
����������
�������

Citation: Kang, S.; Hwang, J.; Chung,

K. Domain-Specific On-Device Object

Detection Method. Entropy 2022, 24,

77. https://doi.org/10.3390/

e24010077

Academic Editors: Andrea Prati,

Carlos A. Iglesias, Luis Javier

García Villalba and Vincent

A. Cicirello

Received: 26 November 2021

Accepted: 29 December 2021

Published: 1 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Domain-Specific On-Device Object Detection Method
Seongju Kang , Jaegi Hwang and Kwangsue Chung *

Department of Electronics and Communications Engineering, Kwangwoon University, Seoul 01897, Korea;
sjkang@cclab.kw.ac.kr (S.K.); jghwang@cclab.kw.ac.kr (J.H.)
* Correspondence: kchung@kw.ac.kr

Abstract: Object detection is a significant activity in computer vision, and various approaches have
been proposed to detect varied objects using deep neural networks (DNNs). However, because DNNs
are computation-intensive, it is difficult to apply them to resource-constrained devices. Here, we
propose an on-device object detection method using domain-specific models. In the proposed method,
we define object of interest (OOI) groups that contain objects with a high frequency of appearance in
specific domains. Compared with the existing DNN model, the layers of the domain-specific models
are shallower and narrower, reducing the number of trainable parameters; thus, speeding up the
object detection. To ensure a lightweight network design, we combine various network structures
to obtain the best-performing lightweight detection model. The experimental results reveal that
the size of the proposed lightweight model is 21.7 MB, which is 91.35% and 36.98% smaller than
those of YOLOv3-SPP and Tiny-YOLO, respectively. The f-measure achieved on the MS COCO 2017
dataset were 18.3%, 11.9% and 20.3% higher than those of YOLOv3-SPP, Tiny-YOLO and YOLO-
Nano, respectively. The results demonstrated that the lightweight model achieved higher efficiency
and better performance on non-GPU devices, such as mobile devices and embedded boards, than
conventional models.

Keywords: object detection; domain-specific; on-device; lightweight network

1. Introduction

Image recognition is a significant activity in the field of computer vision [1]. Earlier,
image recognition was used for simple tasks, such as face or character recognition [2,3].
However, with the advent of solutions to detect more varied objects using neural networks,
research into object detection has become increasingly active [4–6]. Object detection is
more complex than image recognition as it involves finding objects in digital images and
predicting the object classes to which they belong. As the performance capabilities of
available hardware have improved in recent years, and as various open datasets for object
detection have been released, it is possible to train a deep neural network (DNN) model
with a complex structure for various domains.

When applied for object detection, a DNN model has hundreds of hidden layers and
tens of millions of parameters that perform localization and classification tasks. Further, as
DNN models become more complex for highly accurate object detection, the computational
capabilities of the device performing the object recognition have become increasingly im-
portant. To enable object detection in resource-constrained environments, many researchers
have been studying techniques such as model compression and data offloading. However,
it is still challenging to satisfy the accuracy and latency requirements of applications in
resource-constrained environments because of accuracy degradation resulting from model
compression and the instability of data offloading methods depending on bandwidth
conditions.

Therefore, a new paradigm is needed for object detection in resource-constrained
environments. To satisfy the latency requirements of object detection, the runtime should
be affected exclusively by the complexity of the detection model, and no other factors such

Entropy 2022, 24, 77. https://doi.org/10.3390/e24010077 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24010077
https://doi.org/10.3390/e24010077
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-8306-2028
https://doi.org/10.3390/e24010077
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24010077?type=check_update&version=2


Entropy 2022, 24, 77 2 of 16

as bandwidth. In addition, different detection models should be used for each domain by
defining the related objects for each domain to satisfy the accuracy requirements. Because
existing object detection models use information that have low relevance to the domain,
computational resources are wasted and there is significant computational overhead. How-
ever, if the domain in which object detection is to be performed is known beforehand, we
can define object classes that are related to that domain. To solve this problem, we apply
a divide-and-conquer approach, which solves a large problem in the general domain by
dividing it into smaller, domain-specific problems.

Here, we proposed a domain-specific on-device object-detection method. We defined
objects with a high frequency of appearance as the object of interest (OOI) group and trained
different detection models for each OOI group. Because the OOI group for each domain
contains a small number of classes, the detection model detects objects using a shallow
network structure. The proposed method ensures that the latency requirement is met by
reducing the complexity of the detection models; also, it ensures the accuracy requirement
as object detection is performed only in OOI groups. This study’s main contributions are:

• A method for defining the OOI group for each domain showing how to generate
training datasets for each OOI group. To solve the problems of class imbalance, we
designed a method to collect data using a state-of-the-art (SOTA) DNN model.

• Many structures that can improve the performance of lightweight networks are pre-
sented. Additionally, we designed object detection models that are suitable for on-
device environments, and through experiments we proposed the best-performing
detection model.

