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Abstract: Although adversarial domain adaptation enhances feature transferability, the feature
discriminability will be degraded in the process of adversarial learning. Moreover, most domain
adaptation methods only focus on distribution matching in the feature space; however, shifts in
the joint distributions of input features and output labels linger in the network, and thus, the
transferability is not fully exploited. In this paper, we propose a matrix rank embedding (MRE)
method to enhance feature discriminability and transferability simultaneously. MRE restores a
low-rank structure for data in the same class and enforces a maximum separation structure for
data in different classes. In this manner, the variations within the subspace are reduced, and the
separation between the subspaces is increased, resulting in improved discriminability. In addition to
statistically aligning the class-conditional distribution in the feature space, MRE forces the data of
the same class in different domains to exhibit an approximate low-rank structure, thereby aligning
the class-conditional distribution in the label space, resulting in improved transferability. MRE is
computationally efficient and can be used as a plug-and-play term for other adversarial domain
adaptation networks. Comprehensive experiments demonstrate that MRE can advance state-of-the-
art domain adaptation methods.

Keywords: deep leaning; transfer learning; adversarial domain adaptation; image classification

1. Introduction

Extensive researches on deep learning has resulted in excellent supervised learning
performance for computer vision tasks. However, the prerequisite for the widespread
application of deep learning is a great amount of annotated data, which may be hard
to obtain due to a large amount of manual labor involved. The direct application of a
deep neural network (DNN) that has been pre-trained on existing datasets cannot provide
effective generalization in a new domain because of the domain shift problem. To alleviate
such labeling efforts and domain shifts, researchers have been resorting to unsupervised
domain adaptation (DA) [1,2], which aims to learn a discriminative classifier using source
domain data with smaller risks on target domain data in the presence of domain shifts.

Theoretical analysis on DA [3] suggested that the target risk can be bounded by
minimizing the source risk and a certain specific statistical discrepancy between the two
domains, which has inspired a series of shallow [4] and deep learning-based DA meth-
ods [5,6]. Early shallow DA methods strove to learn domain-invariant feature represen-
tations or to reweigh the importance of source instances based on their relevance to the
target domain [7,8]. Recent deep DA methods have harnessed the power of DNN to extract
additional transferable features [9,10]. Such methods commonly minimize a measure of
distribution discrepancy [11,12] between the source and target domains. Inspired by gener-
ative adversarial networks [13], adversarial DA methods encourage the feature extractor to
learn domain-invariant representations by playing the min-max game in an adversarial
learning paradigm.
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Although adversarial DA methods have yielded remarkable improvements, they still
exhibit two intrinsic limitations. First, the feature discriminability is inevitably suppressed
during the process of adversarial learning of domain-invariant representations, as revealed
in [14]. We investigated the discriminability of target domain features extracted from
ResNet-50 [15], DANN [16], and CDAN [17] in Office-31 [18] dataset. We applied the
angular Fisher score (AFS) [19] to measure the feature discriminability on the target domain,
which was defined as:

AFS = Sw/Sb, (1)

where Sw = ∑i ∑xj∈Xi
(1− cos〈mi, xj〉) is the intra-class scatter, Sb = ∑i ni(1− cos〈m, mi〉)

is the inter-class scatter. Moreover, Xi represents samples from i-th class, xj is the feature of
j-th sample in Xi, mi is the mean vector over class i, m is the mean vector over the entire
dataset, and ni represents the sample number in class i. In general, a lower Fisher value
indicates that the features are more discriminative. The preliminary empirical investigation
of this limitation is depicted in Figure 1. As we know, the transferability of ResNet-50,
DANN, and CDAN is sequentially enhanced. For each subtask in Figure 1, from ResNet-50
to CDAN the AFS value gradually increases, indicating that the feature discriminability
sequentially decreases. This implies that the transferability is enhanced at the expense of
degraded discriminability in adversarial DA.

Figure 1. AFS values of different methods on Office-31 dataset, where the horizontal axis are DA
sub-tasks and the vertical axis represents the AFS of target feature on its corresponding subtask. In
Office-31, domain Amazon, DSLR, and Webcam are abbreviated as A, D, and W, respectively.

Second, the existing adversarial DA methods have not fully exploited the transfer-
ability, and they only focus on the distribution matching in the feature space. The data
discrepancy in the joint distribution of input features and output labels still lingers in the
network. In these methods, either a single domain discriminator is learned to align the
marginal P(X) distributions [16,20] or multiple discriminators together with the target
domain pseudo-labels [17] are used to align conditional distributions P(X | Y) between the
two domains. Regardless of the marginal distribution or conditional distribution alignment,
these methods only focus on domain shifts in the feature space, with little emphasis on
domain shifts in the label space.

In this paper, we propose a matrix rank embedding (MRE) method towards trans-
ferable and discriminative adversarial DA. Figure 2 presents a schematic illustration of
the MRE method. The motivation of MRE is based on the basic philosophy of matrix
rank. The rank of a matrix is the maximum number of its linearly independent vectors.
High-dimensional data such as images often have a small intrinsic dimension. Thus, mul-
tiple class data often lie in a union of low-dimensional subspaces. Data from the same
low-dimensional subspace is highly correlated, exhibiting a low-rank structure [21–23],
while data from different low-dimensional subspaces are not correlated, which exhibits a
high-rank structure.
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Figure 2. The schematic of our MRE network. Xs and Xt and are a mini-batch of source and target
samples. Suppose there are three classes and the batch size is 4. After samples pass through the
feature extractor F and the classifier G, we will obtain two 4× 3 prediction matrices Ys and Yt. In Ys

and Yt matrix, blue represents class 1 (bike), the green represents class 2 (clock), and yellow represents
class 3 (mug). The value in the table indicates the probability (we use the ground-truth prediction for
pedagogical reasons) that the sample belongs to the category. ‖ · ‖∗ represents nuclear norm operator.
(Best viewed in color.)

Based on the above observations, given two different domains, we explicitly constrain
data from the same class to have the same low-rank structure while imposing a high-rank
structure for data from different categories. The optimization of rank-based objectives
is NP-hard since it is non-convex. In practice, we use the nuclear norm for a surrogate
objective as it is the tightest convex envelope of matrix rank within the unit ball. Specifically,
our method is manipulated in the space of probability predictions. Unlike LDA Fisher
discrimination measures, by minimizing the nuclear-norm of data in the same class directly
and maximizing the nuclear-norm of all data through its connection to the Frobenius-
norm, our method reduces the intra-class variation and increases the inter-class separation,
resulting in improved discriminability. In addition to aligning the class-conditional feature
distributions P(X | Yc) (where c is a class) across two domains statistically, MRE forces the
data of the same class in different domains to exhibit an approximate low-rank structure,
thereby aligning the class-conditional label prediction distribution P(Yc), resulting in
improved transferability. MRE is computationally efficient and can be used as a plug-and-
play term for other adversarial DA networks. The empirical results and ablation studies
demonstrate that MRE can simultaneously improve transferability and discriminability,
resulting in significant performance advancement for adversarial DA.

2. Related Work

This paper will focus on deep learning-based DA methods, which can be roughly
categorized as discrepancy-based methods and adversarial learning-based methods.

2.1. Discrepancy-Based DA

The discrepancy-based method aims to align certain distribution discrepancies be-
tween domains in one or more feature layers [24]. These kinds of distribution discrepancies
can be maximum mean discrepancy (MMD) [9–11,25], central moment discrepancy [26],
second-order statistics matching [12], f -divergences [27], or the discrepancy of gradi-
ents [28]. In general, MMD measures the source and target distributions as the distance
between the corresponding mean elements in a reproducing kernel Hilbert space (RKHS).
For example, the deep domain confusion (DDC) method [11] applies the MMD loss on the
last feature layer and trains the network together with the classification loss. Then, deep
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adaptation networks (DAN) [9] apply MMD loss on multiple feature layers and minimizes
the distribution discrepancy with multiple kernel variants of MMD.

