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Abstract: In a real solid there are different types of defects. During sudden cooling, near cracks,
there can appear high thermal stresses. In this paper, the time-fractional heat conduction equation is
studied in an infinite space with an external circular crack with the interior radius R in the case of
axial symmetry. The surfaces of a crack are exposed to the constant heat flux loading in a circular
ring R < r < ρ. The stress intensity factor is calculated as a function of the order of time-derivative,
time, and the size of a circular ring and is presented graphically.
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1. Introduction

A real solid, as a rule, contains a large number of different type defects: point defects,
dislocations, disclinations, slits, inclusions, holes, and cracks. Physical processes occurring
in solids depend significantly on the presence of such defects. An external circular crack
in an infinite solid under mechanical loading was investigated in [1–13]. During sudden
cooling of a solid, there can arise very high thermal stresses near cracks. For brittle
materials, thermal shock is an important fracture mechanism. Starting from the pioneering
papers [14,15], the study of thermoelastic problems for solids with cracks has attracted
considerable attention from researchers. In the framework of classical thermoelasticity, an
external circular crack was considered in [16–23].

The classical thermoelasticity is based on the conventional Fourier law for the heat
flux vector and the standard parabolic heat conduction equation for temperature. Many
theoretical and experimental studies on heat conduction show that in solids with a complex
internal structure, in particular with different types of defects, the Fourier law and the
parabolic heat conduction equation should be extended to more general relationships.
Different generalizations of the Fourier law and heat conduction equation have been
studied intensively in the literature (see [24–31] and references therein). The constitutive
equations with memory have considerable promise in this area. It should be emphasized
that the concept of memory has found wide use in physics, mechanics, economics, and other
fields [32–42]. The generalized Fourier law for the heat flux vector q involving memory
effects can be written as

q(x, t) = −k
∫ t

0
K(t− τ) grad T(x, τ)dτ (1)
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and leads to the corresponding heat conduction equation with memory,

∂T(x, t)
∂t

= a
∫ t

0
K(t− τ)∆T(x, τ)dτ, (2)

where k and a can be treated as the generalized thermal conductivity and generalized
thermal diffusivity coefficient, respectively.

The suitable selection of the memory kernel K(t− τ) allows us to obtain different gen-
eralized theories of heat conduction and associated generalized thermoelasticity theories.
In the case of “full memory” [26,43] , there is no fading of memory, the kernel K(t− τ) is
constant, and Equation (2) turns into the wave equation which leads to thermoelasticity
without energy dissipation of Green and Naghdi [43]. The exponential memory kernel
describes “short-tail memory” and results in the telegraph equation for temperature [24]
and generalized thermoelasticity of Lord and Shulman [44] and Green and Lindsay [45].

The theory of integrals and derivatives of fractional order [46–48] makes wide use in
various areas of science [35,36,39–42,49–54]. The generalization of the Fourier law with the
power “long-tail memory” kernel K(t− τ) [39,55–57]

q(x, t) = − k
Γ(α)

∂

∂t

∫ t

0
(t− τ)α−1 grad T(x, τ)dτ, 0 < α ≤ 1, (3)

q(x, t) = − k
Γ(α− 1)

∫ t

0
(t− τ)α−2 grad T(x, τ)dτ, 1 < α ≤ 2, (4)

can be expressed in terms of derivatives and integrals of the fractional order

q(x, t) = −kD1−α
RL grad T(x, t), 0 < α ≤ 1, (5)

q(x, t) = −kIα−1grad T(x, t), 1 < α ≤ 2, (6)

and gives rise to the time-fractional heat conduction equation

∂αT(x, t)
∂tα

= a ∆T(x, t), 0 < α ≤ 2, (7)

where [46–48]

Iα f (t) =
1

Γ(α)

∫ t

0
(t− τ)α−1 f (τ)dτ, α > 0 (8)

is the Riemann–Liouville fractional integral,

Dα
RL f (t) =

dn

dtn

[
1

Γ(n− α)

∫ t

0
(t− τ)n−α−1 f (τ)dτ

]
, n− 1 < α < n (9)

denotes the Riemann-Liouville fractional derivative,

dα f (t)
dtα

≡ Dα
C f (t) =

1
Γ(n− α)

