the coexistence at constant V = V0. According to Euler’s theorem for homogeneous
functions [4], Z can be calculated as:

Z(T) = Z[pc(T), T] = nβ Zβ
m[pc(T), T] + nγ Zγ

m[pc(T), T], (10)

which in terms of the extent of transformation reads:

Z(T) = Zβ
m(T) +

[
Zγ

m(T)− Zβ
m(T)

]
ξ(T)

= Zβ
m(T) + ∆PTZm(T) ξ(T). (11)

Here, ∆PTZm(T) = Zγ
m(T)− Zβ

m(T) represents the change of Zm across the transformation.
If we take Z(T1) = Zβ

m(T1) as a reference state and calculate the change in Z from this
reference state, we obtain:

∆Z(T) = Z(T)− Zβ
m(T1) = Zβ

m(T)− Zβ
m(T1) + ∆PTZm(T) ξ(T). (12)

We can identify two contributions to ∆Z(T): the change of Zβ
m due to the variation of T

and the change due to the phase transformation itself. A quick overview of this equation



Entropy 2022, 24, 31 7 of 15

allows us to see that ∆Z(T) is continuous as long as Zi
m (i = β, γ) is well defined and

continuous in the whole temperature range, and this is indeed true for each and every
extensive potential: U, F, H, G, and the entropy S. In other words, during a phase transfor-
mation at constant volume, there are no jumps or discontinuities in any thermodynamic
potential at any single temperature. This might seem rather puzzling at a first glance, as
the transformation appears as a continuous one. However, this appearance is nothing but
the consequence of the transformation to extend over a finite temperature (and pressure)
range. The characteristic jump of the first-order transition is spread over a temperature
range when the transformation is conducted at constant volume, making it appear as if it
were a continuous change.

As examples, Equation (12) can be applied to the cases of the Helmholtz potential F
and the entropy S. For F(T, V), the contribution from the transformation is:

∆PT Fm(T) = ∆PT [Gm(T)− pc(T)Vm(T)] = −pc(T)∆PTVm(T), (13)

where we have used the equality of the chemical potentials during the transformation
Gβ

m = Gγ
m. By adding the first two terms of Equation (12), we finally obtain:

∆F(T) = Fβ
m(T)− Fβ

m(T1)− pc(T)∆PTVm(T) ξ(T). (14)

Proceeding with the entropy, from the Clapeyron equation, we obtain:

∆PTSm(T) = ∆PTVm(T)
dpc(T)

dT
, (15)

so the entropy change is:

∆S(T) =

(
∂Fβ

m
∂T

)
Vβ

m=V

(T1)−
(

∂Fβ
m

∂T

)
Vβ

m=V

(T) + ∆PTVm(T)
dpc(T)

dT
ξ(T). (16)

It is easy to check that the same result is obtained by the differentiation of Equation (14),
i.e., ∆S(T) =

(
∂∆F
∂T

)
V
− Sβ

m(T1). Additionally, it is interesting to note that all the previous

expressions can be explicitly calculated if the quantities Fi
m(T, V), Vi

m, and pc(T) are known.
In Appendix A, the expressions for U, H, and G in terms of the same quantities are given.

We have seen in Section 2 that the constant pressure heat capacity exhibits a divergence
during a first-order transformation at constant pressure. The analysis previously conducted
on a constant volume transformation allows us to examine what happens to the heat
capacity at constant volume during the isochoric transition. Contrary to what happens in a
constant pressure PT, in a constant volume PT we have shown that all the thermodynamic
potentials and the entropy are continuous functions across the transformation. Therefore,
no divergences are expected in this case. However, there can be discrete jumps in heat
capacity if different curvatures are met during the transformation.

Following Equation (10), the heat capacity at constant volume of the whole system (β
and γ phases) CV can be expressed as:

CV = nβcβ
V + nγcγ

V , (17)

where ci
V (i = β, γ) are the molar specific heats for each phase at constant total volume V

(ci
V takes into account not only the internal energy change due to a change of temperature

but also the one due to a variation of ni in the transformation (see Appendix B)). After
some algebra (see Appendix B), we arrive at the following expression:

CV = nβ

[
cβ

Vβ
m
+ T Vβ

m κβ

(
αβ

κβ
− dpc

dT

)2]
+ nγ

[
cγ

Vγ
m
+ T Vγ

m κγ

(
αγ

κγ
− dpc

dT

)2
]