Unlike the above method that eliminates domain distribution discrepancy by aligning
the marginal distributions, the joint adaptation network (JAN) [10] proposes to align
the joint distributions discrepancy of multiple domain-specific feature layers. Based on
MMD, JAN also proposes a new distribution distance criterion, named joint maximum
mean discrepancy (JMMD). Then, Sun et al. propose a very simple but effective method
CORAL [12] to align the cross-domain distributions by matching the mean and variance
between features. In the subsequent research, the maximum density divergence (MDD) [25]
proposes to minimize the divergence between domains and maximize the density within
the class to align the distribution divergence. In addition to the method of explicitly
reducing the cross-domain distribution difference, there is also a method [29] that implicitly
minimizes the domain difference by aligning the batch normalization (BN) statistics. Instead
of directly manipulating the source and target domain features, the authors of [28] minimize
the gradient difference for the two domains.

2.2. Adversarial Learning-Based DA

Adversarial learning-based methods minimize the cross-domain distribution dis-
crepancy by playing an adversarial game [20,30–32]. The pioneered adversarial DA
method, domain-adversarial neural network (DANN) [16], proposes a gradient rever-
sal layer (GRL) to achieve adversarial domain training with standard back-propagation
and stochastic gradient descent. Following that, the adversarial discriminative domain
adaptation (ADDA) [20] applies two independent mappings for the two domains without
sharing weights to achieve adversarial training. With the help of an additional domain
classification layer, Tzeng et al. [33] propose a new domain confusion loss, which aims to
encourage the classification prediction close to a uniform distribution over binary labels.

In addition to using the discriminator for explicit adversarial training, some papers
have avoided using domain discriminators. By estimating the empirical Wasserstein
distance of the two domains, Shen et al. [34] propose to minimize the distance in an adver-
sarial way to optimize the feature extractor network. The maximum classifier discrepancy
(MCD) [30] method does not explicitly use a discriminator but applies two classifiers to
maximize the domain difference to detect target samples outside the support of the source,
generating target features near the support to train a feature extractor and minimize the
domain difference.

Recent research suggested that feature discriminability plays a crucial role in adversar-
ial DA [35,36], and transferability is enhanced at the expense of deteriorated discriminabil-
ity [14]. MADA [35] and CDAN [17] integrate the classifier prediction information into
adversarial domain training and pursue multimodal distribution alignment. Transferable
adversarial training (TAT) [37] enhances feature discriminability to guarantee adaptability.
Batch spectral penalization (BSP) [14] preserves discriminability by penalizing the largest
singular value of batch features. Domain-symmetric networks (SymNets) [38] construct
an additional classifier that is shared by the source and target classifiers for discriminative
DA. BNM [39] utilizes F-norm and rank maximization to improve the discriminability and
diversity of predictions. The authors of [40] reduce the distribution shifts between classes in
different domains from the perspective of class-conditional distribution alignment. These
methods only enhance feature discriminability from the statistical perspective and focus on
matching the distribution in the feature space, with less emphasis on the label space. In
contrast, our method enhances feature discriminability from a geometric perspective and
improves transferability by simultaneously aligning the feature distribution in the feature
and label spaces.

3. Methods

The proposed method mainly consists of two parts. The first is to learn discriminated
subspace embedding to improve the feature discriminability, and the second is to align the
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class-conditional distribution in both feature and label space to improve the transferability.
We begin with several notations and the baseline for adversarial DA.

3.1. Preliminaries

In unsupervised DA, there is a source domain, denoted as Ds = {(xs
i , ys

i )}s
i=1, which

has ns labeled samples; and a target domain, denoted as Dt = {xt
i}t

i=1, which has nt
samples without annotations. The source and target domains cover C classes, where
ys

i ∈ {1, . . .C}. The two domains are sampled from their respective joint distributions, with
Ps(xs, ys) 6= Pt(xt, yt). In general, mini-batch training is used in deep learning. Given a
mini-batch of source data Xs and target data Xt, we denote the batch size as N.

We follow the standard adversarial DA framework, which has a feature extractor
f = F(x), a category classifier y = G(f), and a domain discriminator d = D(f). In standard
adversarial DA, D is trained to distinguish which domain the features come from and F
is trained to extract domain-invariant features to confuse D. The most widely accepted
framework for adversarial DA is minimizing the classification error on the source domain
labeled data and an additional transfer loss between the two domains. The classification
loss in the source domain is formulated as:

Lcls = −
1
ns

ns

∑
i=1

Lce(G(F(xs
i )), ys

i ), (2)

where Lce is the cross-entropy loss. The transfer loss can be formulated as:

Ladv = − 1
ns

ns

∑
i=1

log(D(fs
i ))−

1
nt

nt

∑
j=1

log(1− D(ft
j)). (3)

Formally, the adversarial DA is formulated as:

min
F,G

Lcls + Ladv

max
D

Ladv.
(4)

3.2. Learning Discriminated Subspace Embedding

Cross-entropy loss, together with softmax, is arguably one of the most commonly
used classification components in convolutional neural networks. Its decision boundary is
determined by the angle between the feature vector and the vectors corresponding to each
class in the linear classifier. However, despite its popularity and excellent performance, this
component does not explicitly encourage the similarity within classes, nor the separation
between classes of the learned features. Moreover, the investigation outlined in the first
section demonstrated that the feature discriminability is degraded in adversarial DA
methods. Therefore, following the concept of the angle between the feature and classifier
vector, a natural strategy for explicitly enhancing the discriminability involves causing
the features from the same class to fall into the linear subspace that is well-aligned with
its classification vector, and the subspaces corresponding to different features should be
separated as far as possible.

In manifold learning, high-dimensional data usually has a small intrinsic dimen-
sion, which can be effectively approximated by a low-dimensional subspace of the high-
dimensional ambient space [41]. Furthermore, the low-dimensional subspace points to the
matrix rank. On this basis, we propose exploiting the matrix rank embedding as the key
learning criterion to force samples from the same class to fall into the same subspace, while
the subspaces of the data of different categories are separated as far as possible to enhance
the feature discriminability.

For the given mini-batch training data Xs and Xt, Ys = G(F(Xs)) ∈ RN∗C and Yt =
G(F(Xt)) ∈ RN∗C are their prediction matrix by the classifier. Let Ys

c be the sub-matrix of
the source prediction that belongs to class c, and Y = [Ys; Yt] is the prediction matrix for
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the entire mini-batch. To enhance the discriminability, we enforce a low-rank constraint on
the data from the same class and a high-rank constraint on the data from all classes, which
can be formulated as a discriminative subspace embedding loss Ldse:

Ldse =
C

∑
c=1

rank(Ys
c)− rank(Y). (5)

Intuitively, minimizing the first term encourages samples from the same subspace to have
consistent predictions, and minimizing the second term (i.e.,−rank(Y)) encourages samples
from different subspaces to have diverse predictions. The rank function is presented
here for pedagogical reasons. We will later replace it with the nuclear norm and show
how the nuclear norm increases separations between the different classes. A tensor’s
nuclear norm is the sum of its singular values, as provided by the tensor’s singular value
decomposition (SVD).