∫ t

0
(t− τ)n−α−1 dn f (τ)

dτn dτ, n− 1 < α < n (10)

is the Caputo fractional derivative. Here, Γ(α) is the gamma function.
It should be emphasized that in the constitutive equations for the heat flux (3) and (4),

the generalized thermal conductivity k has the physical dimension

[k] =
J

m · sα · K , (11)

whereas the generalized thermal diffusivity a in the time-fractional heat conduction Equa-
tion (7) has the physical dimension

[a] =
m2

sα
. (12)
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This will be important in the following when introducing dimensionless quantities
(see Equation (35)).

Theory of thermoelasticity associated with the fractional heat conduction Equation (7)
was proposed in [55] (see also the review articles [58,59], and the book [39] which sums
up investigations in the field of fractional thermoelasticity). The “middle-tail memory”
kernel K(t− τ) in the constitutive Equation (1) is expressed in terms of the Mittag-Leffler
functions being the generalization of the exponential function. In this case, we arrive at the
time-fractional telegraph equations and the associated theories of thermal stresses [60,61].

Cracks in the framework of generalized theories of thermal stresses were studied
in [62–67]. In the framework of fractional thermoelasticity, line cracks in a plane [68–70]
and a penny-shaped crack [71] were considered. In the present paper, we expand the
previous studies [68–71] on the case of an external circular crack with the interior radius R
in an infinite solid under the prescribed heat flux at its surfaces. The surfaces of a crack are
exposed to the constant heat flux loading in a circular ring R < r < ρ. The stress intensity
factor is calculated as a function of the order of time-derivative, time, and the size of a
circular ring and is presented graphically.

2. Formulation of the Problem

We consider a space weakened by an external circular crack with the interior radius R
placed in the plane z = 0. The axisymmetric time-fractional heat conduction Equation (7)
in the cylindrical coordinates

∂αT(r, z, t)
∂tα

= a
(

∂2T(r, z, t)
∂r2 +

1
r

∂T(r, z, t)
∂r

+
∂2T(r, z, t)

∂z2

)
0 ≤ r < ∞, −∞ < z < ∞, 0 < t < ∞, 0 < α ≤ 2,

(13)

is studied under zero initial conditions

t = 0 : T(r, z, t) = 0, 0 < α ≤ 2, (14)

t = 0 :
∂T(r, z, t)

∂t
= 0, 1 < α ≤ 2, (15)

and under the prescribed heat flux at the crack surfaces

z = 0+ : kD1−α
RL

∂T(r, z, t)
∂z

= q(r, t), R < r < ∞, 0 < α ≤ 1, (16)

z = 0+ : kIα−1 ∂T(r, z, t)
∂z

= q(r, t), R < r < ∞, 1 < α ≤ 2, (17)

z = 0− : −kD1−α
RL

∂T(r, z, t)
∂z

= q(r, t), R < r < ∞, 0 < α ≤ 1, (18)

z = 0− : −kIα−1 ∂T(r, z, t)
∂z

= q(r, t), R < r < ∞, 1 < α ≤ 2. (19)

In the subsequent text, we will consider the constant heat flux q0 acting in the local
domain R < r < ρ at the crack surface.

Owing to the geometrical symmetry of the equations with respect to the plane z = 0,
we can simplify the problem. Hence, the time-fractional heat conduction equation is
investigated in the upper half-space z > 0

∂αT(r, z, t)
∂tα

= a
(

∂2T(r, z, t)
∂r2 +

1
r

∂T(r, z, t)
∂r

+
∂2T(r, z, t)

∂z2

)
,

0 ≤ r < ∞, 0 < z < ∞, 0 < t < ∞, 0 < α ≤ 2,

(20)
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under zero initial conditions

t = 0 : T(r, z, t) = 0, 0 < α ≤ 2, (21)

t = 0 :
∂T(r, z, t)