, (18)
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which is valid on the coexistence line. ci
Vi

m
=
(

∂Ui
m

∂T

)
Vi

m
(i = β, γ) denotes the molar specific

heat at constant molar volume of the i-phase. We can evaluate this expression at the onset
of the transformation, T1, where n→ nβ and V → Vβ

m. As T → T+
1 , on the coexistence field,

dpc
dT = ∆PTSm

∆PTVm
. Thus:

lim
T→T+

i

CV = nβ

[
cβ

Vβ
m
+ T Vβ

m κβ

(
αβ

κβ
− ∆PTSm

∆PTVm

)2]
. (19)

On the other hand, as T → T−1 , on the single-phase β field, the limit is trivial:

lim
T→T−1

CV = nβcβ

Vβ
m

. (20)

It is clear from Equations (19) and (20) that CV is discontinuous at T1 (and at T2, as a
similar reasoning shows). Heat added to the system in the coexistence region not only
is used to raise T but to phase-transform as well. This is the origin of the discontinuity.
During the constant V transformation, as the system traverses the p− T coexistence line,
the other susceptibilities (α, κ, and Cp) are strictly not defined (the limits from either side
do not match) or can be thought of as divergences due to the finite volume or enthalpy
changes without changes in pressure or temperature. Summarizing, during the constant
V transformation, finite jumps are observed in CV only when entering and leaving the
coexistence region, whereas Cp, α, and κ are not defined within the coexistence region.

4. Application 1: The Liquid–Ice VI Transition in Water

A sine qua non condition for the possibility of a full transformation at constant
volume is that the starting and final phases share the same molar volume. The bell-shaped
coexistence region between vapor and liquid water in the p−V diagram precludes this
possibility. Figure 4 shows the temperature vs. high-pressure phase diagram of water
(left panel) together with a molar volume vs. pressure plot of the different ice phases and
liquid water along the coexistence lines (right panel). It is clear from this figure that the
only transition that meets the requirement of equal-initial-final volume and involves two
phases only (i.e., no transitions to intermediate phases are required, as it will be the case for
example with the ice V to liquid water transition) is the liquid–ice VI one.

VIII

VII

Ih

III

V

II

VI

Liquid

T	
(°

	C
)	

−75

−50

−25

0

25

50

75

100

p	(GPa)
0 0.5 1 1.5 2 2.5

VII
13.4	cm3	/	mol

Ih

III

V

VI

Liquid

V
	(c

m
3 	/	

m
ol

)	

12

14

16

18

20

p	(GPa)
0 0.5 1 1.5 2 2.5

Figure 4. Temperature-pressure phase diagram of water (left) and the molar volume of liquid and
solid water along the phase coexistence line (right). Data taken from [6].

So, let us study this transition in detail. Using the complete thermodynamic informa-
tion of liquid water [7], ice VI [8,9], and the coexistence line between both phases [10], we
have calculated the trajectory of a process at constant volume V0 = 13.4 cm3/mol that starts
at T0 = 90 ◦C in the liquid phase, is cooled through the transition, and ends up at T3 = 7 ◦C
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in the ice VI phase (Figure 5). Particularly, at T1 = 79.81 ◦C, the liquid phase begins to
transform into ice VI, and finally, at T2 = 17.45 ◦C, the transformation completes.

T3

T2

T1

T0

Ice	VII

Ice	VI

Liquid

T	
(°
	C
)	

20

40

60

80

100

p	(GPa)
0.75 1 1.25 1.5 1.75 2 2.25 2.5

Figure 5. Temperature–pressure phase diagram of water around the liquid–ice VI transition. The
dashed colored line is the trajectory of a process at constant volume V0 = 13.4 cm3/mol starting in
the liquid phase (T0) and ending up in the ice phase (T3). The two phases coexist between T1 and T2.

The Helmholtz energy change ∆F(T) = F(T)− Fliq
m (T1) along this constant volume

path is displayed in Figure 6. The dashed lines correspond to the extrapolation of the
single-phase curves into the coexistence region.

Coexistence
Ice	VI	Stable
Ice	VI	Metastable
Liquid	Stable
Liquid	Metastable

T3

T2

T1
T0

Δ	
F	

(k
J/

m
ol

)

−1

−0.75

−0.5

−0.25

0

0.25

T	(°	C)	
0 20 40 60 80 100

Figure 6. The Helmholtz energy change ∆F(T) = F(T)− Fliq
m (T1) in a process at constant volume

V0 = 13.4 cm3/mol. The dashed lines are the metastable parts of the single-phase curves.