Let ‖A‖∗ denotes the nuclear norm of matrix A. Theorem in [42] states that the nuclear
norm ‖A‖∗ is the convex envelop of rank(A) within the unit ball (‖A‖F ≤ 1). In our
method, ∀d ∈ {s, t}, the prediction matrix Yd satisfies the following conditions:

C

∑
c=1

Yd
i,c = 1, ∀i ∈ {1. . .N}; Yd

i,c ≥ 0, ∀i ∈ {1. . .N}, c ∈ {1. . .C}. (6)

The Frobenius-norm of prediction matrix is calculated as :

‖Yd‖F =

√√√√ N

∑
i=1

C

∑
c=1
‖Yd

i,c‖2 ≤

√√√√ N

∑
i=1

(
C

∑
c=1

Yd
i,c) · (

C

∑
c=1

Yd
i,c) ≤

√
N. (7)

Thus, in our situation, ‖Yd‖F ≤
√

N, the theorem in [42] can be reused by scaling: the
convex envelope of rank(Yd) will be ‖Yd‖∗/

√
N, which is also proportional to ‖Yd‖∗.

As the nuclear norm can be optimized efficiently, it is often adopted as the best convex
approximation of the rank function in many literature [42,43] on rank optimization.

For Y, the maximum value of rank(Y) is r = min(2N, C). In [42–44], the relationship
between ‖Y‖∗ and Frobenius-norm ‖Y‖F is as follows:

1√
r
‖Y‖∗ ≤ ‖Y‖F ≤ ‖Y‖∗ ≤

√
r‖Y‖F. (8)

It shows that ‖Y‖∗ and ‖Y‖F could bound each other. In our method, we have

‖Y‖F =

√√√√ 2N

∑
i=1

C

∑
c=1
‖Yi,c‖2 ≤

√√√√ 2N

∑
i=1

(
C

∑
c=1

Yi,c) · (
C

∑
c=1

Yi,c) ≤
√

2N. (9)

Then, the nuclear norm is upper bound by ‖Y‖∗ ≤
√

r‖Y‖F ≤
√

2Nr. As a result,
maximizing ‖Y‖∗ will maximize ‖Y‖F, which represents the predicted diversity. Mean-
while, when ‖Y‖F is maximized, the upper bound in (9) is achieved. It means that
∑j Y2

i,j = (∑j Yi,j) · (∑j Yi,j); then, we have Yi,j1 · Yi,j2 = 0 for j1 6= j2. Thus, each prediction
Yi is a one-hot vector when ‖Y‖∗ reaches the maximum, which indicates the predicted
discriminability is also maximized. Replacing the rank(·) by nuclear norm, Equation (5)
can be reformulated as:

Ldse =
C

∑
c=1
‖Ys

c‖∗ − ‖Y‖∗, (10)

Provided that the class c exists in this mini-batch, rank(Ys
c) ≥ 1. Thus, to avoid the

prediction feature collapse being zero, we add the bound ∆r on the intra-class rank, and
we fix ∆r = 1. Thus, we re-write Equation (10) as
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Ldse =
C

∑
c=1

max(∆r, ‖Ys
c‖∗)− ‖Y‖∗, (11)

3.3. Improving Transferability with Class-Conditional Distribution Alignment

DANN [16] applies Equation (3) to reduce the marginal distribution difference across-
domain in feature space. In real scenarios, data distributions usually embody complex
multi-modal structures due to the nature of multi-class classification. The multi-modal
structure indicates that the dataset has multiple intrinsic attributes, e.g., contains images
from different classes. Correspondingly, if the intrinsic attributes of the data pile up into
a “mound”, it is called uni-modal. Aligning only the marginal feature distribution may
fail to capture the multi-modal structures. Because even if the discriminator is completely
confused, we cannot theoretically guarantee that the two different distributions are iden-
tical [45]. To address this issue, we apply the discriminative information conveyed from
the task classifier prediction to align the class-conditional distribution in both feature and
label spaces.

For the class-conditional distribution alignment in the feature space, we follow CDAN [17],
which applies the discriminative information conveyed from the classifier prediction for con-
ditional adversarial learning. It conditions the domain discriminator D on the classifier
prediction with a multilinear map as follows:

hs = fs ⊗ ys; ht = ft ⊗ yt, (12)

where ⊗ is an operator of tensor product and hs (ht) will be the new input of the condi-
tional domain discriminator D. By taking advantage of the multilinear map, the updated
adversarial learning loss can be written as:

Ltrans
adv = − 1

ns

ns

∑
i=1

log(D(hs
i ))−

1
nt

nt

∑
j=1

log(1− D(ht
i)). (13)

The above loss can only align the class-conditional distribution (P(X | Yc)) across the
domains in the feature space. We propose aligning the class-conditional label distribution
P(Yc) across two domains to enhance the transferability further. It is non-trivial to match
P(Ys

c ) and P(Yt
c ) directly, as the target domain label is unavailable during training. We

select the pseudo-labeled target samples with classification confidence higher than a certain
threshold (0.95) to align the class-conditional label distribution. We exploit the constraint
on matrix rank to force the classifier prediction of the same class in different domains to be
embedded into the same subspace, that is, forcing the rank of each subspace of the source
domain data to be approximated with the rank of the corresponding subspace of the target
domain data. The class-conditional label distribution loss can be expressed as:

Lld =
C

∑
c=1

(rank(Ys
c)− rank(Ŷt

c)), (14)

where Ys
c is the sub-matrix of the source domain prediction belonging to class c and Ŷt

c is
the sub-matrix of the target prediction with a pseudo-label belonging to class c. We also
apply the nuclear norm to achieve convex approximation of the rank, and Equation (14)
can be reformulated as:

Lld =
C

∑
c=1

(‖Ys
c‖∗ − ‖Ŷt

c‖∗). (15)

The underlying principle of this loss is to force the classifier prediction of the same class in
different domains to be embedded into the same subspace, which can reduce the variation
within each subspace. In this manner, the source and target domains of the same class will
have consistent predictions, leading to better data alignment and transferability.
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3.4. Overall Method and Optimization

Integrating all objectives together, the final objective can be outlined as follows:

min
F,G

Lcls + Ltrans
adv + βLdse + λLld

max
D

Ltrans
adv ,

(16)

where β and λ are two trade-off hyper-parameters, Lcls is the source classification loss,
Ladv

trans is the class-conditional feature distribution loss, Ldse is the discriminative subspace
embedding loss, and Lld is the class-conditional label distribution loss.

4. Experiments and Results
4.1. Datasets

Office-31 [18]. It consists of three real-world image domains with 31 shared categories:
Amazon (A), images are downloaded from Amazon online merchants; Webcam (W), images
are obtained from low-resolution webcams; DSLR (D), images are obtained from a digital
SLR camera with high-resolution. The total number of Office31 is 4652. Randomly select
two domains as the source domain and the target domain, resulting in six cross-domain
subtasks (A→W, . . ., D→A, W→A).

Office-Home [46]. It consists of four significantly different data domains. These
domains share 65 different categories from office and home scenes with a total number
of 15,500. The four domains are: artistic images (denoted by Ar), which is an artistic
depiction, such as sketches, paintings, and decorations of objects; clip art images (denoted
by Cl), which constitute the image collection of clipart; product images (denoted by Pr), all
its images have no background, similar to Amazon’s product images; real-world images
(denoted by Rw) (all images are taken with a regular camera). This dataset has 12 adaptation
sub-tasks; that is, Ar→Cl, . . ., Rw→Pr.

ImageCLEF-DA (http://imageclef.org/2014/adaptation accessed on 1 November
2021) is a relatively small data set, which is the benchmark data set for ImageCLEF 2014
domain adaptation challenge. ImageCLEF-DA consists of three data domains, each of
which shares 12 categories, and each category has 50 images. The three domains are from
Caltech-256 (denoted by C), ImageNet ILSVRC 2012 (denoted by I), and Pascal VOC 2012
(denoted by P). Although the amount of data in each domain is very balanced, due to the
small size of the domain, it is a relatively difficult dataset. There are six DA sub-tasks, that
is, I→P, . . ., P→C.