∂t
= 0, 1 < α ≤ 2, (22)

and under the boundary conditions

z = 0 : kD1−α
RL

∂T(r, z, t)
∂z

=

{
q0, R < r < ρ,

0, 0 < r < R, ρ < r < ∞,
0 < α ≤ 1, (23)

z = 0 : kIα−1 ∂T(r, z, t)
∂z

=

{
q0, R < r < ρ,

0, 0 < r < R, ρ < r < ∞,
1 < α ≤ 2. (24)

The zero conditions at infinity are also imposed:

lim
r→∞

T(r, z, t) = 0, lim
z→∞

T(r, z, t) = 0. (25)

In what follows, the Laplace transform with respect to time t will be marked by an
asterisk, the Hankel transform of the order zero with respect to the radial coordinate r
will be specified by a hat, and the Fourier cosine transform with respect to the coordinate
z will be denoted by a tilde (s, ξ, and η are the Laplace, Hankel, and Fourier transform
variables, respectively).

The Laplace transform rules for the fractional integrals and derivatives have the
following form [46–48]:

L{Iα f (t)}(s) = 1
sα

f ∗(s), (26)

L{Dα
RL f (t)}(s) = sα f ∗(s)−

n−1

∑
k=0

Dk In−α f (0+)sn−1−k, n− 1 < α < n, (27)

L
{

dα f (t)
dtα

}
(s) = sα f ∗(s)−

n−1

∑
k=0

f (k)(0+)sα−1−k, n− 1 < α < n. (28)

3. The Temperature Field

Assuming zero initial conditions for the heat flux, the integral transforms technique
gives ̂̃T∗(ξ, η, s) = − aq0

kξ

[
ρJ1(ρξ)− RJ1(Rξ)

] sα−2

sα + a(ξ2 + η2)
. (29)

Here and in the subsequent text, Jn(r) denotes the Bessel function of the first kind
of the order n, and the following formula for the Fourier cosine transform of the second
derivative

F
{

d2 f (z)
dz2

}
= −η2 f̃ (η)− d f (z)

dz

∣∣∣
z=0

(30)

has been used.
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Taking into account that [47,48]

L−1
{

sα−β

sα + b

}
= tβ−1 Eα,β(−btα), (31)

where Eα,β(z) is the Mittag-Leffler function in two parameters α and β

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk + β)
, α > 0, β > 0, z ∈ C, (32)

from Equation (29), we obtain

̂̃T(ξ, η, t) = − aq0t
kξ

[
ρJ1(ρξ)− RJ1(Rξ)

]
Eα,2

[
−a
(

ξ2 + η2
)

tα
]
. (33)

Inverting the Hankel and Fourier transforms allows us to obtain the desired solution
of the problem (20)–(25)

T(r, z, t) = −2aq0t
πk

∫ ∞

0

∫ ∞

0
Eα,2

[
−a
(

ξ2 + η2
)

tα
][

ρJ1(ρξ)− RJ1(Rξ)
]

J0(rξ) cos(zη)dξ dη. (34)

The Mittag-Leffler function E1,2(−x) is expressed as [47,53]

E1,2(−x) =
1− e−x

x
, (35)

and after evaluation of the necessary integrals (see Equations (A1) and (A2) in Appendix A),
from Equation (34), we obtain the particular case of the solution for the standard parabolic
heat conduction equation (α = 1):

T(r, z, t) = − q0

k

∫ ∞

0

{
e−zξ − 1

2

[
e−zξ erfc

(√
atξ − z

2
√

at

)
+ ezξ erfc

(√
atξ +

z
2
√

at

)]}
×
[
ρJ1(ρξ)− RJ1(Rξ)

] J0(rξ)

ξ
dξ.

(36)

Figure 1 shows the dependence of temperature on the radial coordinate r for z = 0;
the curves presented in Figure 2 describe the dependence of temperature on the spatial
coordinate z. In numerical calculations, the following nondimensional quantities

r̄ =
r
R

, ρ̄ =
ρ

R
, z̄ =

z
R

, ξ̄ = Rξ, η̄ = Rη, t̄ =
a1/α

R2/α
t, T̄ =

kR1−2/α

q0a1−1/α
T (37)

have been used (see also Equations (11) and (12)). In the case of the standard heat conduc-
tion equation (α = 1), the dimensionless time t̄ reduces to the Fourier number Fo.