First, it can be seen that F values continuously change during the constant V transfor-
mation. Secondly, it can be appreciated that the F curve associated with the coexistence
of β and γ phases always lies below the single phase F curves. This is the combination of
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the single phase F curves previously mentioned in Section 3 that minimizes the Helmholtz
energy at constant V and at each T in the coexistence region.

Not only ∆F is continuous at T1 and T2, but its derivative is continuous, too. This
derivative is nothing but (minus) the entropy, which is shown in Figure 7 as
∆S(T) = S(T)− Sliq

m (T1).
Its continuity during the transition has been previously mentioned and can be explicitly

seen in this example. On the other hand, the derivative of the entropy, i.e., CV/T, is clearly
discontinuous at T1 and T2, as has been anticipated. Figure 8 shows CV across the transition.

The behavior of G, U, and H can be found as supplementary information.
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Figure 7. The entropy change ∆S(T) = S(T)−Sliq
m (T1) in a process at constant volume V0 = 13.4 cm3/mol.
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Figure 8. Heat capacity at constant volume V0 = 13.4 cm3/mol as a function of temperature. Jumps
can be seen when entering and leaving the coexistence region.
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5. Application 2: Temperature-Driven Mechanical Actuator

Similarly to the constant volume process described here, it is also possible to go
through a first-order phase transition in a constant entropy process. This is the basis of the
so-called caloric effects: the temperature change in an adiabatic system associated with the
application of an external stress or pressure (mechanocaloric), an external magnetic field
(magnetocaloric), or an external electric field (electrocaloric). The effects have been largely
studied due to their potential applications in refrigeration technologies [11–15].

The whole idea is quite simple. For instance, in the mechanocaloric effect, a substance
with a pressure-dependent entropy (the refrigerant) cools down when the applied pressure
is adiabatically released. The refrigerant is then put in contact with the system to be
refrigerated in a cyclic process. The higher performance, i.e., the largest temperature
change for a given applied pressure, is obtained when the refrigerant goes through a first-
order transition during the adiabatic stage and is a consequence of the associated latent heat.
Giant mechanocaloric effects around room temperature have been reported for Cu-based
and Ni–Ti-based families of martensitic alloys where, typically, temperature changes of
some tens of degrees Celsius are obtained with applied pressures of some hundreds of
MPa [11].

In a similar way, a substance that shows a first-order phase transformation can be used
as a mechanical actuator in a cycle that involves an isochoric step. The working principle is
sketched in Figure 9. Let us suppose that the operative substance is ordinary water driven
through the liquid–ice VI transition. Starting in the liquid phase at T1 = 79.81 ◦C and
pc(T2) (state A in Figure 9), water is isobarically cooled down to T2 = 17.45 ◦C (state B).
From this state, liquid water is made to fully transform isothermically and isobarically to
ice VI (state C). After that, the substance is isochorically driven from T2 to T1 along the
coexistence line, and when state D is reached, ice VI has fully transformed to liquid water
again. Along the C–D step, the pressure goes up to pc(T1), an approximate increment of
1.3 GPa (see Figure 9). This pressure change can be used to deliver work to an external
system, a positioner, for instance. Eventually, the substance returns to state A, and the cycle
may start over.

B

Liquid

DC

A

T	=	T1	=	79.81	°	C
T	=	T2	=	17.45	°	C	

Ice	VI Ice	VI

Liquid

V
	(c

m
3 	/

	m
ol

)	

12

13

14

15

16

p	(GPa)
0 1 2 3

Figure 9. Cycle for a mechanical actuator using ordinary water as the working substance and the
isochoric phase transition between liquid water and ice VI.
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The performance of such a device is quite interesting. A temperature variation of
about 60 ◦C results in a usable pressure change (pc(T1) − pc(T2)) of about 1.3 GPa. In
the best scenario, this implies that a volume change V(C) − V(A) ∼ 1.8 cm3/mol is
available for usage after each cycle. In a linear actuator, a maximum relative displacement
∼ ∆V

V ∼ 0.12 can be attained. While in the mechanocaloric effect, the external parameter
controlling the refrigeration is pressure, in this actuator, the control parameter that delivers
external work is temperature.