VisDA2017 [47] is a very challenging dataset first proposed in the 2017 Visual Domain
Adaptation Challenge, which contains two very distinct domains: synthetic images—
images are rendered from 3D models with different angles and lighting; and real images,
which are composed of natural images. It has a total of more than 280 K images with
12 shared classes in training, validation, and test set. The 12 shared classes are plane,
bicycle (shortened to bcyle), bus, car, horse, knife, motorcycle (shortened to mcyle), person,
plant, and skateboards (shortened to sktbrd). We treat the synthetic image dataset and the
real image dataset as the source and target domains, respectively.

4.2. Baselines and Experimental Setup

To demonstrate the benefits of our MRE, we employ it on the two most popular adver-
sarial adaptation networks: DANN [16] and CDAN [17]. We compared MRE with other
adversarial DA networks and several SOTA deep DA methods: ADDA [20], which imposes
an un-tied weight on the feature extractor and treated DANN as one of its special cases;
JAN [10], which aligns the joint distribution; MCD [30], which does not explicitly use the
discriminator, but apply two classifiers to implement adversarial training; MADA [35],
which applies multiple domain discriminator to align the class-conditional distribution;
MDD [48], which proposes a new and very effective distribution discrepancy measurement;
BSP [14], which tries to preserve discriminability by penalizing the largest singular value of

http://imageclef.org/2014/adaptation


Entropy 2022, 24, 44 9 of 16

feature; BNM [39], which utilizes the F-norm and rank to improve feature discriminability
and diversity; ALDA [31], which is a adversarial-based DA method; GVB [49], which ap-
plies the bridge to the generator and discriminator to progressively reduce the discrepancy
across domains; f -DAL [27], which connects domain-adversarial learning with DA theory
from the perspective of f -divergence minimization; CGDM [28], which, instead of directly
manipulating the source and target domain features, minimizes their gradient difference;
DWL [36], which dynamically balances the weight between feature alignment and feature
discriminability in adversarial learning; MetaAlign [50], which regards distribution align-
ment and classification as the meta-train and meta-test tasks in a meta-learning scheme;
and JUMBOT [51], which combines mini-batch strategy with unbalanced optimal transport
to yield robust performance.

The code was implemented with PyTorch. For Office31, Office-Home, and ImageCLEF
datasets, ResNet50 [15] pre-trained on ImageNet [52] was used as the backbone. For dataset
VisDA2017, the backbone network will be replaced by the ResNet101 [15]. The network
was trained by mini-batch stochastic gradient descent (SGD), and the momentum was set to
0.9. The learning rate schedule was the same as DANN [16] and CDAN [17]. Because both
the domain discriminator and the classifier need to be trained from scratch, the learning
rate was set to 10 times that of the backbone network. For data augmentation, some
common operations, such as random flipping and random cropping, were employed. For
Office31, Office-Home, and ImageCLEF datasets, the initial learning rate was 0.001. For
the VisDA2017 dataset, the initial learning rate was 0.01. The batch size N was 36 for all
datasets. We maintained the hyper-parameters β = 0.1 and λ = 0.01 as fixed. Our results
are the average classification accuracy of three random experiments.

4.3. Results and Discussion

The results of Office-31 are displayed in Table 1. Our MRE significantly outperforms all
comparison methods on most DA sub-tasks and achieves the best average result. Compared
with the two baselines (DANN [16], CDAN [17]), MRE achieved a significant performance
improvement on all subtasks, especially on difficult sub-tasks, D→A and W→A, in which
there were significantly fewer source samples than the target domain. MRE achieved a
final average accuracy improvement of 4.8% and 2.1% for DANN and CDAN, respectively,
which demonstrates that domain adaptation can benefit from integrating matrix rank
embedding into adversarial training to enhance the discriminability and transferability.
Compared with the current SOTA DA methods, MRE still achieved competitive results.

Table 1. Classification results (accuracy %) on Office-31 dataset with ResNet-50 as the backbone.
↑ denotes an increase in performance. The bold number indicates the best performance.

Methods A→W D→W W→D A→D D→A W→A Avg

ResNet50 68.4 ± 0.2 96.7 ± 0.1 99.3 ± 0.1 68.9 ± 0.2 62.5 ± 0.3 60.7 ± 0.3 76.1
ADDA 86.2 ± 0.5 96.2 ± 0.3 98.4 ± 0.3 77.8 ± 0.3 69.5 ± 0.4 68.9 ± 0.5 82.9
MADA 90.1 ± 0.1 97.4 ± 0.1 99.6 ± 0.1 87.8 ± 0.2 70.3 ± 0.3 66.4 ± 0.3 85.2
MDD 94.5 ± 0.3 98.4 ± 0.1 100.0 ± 0.0 93.5 ± 0.2 74.6 ± 0.3 72.2 ± 0.1 88.9
BSP 93.3 ± 0.2 98.2 ± 0.2 100.0 ± 0.0 93.0 ± 0.2 73.6 ± 0.3 72.6 ± 0.3 88.5
BNM 92.8 ± 0.1 98.8 ± 0.1 100.0 ± 0.0 92.9 ± 0.2 73.5 ± 0.2 73.8 ± 0.3 88.6
ALDA 95.6 ± 0.5 97.7 ± 0.1 100 ± 0.0 94.0 ± 0.4 72.2 ± 0.4 72.5 ± 0.2 88.9
GVB-GD 94.8 ± 0.5 98.7 ± 0.3 100.0 ± 0.0 95.0 ± 0.4 73.4 ± 0.3 73.7 ± 0.4 89.3
f -DAL 95.4 ± 0.7 98.8 ± 0.1 100.0 ± 0.0 93.8 ± 0.4 74.9 ± 1.5 74.2 ± 0.5 89.5
GVB+MetaAlign 93.0 ± 0.5 98.6 ± 0.0 100.0 ± 0.0 94.5 ± 0.3 75.0 ± 0.3 73.6 ± 0.0 89.2
DWL 89.2 99.2 100.0 91.2 73.1 69.8 87.1

DANN 82.0 ± 0.4 96.9 ± 0.2 99.1 ± 0.1 79.7 ± 0.4 68.2 ± 0.4 67.4 ± 0.5 82.2
DANN+MRE 91.9 ± 0.6 ↑ 98.6 ± 0.0 ↑ 99.3 ± 0.1 ↑ 88.6 ± 0.2 ↑ 71.7 ± 0.3 ↑ 72.1 ± 0.3 ↑ 87.0 ↑

CDAN 93.1 ± 0.1 98.6 ± 0.1 100.0 ± 0.0 92.9 ± 0.2 71.0 ± 0.3 70.3 ± 0.3 87.7
CDAN+MRE 94.3 ± 0.4 ↑ 98.6 ± 0.2 100.0 ± 0.0 95.5 ± 0.2 ↑ 75.8 ± 0.4 ↑ 74.6 ± 0.4 ↑ 89.8 ↑
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Table 2 is the results on the ImageCLEF-DA dataset. The performance of MRE on
the two baselines is improved. In Table 2, except for I→P and C→P, the accuracy of other
sub-tasks are all over 90%, which shows that the sub-tasks are more challenging when P is
the target domain. Nevertheless, our MRE achieved a significant improvement over the
baseline in these two tasks. Compared with other methods, our MRE constitutes a relatively
minor improvement since the images in ImageCLEF-DA are more visually similar, but
the amount of data is very limited (600 for each domain), which may not be sufficient for
training. Thus, the accuracies exhibited less room for improvement in all methods.

Table 2. Classification results (accuracy %) of different methods on ImageCLEF-DA dataset. The
backbone network is ResNet-50. ↑ denotes an increase in performance. The bold number indicates
the best performance.