To simplify numerical calculations, it is convenient to pass to the polar coordinate
system in the (ξ̄, η̄)-plane:

ξ̄ = ζ cos θ, η̄ = ζ sin θ. (38)

Equation (34), in terms of nondimensional quantities, takes the form

T̄(r̄, z̄, t̄) = −2t̄
π

∫ ∞

0
ζ Eα,2

(
−ζ2 t̄ α

)
dζ

×
∫ π/2

0

[
ρ̄J1(ρ̄ζ cos θ)− J1(ζ cos θ)

]
J0(r̄ζ cos θ) cos(z̄ζ sin θ)dθ.

(39)
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|T̄ |

0.0
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• •

α = 0.5
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Figure 1. Dependence of temperature on the radial coordinate r for z = 0 (ρ̄ = 2, t̄ = 0.5).
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α = 1

α = 1.5

α = 1.75

Figure 2. Dependence of temperature on the spatial coordinate z for r̄ = 1.5 (ρ̄ = 2, t̄ = 0.5).
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4. The Stress Intensity Factor

The theory of thermoelasticity associated with the fractional heat conduction Equa-
tion (7) was proposed in [55]. The system of basic equations of this theory consists of the
equilibrium equation in terms of displacements

µ∆u + (λ + µ)grad divu = βTKT grad T, (40)

the stress–strain–temperature constitutive equation

σ = 2µe + (λ tr e− βTKTT)I, (41)

the geometrical relations

e =
1
2
(∇u + u∇), (42)

and the time-fractional heat conduction equation

∂αT
∂tα

= a∆T, 0 < α ≤ 2. (43)

Here, σ is the stress tensor, e denotes the linear strain tensor, u is the displacement
vector, ∇ is the gradient operator, T is the temperature, λ and µ are Lamé constants,
KT = λ + 2µ/3 is the bulk modulus, the thermal coefficient of volumetric expansion is
designated by βT , I stands for the unit tensor.

As the problem is symmetric with respect to the plane z = 0, we consider the upper
half-space z ≥ 0 under the following boundary condition: by virtue of the fact that the
surfaces of the external crack are free of mechanical loading,

z = 0 : σzz = 0, R < r < ∞, (44)

z = 0 : σrz = 0, R < r < ∞, (45)

whereas the geometrical symmetry requirements demand that

z = 0 : uz = 0, 0 ≤ r < R, (46)

z = 0 : σrz = 0, 0 ≤ r < R. (47)

The influence of the temperature field on the stress field can be represented by the dis-
placement potential Φ which is introduced similarly to the classical thermoelasticity [72,73]:

u(1) = grad Φ, (48)

σ(1) = 2µ(∇∇Φ− I ∆Φ) (49)

with
∆Φ = mT, m =

1 + ν

1− ν

βT
3

. (50)

Here, ν denotes the Poisson ratio.
In the axisymmetric case in cylindrical coordinates, the displacement potential gives

the components of the displacement vector

u(1)
r =

∂Φ
∂r

, (51)

u(1)
z =

∂Φ
∂z

, (52)
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and the components of the stress tensor

σ
(1)
rr = 2µ

[
∂2Φ
∂r2 − ∆Φ

]
, (53)

σ
(1)
θθ = 2µ

[
1
r

∂Φ
∂r
− ∆Φ

]
, (54)

σ
(1)
zz = 2µ

[
∂2Φ
∂z2 − ∆Φ

]
, (55)

σ
(1)
rz = 2µ

∂2Φ
∂r∂z

, (56)

where
∂2Φ(r, z, t)

∂r2 +
1
r

∂Φ(r, z, t)
∂r

+
∂2Φ(r, z, t)

∂z2 = mT(r, z, t). (57)

Assuming that ∂Φ(r,z,t)
∂z

∣∣
z=0 = 0, from Equations (33) and (57), we obtain the expression

for the displacement potential in the transform domain

̂̃Φ(ξ, η, t) = − m
ξ2 + η2

̂̃T(ξ, η, t)

=
maq0t

kξ
Eα,2

[
−a
(

ξ2 + η2
)

tα
]
.
[
ρJ1(ρξ)− RJ1(Rξ)

] 1
ξ2 + η2 ,

(58)

and after inverting the Hankel and Fourier transforms, we obtain

Φ(r, z, t) =
2maq0t

πk

∫ ∞

0

∫ ∞

0

1
ξ2 + η2 Eα,2

[
−a
(

ξ2 + η2
)

tα
]

×
[
ρJ1(ρξ)− RJ1(Rξ)

]
J0(rξ) cos(zη)dξ dη.