6. Conclusions

As conclusion, we want to remark that we have extensively described the thermody-
namics of a constant volume phase transition for a simple system that exhibits a first-order
phase transformation. With our approach, we have shown that (i) the transformation
extends over a finite range of T (and p); (ii) each and every extensive potential (internal
energy U, enthalpy H, Helmholtz energy F, and Gibbs energy G) and the entropy S are
continuous across the transition, unlike what is observed in a constant pressure (and tem-
perature) transformation; and (iii) the constant volume heat capacity exhibits finite jumps
when entering and leaving the two-phase coexistence region.

These results have been applied to describe a prospective constant volume transition
between liquid water and ice VI. By using thermodynamic information available from the
literature, the transformation path in the p− T plane and the characteristic F, S, and CV
curves as a function of temperature have been calculated and discussed. Additionally, and
as a potential application, we have shown that a first-order phase transition under isochoric
conditions could be used to drive a mechanical actuator controlled by temperature changes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/e24010031/s1, Figure S1: Gibbs energy change during a constant volume transformation
between liquid water and ice VI, Figure S2: Internal energy change during a constant volume
transformation between liquid water and ice VI, Figure S3: Enthalpy change during a constant
volume transformation between liquid water and ice VI.
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Appendix A. Changes of G, U, and H during a Constant Volume Phase Transformation

In this Appendix, expressions for the changes of G, U, and H are calculated by using
Equation (12), which is repeated here for the reader’s convenience:

∆Z(T) = Z(T)− Zβ
m(T1) = Zβ

m(T)− Zβ
m(T1) + ∆PTZm(T) ξ(T). (A1)

When applied to the Gibbs energy (Z = G), the contribution from the transformation is
null (equality of chemical potentials), thus, the total change is given by:

∆G(T) = Gβ
m(T)− Gβ

m(T1)

=
[

Fβ
m(T) + pc(T)Vβ

m(T)
]
−
[

Fβ
m(T1) + pc(T1)Vβ

m(T1)
]

= Fβ
m(T)− Fβ

m(T1)−
(

∂Fβ
m

∂Vm

)
T

(T)Vβ
m(T) +

(
∂Fβ

m
∂Vm

)
T

(T1)Vβ
m(T1). (A2)

https://www.mdpi.com/article/10.3390/e24010031/s1
https://www.mdpi.com/article/10.3390/e24010031/s1
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In the case of the internal energy U:

∆U(T) = Uβ
m(T)−Uβ

m(T1) + ∆PTUm(T) ξ(T)

=
[

Fβ
m(T) + TSβ

m(T)
]

−
[

Fβ
m(T1) + T1Sβ

m(T1)
]
+ [∆tFm(T) + T∆PTSm(T)] ξ(T)

= Fβ
m(T)− Fβ

m(T1)− T

(
∂Fβ

m
∂T

)
Vβ

m=V

(T) + T1

(
∂Fβ

m
∂T

)
Vβ

m=V

(T1)

+

[
∆tFm(T) + T∆PTVm(T)

dpc(T)
dT

]
ξ(T). (A3)

For the enthalpy H:

∆H(T) = Hβ
m(T)− Hβ

m(T1) + ∆PT Hm(T) ξ(T)

=
[
Uβ

m(T) + pc(T)Vβ
m(T)

]
−
[
Uβ

m(T1) + pc(T1)Vβ
m(T1)

]
+[∆tUm(T) + pc(T)∆PTVm(T)] ξ(T)

= Fβ
m(T)− Fβ

m(T1)− T

(
∂Fβ

m
∂T

)
Vβ

m=V

(T) + T1

(
∂Fβ

m
∂T

)
Vβ

m=V

(T1)

+pc(T)Vβ
m(T)− pc(T1)Vβ

m(T1) + T
dpc(T)

dT
∆PTVm(T) ξ(T). (A4)

Appendix B. Constant Volume Heat Capacity of the Whole System

Thermodynamic potentials are first-order homogeneous functions of their extensive
variables. Hence, and according to Euler’s theorem, the total internal energy of a pure
substance when phases β and γ coexist in equilibrium can be written as:

U(T, p, nβ, nγ) = Uβ
m[p, T] nβ + Uγ

m[p, T] nγ, (A5)

where Ui
m is the molar energy of phase i (i = β, γ). The constant volume specific heat of the

whole system is:

CV =

(
∂U
∂T

)
V,n

= nβ

(
∂Uβ

m
∂T

)
V,n

+ nγ

(
∂Uγ

m
∂T

)
V,n

+ Uβ
m

(
∂nβ

∂T

)
V,n

+ Uγ
m

(
∂nγ

∂T

)
V,n

= nβ

(
∂Uβ

m
∂T

)
V,n

+ nγ

(
∂Uγ

m
∂T

)
V,n

+ (Uβ
m −Uγ

m)

(
∂nβ

∂T

)
V,n

, (A6)

since the total mole number n = nβ + nγ is fixed. The derivative of the single-phase molar
energies reads:

(
∂Ui

m
∂T

)
V,n

=

(
∂Ui

m
∂T

)
p
+

(
∂Ui

m
∂p

)
T

(
∂p
∂T

)
V,n

= ci
p − pVi

mαi + Vi
m(κ

i p− αiT)
(

∂p
∂T

)
V,n

, (A7)

where ci
p, αi = 1

Vi
m

(
∂Vi

m
∂T

)
p
, and κi = − 1

Vi
m

(
∂Vi

m
∂p

)
T

are the constant pressure specific heat,

the thermal-expansion coefficient, and the isothermal compressibility of the ith-phase,
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respectively. Additionally,
(

∂p
∂T

)
V,n

= dpc
dT , as equilibrium requires. On the other hand, the

conservation of the total volume is:

V0 = V(T, p, nβ, nγ) = Vβ
m[p, T] nβ + Vγ

m [p, T] nγ (A8)

resulting in:(
∂nβ

∂T

)
V,n

=
1

Vβ
m −Vγ

m

[
−(nβVβ

mαβ + nγVγ
mαγ) + (nβVβ

mκβ + nγVγ
mκγ)

dpc

dT

]
. (A9)

Inserting (A7) and (A9) in (A6) gives:(
∂U
∂T

)
V,n

= nβ

[
cβ

p − pVβ
mαβ + Vβ

m(κ
β p− αβT)

dpc

dT

]
+ nβ

[
cγ

p − pVγ
mαγ + Vγ

m(κ
γ p− αγT)

dpc

dT

]
+

(Uβ
m −Uγ

m)

Vβ
m −Vγ

m

[
−(nβVβ

mαβ + nγVγ
mαγ) + (nβVβ

mκβ + nγVγ
mκγ)

dpc

dT

]
.

(A10)

The molar energy difference can be written as:

Uβ
m −Uγ

m = Gβ
m − Gγ

m − p(Vβ
m −Vγ

m) + T(Sβ
m − Sγ

m). (A11)

Phase coexistence at equilibrium requires Gβ
m = Gγ

m, and the Clapeyron equation gives
dpc
dT = Sα

m−Sβ
m

Vα
m−Vβ

m
. Hence, Equation (A10) can be rewritten as:

(
∂U
∂T

)
V,n

= nβ

[
cβ

p −Vβ
mαβT

dpc

dT

]
+ nγ

[
cγ

p −Vγ
mαγT

dpc

dT

]
+ T

dpc

dT

[
−(nβVβ

mαβ + nγVγ
mαγ) + (nβVβ

mκβ + nγVγ
mκγ)

dpc

dT

]
.

(A12)

Since the constant pressure and constant volume specific heats are related by ci
p = ci

Vi
m
+

TVi
mαi2

κi , Equation (A12) becomes:

(
∂U
∂T

)
V,n

= nβ

[
cβ

Vβ
m
+

TVβ
mαβ2

κβ
− 2Vβ

mαβT
dpc

dT
+ TVβ

mκβ

(
dpc

dT

)2
]

+ nγ

[
cγ

Vγ
m
+

TVγ
mαγ2

κγ
− 2Vγ

mαγT
dpc

dT
+ TVγ

mκγ

(
dpc

dT

)2
]

,
(A13)

which finally can be conveniently rewritten to give:(
∂U
∂T

)
V,n

= nβ

[
cβ

Vβ
m
+ T Vβ

m κβ

(
αβ

κβ
− dpc

dT

)2]

+ nγ

[
cγ

Vγ
m
+ T Vγ

m κγ

(
αγ

κγ
− dpc

dT

)2
]

.
(A14)
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