Methods I→P P→I I→C C→I C→P P→C Avg

ResNet50 74.8 ± 0.3 83.9 ± 0.1 91.5 ± 0.3 78.0 ± 0.2 65.5 ± 0.3 91.2±0.3 80.7
DAN 74.5 ± 0.4 82.2 ± 0.2 92.8 ± 0.2 86.3 ± 0.4 69.2 ± 0.4 89.8±0.4 82.5
JAN 76.8 ± 0.4 88.0 ± 0.2 94.7 ± 0.2 89.5 ± 0.3 74.2 ± 0.3 91.7 ± 0.3 85.8
ADDA 75.5 88.2 96.5 89.1 75.1 92.0 86.0
MCD 77.3 89.2 92.7 88.2 71.0 92.3 85.1
MADA 75.0 ± 0.3 87.9 ± 0.2 96.0 ± 0.3 88.8 ± 0.3 75.2 ± 0.2 92.2 ± 0.3 85.9
BNM 78.5 ± 0.4 91.5 ± 0.2 95.8 ± 0.2 91.8 ± 0.2 76.8 ± 0.2 95.0 ± 0.3 88.2
CGDM 78.7 ± 0.2 93.3 ± 0.1 97.5 ± 0.3 92.7 ± 0.2 79.2 ± 0.1 95.7 ± 0.2 89.5

DANN 75.0 ± 0.3 86.0 ± 0.3 96.2 ± 0.4 87.0 ± 0.5 74.3 ± 0.5 91.5 ± 0.6 85.0
DANN+MRE 77.8 ± 0.4 ↑ 92.7 ± 0.3 ↑ 96.5 ± 0.2 ↑ 92.7 ± 0.2 ↑ 77.5 ± 0.2 ↑ 94.2 ± 0.4 ↑ 88.6 ↑

CDAN 77.7 ± 0.3 90.7 ± 0.2 97.7 ± 0.3 91.3 ± 0.3 74.2 ± 0.2 94.3 ± 0.3 87.7
CDAN+MRE 79.7 ± 0.4 ↑ 92.9 ± 0.2 ↑ 97.9 ± 0.3 ↑ 92.7 ± 0.4 ↑ 79.2 ± 0.2 ↑ 95.0 ± 0.5 ↑ 89.8 ↑

Table 3 shows the results of the Office-Home dataset. Compared with the two base-
lines, MRE achieved a significant performance improvement on all subtasks and achieved
an average accuracy improvement of 9.0% and 5.9% for DANN [16] and CDAN [17], re-
spectively. Compared with methods (BSP [14], ALDA [31], and BNM [39]) that focus on
improving feature discriminability, our method has a significant improvement in terms of
average accuracy. Compared with the current SOTA methods (GVB-GD [49], JUMBO [51]),
our MRE with the CDAN significantly outperformed the comparison methods on eight
sub-tasks and got the best average result. Especially, MRE is superior to MetaAlign on both
baseline methods. It is noted that our MRE shows significant improvements compared
with other DA methods when the artistic images (Ar) serve as the target domain. Since
images in Ar within the same class have large differences, sub-tasks with Ar as the target
domain are more challenging. Our MRE method still yielded larger improvement on such
difficult DA sub-tasks, which highlights the power of our MRE.

Results of VisDA-2017 are displayed in Table 4. Compared with the two baselines
DANN [16] and CDAN [17], MRE outperforms DANN (CDAN) in 9 (12) of 12 sub-tasks,
and the average accuracy is improved by 14.2% and 8.5%, respectively. MRE provided the
best performance in the final mean accuracy, surpassing the second-best (ALDA [31]) by
4.4%. Notably, ALDA learns the discriminative target features by generating a confusion
matrix and trains the model in a self-training manner, while our MRE enhances transfer-
ability and discriminability simultaneously. Furthermore, according to the accuracy of
each category, a substantial improvement was generated in the truck category. Compared
to the other methods, which only focus on improving transferability or discriminability,
our method achieved the best results, demonstrating that improving transferability and
discriminability are equally important in DA.
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Table 3. Classification results (accuracy %) of different methods on Office-Home dataset. The
backbone network is ResNet-50. ↑ denotes an increase in performance. The bold number indicates
the best performance.

Methods Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

ResNet50 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DAN 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3
JAN 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3
MDD 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1
BSP 52.0 68.6 76.1 58.0 70.3 70.2 58.6 50.2 77.6 72.2 59.3 81.9 66.3
ALDA 53.7 70.1 76.4 60.2 72.6 71.5 56.8 51.9 77.1 70.2 56.3 82.1 66.6
BNM 56.2 73.7 79.0 63.1 73.6 74.0 62.4 54.8 80.7 72.4 58.9 83.5 69.4
MDD+Implicit 56.2 77.9 79.2 64.4 73.1 74.4 64.2 54.2 79.9 71.2 58.1 83.1 69.5
GVB-GD 57.0 74.7 79.8 64.6 74.1 74.6 65.2 55.1 81.0 74.6 59.7 84.3 70.4
f-DAL 54.7 71.7 77.8 61.0 72.6 72.2 60.8 53.4 80.0 73.3 60.6 83.8 68.5
JUMBOT 55.2 75.5 80.8 65.5 74.4 74.9 65.2 52.7 79.2 73.0 59.9 83.4 70.0

DANN+MetaAlign 48.6 69.5 76.0 58.1 65.7 68.3 54.9 44.4 75.3 68.5 50.8 80.1 63.3
CDAN+MetaAlign 55.2 70.5 77.6 61.5 70.0 70.0 58.7 55.7 78.5 73.3 61.0 81.7 67.8

DANN 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
DANN+MRE 52.8 ↑ 69.7 ↑ 76.3 ↑ 58.7 ↑ 70.9 ↑ 70.8 ↑ 58.6 ↑ 51.8 ↑ 78.6 ↑ 70.6 ↑ 57.3 ↑ 82.7 ↑ 66.6 ↑

CDAN 50.8 68.3 74.9 58.4 70.6 70.1 54.8 48.7 76.6 70.3 57.7 81.6 65.2
CDAN+MRE 57.8 ↑ 75.2 ↑ 79.5 ↑ 65.9 ↑ 74.8 ↑ 75.0 ↑ 66.8 ↑ 56.6 ↑ 80.8 ↑ 75.8 ↑ 60.2 ↑ 84.3 ↑ 71.1 ↑

Table 4. Classification results (accuracy %) of different methods on VisDA2017 dataset. ResNet-101
is the backbone network. ↑ denotes an increase in performance. The bold number indicates the
best performance.

Methods Plane Bcybl Bus Car Horse Knife Mcyle Person Plant Sktbrd Train Truck Avg

ResNet101 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
DAN 87.1 63.0 76.5 42.0 90.3 42.9 85.9 53.1 49.7 36.3 85.8 20.7 61.1
MCD 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9
BSP 92.4 61.0 81.0 57.5 89.0 80.6 90.1 77.0 84.2 77.9 82.1 38.4 75.9
ALDA 93.8 74.1 82.4 69.4 90.6 87.2 89.0 67.6 93.4 76.1 87.7 22.2 77.8
DWL 90.7 80.2 86.1 67.6 92.4 81.5 86.8 78.0 90.6 57.1 85.6 28.7 77.1

DANN 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
DANN+MRE 90.0 ↑ 69.5 75.9 48.2 ↑ 86.8 ↑ 28.8 91.5 ↑ 75.9↑ 91.1 ↑ 66.9 ↑ 88.0 ↑ 46.3 ↑ 71.6 ↑

CDAN 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.7
CDAN+MRE 95.1 ↑ 71.7 ↑ 85.6 ↑ 71.2 ↑ 91.4 ↑ 89.5 ↑ 92.9 ↑ 80.0 ↑ 91.2 ↑ 83.3 ↑ 88.1 ↑ 46.3 ↑ 82.2 ↑

4.4. Effectiveness Verification Experiments

Ablation study: To verify the effectiveness of each component in the objective function
of MRE, ablation study was performed on the Office-Home dataset; the results are pre-
sented in Table 5. Our ablation study started with the very baseline method of DANN [16],
which only aligns the marginal distribution without category information. Thereafter, we
conducted a comparison with CDAN [17], which only aligns the class-conditional distribu-
tion of the data in the feature space. Subsequently, to investigate how the class-conditional
distribution alignment in the label space aids in learning more transferable features, we
removed the Lld loss in Equation (9) from main minimax problem in Equation (11), which
was denoted as “MRE (w/o ld)”. To determine the effects of the proposed discriminative
loss Ldse in Equation (6), we removed Equation (6) from Equation (11), which was denoted
as “MRE (w/o dse)”.