(59)

In what follows, we restrict ourselves to calculation of the stress intensity factor which
is the most important characteristic of brittle fracture. For the axisymmetric external crack
problem in cylindrical coordinates, the stress intensity factor KI describes the singularity of
the total stress component σzz at the crack tip [19]

KI = lim
r→R−

√
2π(R− r) σzz

∣∣
z=0 (60)

and in terms of the stress component, σ
(1)
zz is expressed as

KI(t) =
2√
πR

∫ ∞

R

r p0(r, t)√
r2 − R2

dr, (61)

where
p0(r, t) = σ

(1)
zz (r, 0, t), R < r < ∞. (62)

From Equations (55) and (59), it is inferred that

σ
(1)
zz (r, z, t) =

4µmaq0t
πk

∫ ∞

0

∫ ∞

0

ξ2

ξ2 + η2 Eα,2

[
−a
(

ξ2 + η2
)

tα
]

×
[
ρJ1(ρξ)− RJ1(Rξ)

]
J0(rξ) cos(zη)dξ dη

(63)
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and

KI(t) =
8µmaq0t
k
√

Rπ3/2

∫ ∞

0

∫ ∞

0

ξ2

ξ2 + η2 Eα,2

[
−a
(

ξ2 + η2
)

tα
]

×
[
ρJ1(ρξ)− RJ1(Rξ)

]
dξ dη

∫ ∞

R

r J0(rξ)√
r2 − R2

dr.

(64)

Taking into account the integral (A3) from the Appendix A, we arrive at

KI(t) =
8µmaq0t
k
√

Rπ3/2

∫ ∞

0

∫ ∞

0

ξ

ξ2 + η2 Eα,2

[
−a
(

ξ2 + η2
)

tα
]

×
[
ρJ1(ρξ)− RJ1(Rξ)

]
cos(Rξ)dξ dη

(65)

For α = 1, using integral (A4) from the Appendix A, we obtain the particular case of
Equation (65) corresponding to the classical thermoelasticity:

KI(t) =
2µmq0

k
√

πR

∫ ∞

0

[
erf
(√

atξ
)
+ 2atξ2erfc

(√
atξ
)
− 2
√

atξ√
π

exp
(
−atξ2

)]

×
[
ρJ1(ρξ)− RJ1(Rξ)

]
cos(Rξ)

1
ξ2 dξ.

(66)

After passing to the polar coordinate system in the (ξ̄, η̄)-plane, Equation (65) is
rewritten in nondimensional form as

K̄I(t̄) =
4t̄

π3/2

∫ ∞

0
Eα,2

(
−ζ2 t̄ α

)
dζ

×
∫ π/2

0

[
ρ̄J1(ρ̄ζ cos θ)− J1(ζ cos θ)

]
cos(ζ cos θ) cos θ dθ.

(67)

The nondimensional stress factor

K̄I =
kR1/2−2/α

2µmq0a1−1/α
KI (68)

is presented in Figure 3 as a function of nondimensional time t̄, and in Figure 4 as a function
of the nondimensional parameter ρ̄.

To calculate the total stress field satisfying the boundary conditions (44)–(47), the
biharmonic Love function can be used. The interested reader is referred to [73] for general
equations and to the paper [71], where this approach was used for a penny-shaped crack.
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K̄I
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Figure 3. Dependence of the stress intensity factor on time for ρ̄ = 2.
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α = 1.75

Figure 4. Dependence of the stress intensity factor on the parameter ρ̄ for t̄ = 4.

5. Concluding Remarks

We have solved the time-fractional heat conduction equation in an infinite solid with
an external circular crack with the interior radius R under constant axisymmetric heat
flux acting in a circular domain R < r < ρ. The heat flux vector is expressed in terms
of the Riemann–Liouville fractional integrals and derivatives of temperature gradient
which results in the time-fractional heat conduction equation with the Caputo fractional
derivative.
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It is worth noting that equations containing the Caputo derivative can be recast to the
Riemann–Liouville version (and vice versa) according to the following equation [48,74]:

Dα
RL f (t) = Dα

C f (t) +
n−1

∑
k=0

tk−α

Γ(k− α + 1)
f (k)
(
0+
)
, n− 1 < α < n. (69)

The temperature field and the stress intensity factor are given as integrals with
integrands being the Mittag-Leffler functions in two parameters. To evaluate the Mittag-
Leffler function Eα,2, we have used the algorithm in [74]. The Mittag-Leffler function
E1/2,2(−x) is evaluated according to the relation [53]

E1/2,2(−x) =
1
x2

[
2x√

π
+ ex2

erfc(x)− 1
]

. (70)

The solution of the classical thermoelasticity problem for the external circular crack is
obtained as a particular case when the order of time-derivative α = 1.

The solutions of various initial-boundary value problems for the time-fractional heat
conduction Equation (7) are expressed in terms of the Mittag-Leffler functions Eα,β(−tα)
(see Equation (31)). From the analysis of integral representation of Eα,β(−tα) [46,53,74], it
follows that for 1 < α < 3 there appears an expression

exp
[
t cos

(π

α

)]
cos
[
t sin

(π

α

)]
. (71)

For the values 1 < α < 2, we have damped oscillations, but for 2 < α < 3 there arise
amplified oscillations. For this reason, the time-fractional heat conduction Equation (7) is
considered for the order of fractional derivatives 0 < α ≤ 2.

The time-fractional heat conduction equation for 1 ≤ α ≤ 2 interpolates between the
diffusion equation (α = 1) and the wave equation (α = 2) that behave quite differently
with respect to their response to a disturbance. The standard heat conduction equation
describes a process where a disturbance spreads infinitely fast, whereas in the case of the
wave equation the propagation speed of the disturbance is constant. In Figure 1, the bullet
points on the r-axis indicate the wave fronts of the solution to the wave equation (α = 2) at
r = R− ct and r = ρ + ct, where the coefficient a can be interpreted as a = c2 with c being
the velocity of wave propagation. In terms of dimensionless quantities, the wave fronts
arise at r̄ = 1− t̄ and r̄ = ρ̄ + t̄.

It is seen from Figure 3 that the stress intensity factor depends significantly on the
order of fractional derivatives which corresponds to the power “long-tail memory” kernel
K(t− τ). For large values of time, when 0 < α < 1 the stress intensity factor is greater than
that for the standard heat conduction (α = 1), whereas for 1 < α ≤ 2 the stress intensity
factor is smaller than that for α = 1. The slow heat diffusion (0 < α < 1) increases the
stress intensity factor, the fast heat diffusion (1 < α ≤ 2) decreases it. The influence of
other memory types, in particular “middle-tail memory”resulting in the time-fractional
telegraph equation, will be considered in future research.
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Appendix A

Integrals (A1) and (A2) are taken from [75], integral (A3) is borrowed from [76],
integral (A4) has been evaluated in this paper.∫ ∞

0

1
x2 + c2 cos(bx)dx =

π

2c
e−bc, b ≥ 0, c > 0, (A1)

∫ ∞

0

1
x2 + c2 e−a2x2

cos(bx)dx =
π

4c
ea2c2

[
e−bc erfc

(
ac− b

2a

)
+ ebc erfc

(
ac +

b
2a

)]
,

a ≥ 0, c > 0,

(A2)

∫ ∞

a

x√
x2 − a2

J0(cx)dx =
cos(ac)

c
, a > 0, c > 0, (A3)

∫ ∞

0

e−a2x2

(x2 + c2)
2 dx =

π

4c

[(
1
c2 − 2a2

)
ea2c2

erfc(ac) +
2a√
πc

]
, a ≥ 0, c > 0. (A4)

Here, erfc(x) = 1− erf(x) is the complementary error function.
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