Table 5. Ablation study on Office-Home dataset. ResNet-50 is the backbone network. The bold
number indicates the best performance.

Methods Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

DANN 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
CDAN 50.8 68.3 74.9 58.4 70.6 70.1 54.8 48.7 76.6 70.3 57.7 81.6 65.2

CDAN+MRE (w/o dse) 49.4 71.2 77.9 63.1 70.8 73.0 60.8 48.7 79.3 72.5 54.7 82.3 67.0
CDAN+MRE (w/o ld) 56.7 74.8 79.2 65.3 74.2 74.7 64.9 56.3 81.5 73.4 59.2 83.7 70.3
CDAN+MRE 57.8 75.2 79.5 65.9 74.8 75.0 66.8 56.6 80.8 75.8 60.2 84.3 71.1
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Table 5 demonstrates that CDAN provided a significant improvement over DANN,
indicating that the discriminated multimodal structure information is very important in DA.
MRE (w/o ld) outperformed CDAN, indicating the efficacy of our proposed discriminative
adversarial learning. MRE (w/o dse) also outperformed CDAN, thereby demonstrating
the effectiveness of aligning features and class conditional distribution of labels. MRE
significantly outperformed MRE (w/o dse) and MRE (w/o ld), confirming the efficacy of
the proposed simultaneous improvement in the discriminability and transferability.

Discriminability: We investigated the discriminability of different methods by calcu-
lating the AFS [19]. As mentioned previously, the AFS serves as an effective indicator of
discriminability. A lower Fisher value indicates that the features are more discriminative.
The results of sub-tasks A→D and D→A are presented in Figure 3a. Comparing ResNet-50
with DANN and CDAN, although adversarial domain adaptation methods can enhance
the transferability, as they achieve better performance in Table 1, the discriminability of
DANN and CDAN is reduced, while our MRE can not only significantly enhance the
discriminability but also preserve transferability.

(a) Discriminability (b) A-distance (c) Convergence

Figure 3. Discriminability and transferability of different methods for tasks A→D and D→A: (a) dis-
criminability and (b) A-distance. (c) Convergence on adaptation task W→A.

Distribution discrepancy: In DA, the cross-domain distribution discrepancy is com-
monly measured by A-distance [3], which is calculated as dA = 2(1− 2ε). We denote ε
as the test error of a classifier, which is trained to discriminate whether a feature vector
v comes from the source domain or the target domain, where v is the feature extracted
from a learned DA feature extractor. We compared our proposed MRE with ResNet-50 [15],
DANN [16], and CDAN [17] on the subtasks A→D and D→A in the Office31 dataset. As
shown in Figure 3b, the A-distances of DANN, MRE, and CDAN were smaller than that
of ResNet-50, indicating that adversarial DA enables significantly reduce cross-domain
distribution discrepancy. The A-distance of MRE is the smallest among DANN, CDAN,
and MRE, indicating that the features extracted by our MRE show better transferability.

Convergence: To verify the convergence of ResNet-50 [15], CDAN [17], and our MRE,
we conducted an experiment on the sub-task W→A in the Office31 dataset. Figure 3c
presents the result. The test error in Figure 3c is equal to (1.0—accuracy). The value of
ResNet-50 is the target domain test error by the network trained only with the source
domain data. Because target domain data does not present in the training of ResNet50, the
learned parameter is irrelevant to the target domain. As a result, its test error in the target
domain fluctuates in a small range. Our MRE yielded faster convergence than CDAN.

Visualization: To verify the clustering and separation characteristic of the extracted
features, we apply the commonly used t-SNE [53] to visualize the activations from different
feature extractors. We conducted an experiment on the subtask A→D and compared our
MRE method with ResNet-50 and DANN. As can be seen from the results in Figure 4a–c, for
the ResNet-50, there is a considerable proportion of the features are not aligned, the intra-
class distance is relatively large, and the inter-class distance is relatively small. Comparing
DANN with ResNet-50, the source domain and target features of DANN are better aligned,
but its intra-class distance is still large. In MRE, the features were well aligned and exhibited
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better intra-class clustering and inter-class separation. This demonstrates the effectiveness
of our MRE in aligning the class-conditional distributions in both feature and label space,
and in learning a more discriminated target model.

(a) ResNet-50 (b) DANN (c) MRE

Figure 4. (a–c) Visualization on task A→D (best viewed in color), where red indicates source samples
and blue denotes target samples.

Hyper-parameter analysis: There are three hyper-parameters—β, λ, and the threshold
th—where th is used to select target samples with higher confidence. β and λ are two
trade-off parameters, which are used to control the discriminative subspace embedding
loss and the class-conditional label distribution loss, respectively. A case study on dataset
Office-31 was conducted to investigate the sensitivity of th, β, and λ. For each parameter,
a set of reasonable values was selected to form a discrete candidate set, for th ∈ {0.85,
0.90, 0.95, 0.97, 0.99}, for β ∈ {0.01, 0.05, 0.1, 0,2, 0.5}, and for λ ∈ {0.001, 0.005, 0.01, 0.05,
0.1}. The results are presented in Table 6. When the value of th is greater than 0.9, th is
insensitive. We fix th = 0.95. For β and λ, our MRE achieves the best result with β = 0.1
and λ = 0.01. From the results, as long as the parameters are within the feasible range, our
MRE is robust to different settings. One can tune the hyper-parameter by IWCA [54] for
different applications.

Table 6. Results (%) on Office-31 for sensitivity of th, α and λ.

th 0.85 0.90 0.95 0.97 0.99

Avg 87.7 89.8 89.8 89.8 89.0

β 0.01 0.05 0.1 0.2 0.5

Avg 88.7 89.2 89.8 88.9 87.7

λ 0.001 0.005 0.01 0.05 0.1

Avg 86.8 88.5 89.8 87.1 88.2

Runtime comparison: We conduct experiments on sub-task of A→W in Office-31
dataset to compare the runtime. All experiments were run on the same machine (Linux
version 4.15.0-20-generic, Ubuntu 7.3.0-16ubuntu3, python version = 1.3.1, CUDA ver-
sion = 10.0.130, GPU = Tesla V100-PCIE-32GB). The batch size of all experiments is set to
36. CDAN is our baseline network. Table 7 reports the total runtime required for each algo-
rithm to train 20,000 iterations. In Table 7, “MRE(w/o Lld)” means MRE without the Lld loss
and “MRE(w/o Ldse)” means MRE without the discriminative loss Ldse. Compared to the
baseline CDAN, our method has only a slight increase in computational cost. Our objective
function contains four matrix nuclear-norm operators, which are calculated as the sum of
matrix singular-values. Singular value decomposition (SVD) is very time-consuming in
traditional machine learning. However, our calculation of SVD is based on mini-batches.
Meanwhile, we calculate the SVD in label space, which has much lower dimensions com-
pared to the feature space. Therefore, our method is computationally effective.
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Table 7. Running time (s) comparison on task of A→W.

Methods Ldse Lld Runtime Relative Runtime

CDAN × × 7257 s 100%
MRE(w/o Lld)

√
× 7363 s 101.46%

MRE(w/o Ldse) ×
√

7391 s 101.85%
MRE

√ √
7452 s 102.69%

5. Conclusions and Discussion

In this paper, we conduct an experiment to confirm that the discriminability of target
domain features is inevitably suppressed during the process of adversarial learning. Further,
we propose an approach for adversarial DA with matrix rank embedding as the key learning
criterion to simultaneously enhance discriminability and transferability. We force data of
the same class to have a low-rank structure and data of different classes to have a high-rank
structure, thereby resulting in improved discriminability. We also force data from the same
class but different domains to have an approximate low-rank structure, aligning the class-
conditional distribution in label space, resulting in enhanced transferability. Our method
is general and can be combined with most classification algorithms since the proposed
loss function is directly applied to the softmax probability matrix in classification. Thus,
it can be considered a plug-in module in the classification networks. Second, our method
has more advantages in challenging tasks. Experiments show that our method performs
similar to CDAN in simple datasets and outperforms CDAN significantly in challenging
datasets like Office-Home.

Nevertheless, our method also has some limitations. First, we use a nuclear-norm-
based objective for optimization, thus bringing computation burden in calculating SVD.
Second, we introduce three additional hyper-parameters that need to be tuned in exper-
iments. In our paper, we use the grid search to set our hyper-parameter. In practice,
some commonly used machine learning hyper-parameter optimization methods, such
as random search and Bayesian model-based optimization, can also be used to search
hyper-parameters. Third, the target pseudo-labels are not always correct. These misclassi-
fied pseudo-labels in the target domain may affect the class-conditional label distribution
alignment. Such a problem can be improved by designing better pseudo-labeling mech-
anisms in future work. Future research may focus on addressing the above drawbacks
and limitations.

Author Contributions: Conceptualization, T.X. and C.F.; methodology, T.X. and P.L.; software, T.X.;
validation, T.X. and C.F.; formal analysis, P.L.; investigation, C.F.; resources, T.X.; data curation, C.F.;
writing—original draft preparation, T.X.; writing—review and editing, C.F. and P.L.; visualization,
T.X.; supervision, H.L.; project administration, P.L.; funding acquisition, P.L. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was partially funded by the National Natural Science Foundation of China un-
der Grant 51935005, partially funded by the Fundamental Research Program under Grant
JCKY20200603C010, and in part by the Science and Technology on Space Intelligent Laboratory
under Grant ZDSYS-2018-02.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly and permanently available
in OSF.IO at https://osf.io/ajsc8/ (accessed on 3 November 2021). All the datasets used in this
study are public datasets and are permanently available at https://github.com/jindongwang/
transferlearning/tree/master/data (accessed on 3 November 2021).

Conflicts of Interest: The authors declare no conflict of interest.

https://osf.io/ajsc8/
https://github.com/jindongwang/transferlearning/tree/master/data
https://github.com/jindongwang/transferlearning/tree/master/data


Entropy 2022, 24, 44 15 of 16

References
1. Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2009, 22, 1345–1359. [CrossRef]
2. Shao, L.; Zhu, F.; Li, X. Transfer learning for visual categorization: A survey. IEEE Trans. Neural Netw. Learn. Syst. 2014,

26, 1019–1034. [CrossRef]
3. Ben-David, S.; Blitzer, J.; Crammer, K.; Kulesza, A.; Pereira, F.; Vaughan, J.W. A theory of learning from different domains. Mach.

Learn. 2010, 79, 151–175. [CrossRef]
4. Dai, W.; Yang, Q.; Xue, G.R.; Yu, Y. Boosting for transfer learning. In Proceedings of the 24th International Conference on Machine

Learning, Corvalis, OR, USA, 20–24 June 2007; ACM: New York, NY, USA, 2007; pp. 193–200.
5. Cicek, S.; Soatto, S. Unsupervised Domain Adaptation via Regularized Conditional Alignment. In Proceedings of the 2019

IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October 27–2 November 2019; pp. 1416–1425.
6. Kang, G.; Jiang, L.; Yang, Y.; Hauptmann, A.G. Contrastive Adaptation Network for Unsupervised Domain Adaptation. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019;
pp. 4893–4902.

7. Xiao, T.; Liu, P.; Zhao, W.; Liu, H.; Tang, X. Structure preservation and distribution alignment in discriminative transfer subspace
learning. Neurocomputing 2019, 337, 218–234. [CrossRef]

8. Wang, Q.; Breckon, T.P. Unsupervised Domain Adaptation via Structured Prediction Based Selective Pseudo-Labeling; AAAI: Menlo Park,
CA, USA, 2020.

9. Long, M.; Cao, Y.; Cao, Z.; Wang, J.; Jordan, M.I. Transferable representation learning with deep adaptation networks. IEEE Trans.
Pattern Anal. Mach. Intell. 2018, 41, 3071–3085. [CrossRef] [PubMed]

10. Long, M.; Zhu, H.; Wang, J.; Jordan, M.I. Deep transfer learning with joint adaptation networks. In Proceedings of the 34th
International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017, Volume 70; pp. 2208–2217.

11. Tzeng, E.; Hoffman, J.; Zhang, N.; Saenko, K.; Darrell, T. Deep domain confusion: Maximizing for domain invariance. arXiv 2014,
arXiv:1412.3474.

12. Sun, B.; Saenko, K. Deep coral: Correlation alignment for deep domain adaptation. In European Conference on Computer Vision;
Springer: Berlin, Germany, 2016; pp. 443–450.

13. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
nets. Adv. Neural Inf. Process. Syst. 2014, 27, 2672–2680.

14. Chen, X.; Wang, S.; Long, M.; Wang, J. Transferability vs. Discriminability: Batch Spectral Penalization for Adversarial Domain
Adaptation. Int. Conf. Mach. Learn. 2019, 97, 1081–1090.

15. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

16. Ganin, Y.; Lempitsky, V. Unsupervised domain adaptation by backpropagation. In Proceedings of the 32nd International
Conference on International Conference on Machine Learning, Lille, France, 6–11 July 2015, Volume 37; pp. 1180–1189.

17. Long, M.; Cao, Z.; Wang, J.; Jordan, M.I. Conditional adversarial domain adaptation. Adv. Neural Inf. Process. Syst. 2018, 31,
1640–1650.

18. Saenko, K.; Kulis, B.; Fritz, M.; Darrell, T. Adapting Visual Category Models to New Domains. In Proceedings of the ECCV,
Heraklion, Crete, Greece, 5–11 September 2010; Volume 6314, pp. 213–226.

19. Liu, W.; Wen, Y.; Yu, Z.; Li, M.; Raj, B.; Song, L. SphereFace: Deep Hypersphere Embedding for Face Recognition. In Proceedings
of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017;
pp. 6738–6746.

20. Tzeng, E.; Hoffman, J.; Saenko, K.; Darrell, T. Adversarial discriminative domain adaptation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2962–2971.

21. Liu, G.; Lin, Z.; Yan, S.; Sun, J.; Yu, Y.; Ma, Y. Robust recovery of subspace structures by low-rank representation. IEEE Trans.
Pattern Anal. Mach. Intell. 2012, 35, 171–184. [CrossRef]

22. Qiu, Q.; Sapiro, G. Learning transformations for clustering and classification. J. Mach. Learn. Res. 2015, 16, 187–225.
23. Wan, H.; Wang, H.; Guo, G.; Wei, X. Separability-oriented subclass discriminant analysis. IEEE Trans. Pattern Anal. Mach. Intell.

2017, 40, 409–422. [CrossRef] [PubMed]
24. Bermúdez-Chacón, R.; Salzmann, M.; Fua, P. Domain Adaptive Multibranch Networks. In Proceedings of the ICLR, Addis

Ababa, Ethiopia, 26–30 April 2020.
25. Li, J.; Chen, E.; Ding, Z.; Zhu, L.; Lu, K.; Shen, H. Maximum Density Divergence for Domain Adaptation. IEEE Trans. Pattern

Anal. Mach. Intell. 2020, 43, 3918–3930. [CrossRef] [PubMed]
26. Zellinger, W.; Moser, B.A.; Grubinger, T.; Lughofer, E.; Natschläger, T.; Saminger-Platz, S. Robust Unsupervised Domain

Adaptation for Neural Networks via Moment Alignment. Inf. Sci. 2019, 483, 174–191. [CrossRef]
27. Acuna, D.; Zhang, G.; Law, M.T.; Fidler, S. f-Domain-Adversarial Learning: Theory and Algorithms. In Proceedings of the ICML,

Online, 18–24 July 2021.
28. Gao, Z.; Zhang, S.; Huang, K.; Wang, Q.; Zhong, C. Gradient Distribution Alignment Certificates Better Adversarial Domain

Adaptation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Online, 11–17 October 2021;
pp. 8937–8946.

http://doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.1109/TNNLS.2014.2330900
http://dx.doi.org/10.1007/s10994-009-5152-4
http://dx.doi.org/10.1016/j.neucom.2019.01.069
http://dx.doi.org/10.1109/TPAMI.2018.2868685
http://www.ncbi.nlm.nih.gov/pubmed/30188813
http://dx.doi.org/10.1109/TPAMI.2012.88
http://dx.doi.org/10.1109/TPAMI.2017.2672557
http://www.ncbi.nlm.nih.gov/pubmed/28237920
http://dx.doi.org/10.1109/TPAMI.2020.2991050
http://www.ncbi.nlm.nih.gov/pubmed/32356736
http://dx.doi.org/10.1016/j.ins.2019.01.025


Entropy 2022, 24, 44 16 of 16

29. Li, Y.; Wang, N.; Shi, J.; Hou, X.; Liu, J. Adaptive batch normalization for practical domain adaptation. Pattern Recognit. 2018,
80, 109–117. [CrossRef]

30. Saito, K.; Watanabe, K.; Ushiku, Y.; Harada, T. Maximum Classifier Discrepancy for Unsupervised Domain Adaptation. In
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June
2018; pp. 3723–3732.

31. Chen, M.; Zhao, S.; Liu, H.; Cai, D. Adversarial-Learned Loss for Domain Adaptation. In Proceedings of the The Thirty-Fourth
AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; pp. 3521–3528.

32. Chen, Q.; Liu, Y. Structure-Aware Feature Fusion for Unsupervised Domain Adaptation. In Proceedings of the Thirty-Fourth
AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; pp. 10567–10574.

33. Tzeng, E.; Hoffman, J.; Darrell, T.; Saenko, K. Simultaneous deep transfer across domains and tasks. In Proceedings of the IEEE
International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 4068–4076.

34. Shen, J.; Qu, Y.; Zhang, W.; Yu, Y. Wasserstein distance guided representation learning for domain adaptation. arXiv 2017,
arXiv:1707.01217.

35. Pei, Z.; Cao, Z.; Long, M.; Wang, J. Multi-adversarial domain adaptation. In Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; pp. 3934–3941.

36. Xiao, N.; Zhang, L. Dynamic Weighted Learning for Unsupervised Domain Adaptation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Online, 19–25 June 2021; pp. 15242–15251.

37. Liu, H.; Long, M.; Wang, J.; Jordan, M.I. Transferable Adversarial Training: A General Approach to Adapting Deep Classifiers. In
Proceedings of the 36th International Conference on Machine Learning, ICML, Long Beach, CA, USA, 9–15 June 2019; Volume 97,
pp. 4013–4022.

38. Zhang, Y.; Tang, H.; Jia, K.; Tan, M. Domain-Symmetric Networks for Adversarial Domain Adaptation. In Proceedings of
the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019;
pp. 5026–5035.

39. Cui, S.; Wang, S.; Zhuo, J.; Li, L.; Huang, Q.; Tian, Q. Towards Discriminability and Diversity: Batch Nuclear-norm Maximization
under Label Insufficient Situations. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 3940–3949.

40. Jiang, X.; Lao, Q.; Matwin, S.; Havaei, M. Implicit Class-Conditioned Domain Alignment for Unsupervised Domain Adaptation.
In Proceedings of the 37th International Conference on Machine Learning, ICML, Online, 13–18 July 2020; Volume 119, pp. 4816–
4827.

41. Lezama, J.; Qiu, Q.; Musé, P.; Sapiro, G. OLE: Orthogonal Low-rank Embedding, A Plug and Play Geometric Loss for Deep
Learning. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT,
USA, 18–22 June 2018; pp. 8109–8118.

42. Fazel, M. Matrix Rank Minimization with Applications. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2002.
43. Recht, B.; Fazel, M.; Parrilo, P.A. Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimiza-

tion. SIAM Rev. 2010, 52, 471–501. [CrossRef]
44. Srebro, N.; Rennie, J.D.; Jaakkola, T.S. Maximum-Margin Matrix Factorization. NIPS Citeseer 2004, 17, 1329–1336.
45. Arora, S.; Ge, R.; Liang, Y.; Ma, T.; Zhang, Y. Generalization and equilibrium in generative adversarial nets (gans). In Proceedings

of the International Conference on Machine Learning, PMLR, Sydney, Australia, 6–11 August 2017; pp. 224–232.
46. Venkateswara, H.; Eusebio, J.; Chakraborty, S.; Panchanathan, S. Deep Hashing Network for Unsupervised Domain Adaptation.

In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July
2017; pp. 5385–5394.

47. Peng, X.; Usman, B.; Kaushik, N.; Hoffman, J.; Wang, D.; Saenko, K. Visda: The visual domain adaptation challenge. arXiv 2017,
arXiv:1710.06924.

48. Zhang, Y.; Liu, T.; Long, M.; Jordan, M.I. Bridging Theory and Algorithm for Domain Adaptation. arXiv 2019, arXiv:1904.05801.
49. Cui, S.; Wang, S.; Zhuo, J.; Su, C.; Huang, Q.; Tian, Q. Gradually vanishing bridge for adversarial domain adaptation. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020;
pp. 12455–12464.

50. Wei, G.; Lan, C.; Zeng, W.; Chen, Z. MetaAlign: Coordinating Domain Alignment and Classification for Unsupervised Domain
Adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Online, 19–25 June 2021;
pp. 16643–16653.

51. Fatras, K.; Séjourné, T.; Flamary, R.; Courty, N. Unbalanced minibatch optimal transport; applications to domain adaptation. In
Proceedings of the International Conference on Machine Learning, PMLR, Online, 18–24 July 2021; pp. 3186–3197.

52. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.
Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]

53. Van Der Maaten, L. Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 2014, 15, 3221–3245.
54. Sugiyama, M.; Krauledat, M.; Müller, K.R. Covariate shift adaptation by importance weighted cross validation. J. Mach. Learn.

Res. 2007, 8, 985–1005.

http://dx.doi.org/10.1016/j.patcog.2018.03.005
http://dx.doi.org/10.1137/070697835
http://dx.doi.org/10.1007/s11263-015-0816-y

	Introduction
	Related Work
	Discrepancy-Based DA
	Adversarial Learning-Based DA

	Methods
	Preliminaries
	Learning Discriminated Subspace Embedding
	Improving Transferability with Class-Conditional Distribution Alignment
	Overall Method and Optimization

	Experiments and Results
	Datasets
	Baselines and Experimental Setup
	Results and Discussion
	Effectiveness Verification Experiments

	Conclusions and Discussion
	References