The remainder of this paper is organized as follows. Section 2 discusses previous
studies that have applied DNNs in resource-constrained environments. In addition, we
present several elements to consider for lightweight networks and describe existing efficient
lightweight networks. Section 3 proposes a domain-specific on-device object detection
method. Section 4 evaluates the performance of the proposed lightweight model using
open datasets. Finally, Section 5 concludes the paper.

2. Materials and Methods
2.1. Deep Neural Network

After AlexNet won the ILSVRC 2012 challenge with its outstanding performance,
DNNs began to garner considerable research attention, and various network architectures
have since emerged, including VGGNet (2014), GoogleNet (2015), and ResNet (2015) [4–6].
DNN models are being designed to be deeper and more complex, and pre-training and
fine-tuning methods using large image datasets have become mainstream. Because DNN
models have hundreds of layers and millions of parameters, the inference machine must
perform computation-intensive workloads. The runtime of DNN models can be reduced
by using accelerators such as GPUs, NPUs, and TPUs. With the development of these
hardware devices, DNNs have been applied in various fields, such as object detection,
image recognition, and speech recognition.

2.2. Previous Research in Resource-Constrained Environment

With the growing demand for deep learning-based intelligent applications, many
studies have been conducted to design lightweight models that can operate in resource-
constrained environments, such as mobile devices and embedded boards. To reduce the
number of parameters of DNN models, Bucilua et al. [7] proposed model compression,
which approximates the function learned by a complex model into a much smaller, faster
model with comparable performance. With a fast and resource-efficient model, albeit
slightly less accurate, applications that need to meet low latency requirements can perform
better than with an uncompressed model. Wu et al. [8] proposed a unified framework
called Quantized CNN that simultaneously accelerates and compresses convolutional
neural networks (CNNs). Quantized CNN achieves outstanding speed-up and compression
rates, with only negligible loss of classification accuracy, through parameter quantization.



Entropy 2022, 24, 77 3 of 16

Rastegari et al. [9] proposed XNOR-Net to reduce the runtime of DNNs and the size of the
network. XNOR-Net approximates all weight values to binary and uses bitwise operations.
Han et al. [10] proposed weight pruning to reduce the number of floating-point operations.
Specifically, it reduces the required computational resources by converting the weight of
small values to zero based on the premise that fewer weighted values have a lower impact
on inferences. Model compression, parameter quantization, and weight pruning enable
inferences within a short latency period. However, model compression and weight pruning
can lead to poor performance in accuracy-critical applications because they incur accuracy
degradation of the model. In addition, although Quantized CNN [8] and XNOR-Net [9]
have improved classification accuracy, they have not been evaluated for object detection
performance.

Many researchers have also investigated data offloading, in which data are transferred
to central servers or clouds without reducing the complexity of the model [11,12]. The
main idea of data offloading is to transfer data to a central server that has sufficient
computing resources to perform the DNN operations. Because the DNN model has many
computationally intensive workloads, mobile devices must use the computing resources
of edge nodes or cloud servers. If a device offloads all of its workloads to a server, the
performance of the DNN will depend exclusively on the network bandwidth and the
amount of data transmitted. In addition, studies have been conducted to selectively
transfer workloads or to migrate workloads through cross-node collaboration for more
efficient data offloading [13,14]. However, unstable bandwidth can lead to performance
degradation due to the latency experienced during data upload or download.

Marco et al. [15] proposed a model selection approach that selects the optimal model
to analyze input data with high accuracy. Figure 1 shows an example of the model selection.
Training data with similar patterns are clustered into the same group. Each group is then
paired with a DNN model that can achieve optimal performance. If there is more than one
optimal model for the feature pattern, the model with the shortest runtime is defined as the
optimal model. However, when the optimal model is the most complex DNN model, such
as ResNet, unnecessary overhead results owing to the model selection process.

Entropy 2022, 24, x FOR PEER REVIEW 3 of 16 
 

 

form better than with an uncompressed model. Wu et al. [8] proposed a unified frame-
work called Quantized CNN that simultaneously accelerates and compresses convolu-
tional neural networks (CNNs). Quantized CNN achieves outstanding speed-up and 
compression rates, with only negligible loss of classification accuracy, through parameter 
quantization. Rastegari et al. [9] proposed XNOR-Net to reduce the runtime of DNNs and 
the size of the network. XNOR-Net approximates all weight values to binary and uses 
bitwise operations. Han et al. [10] proposed weight pruning to reduce the number of float-
ing-point operations. Specifically, it reduces the required computational resources by con-
verting the weight of small values to zero based on the premise that fewer weighted val-
ues have a lower impact on inferences. Model compression, parameter quantization, and 
weight pruning enable inferences within a short latency period. However, model com-
pression and weight pruning can lead to poor performance in accuracy-critical applica-
tions because they incur accuracy degradation of the model. In addition, although Quan-
tized CNN [8] and XNOR-Net [9] have improved classification accuracy, they have not 
been evaluated for object detection performance. 

Many researchers have also investigated data offloading, in which data are trans-
ferred to central servers or clouds without reducing the complexity of the model [11,12]. 
The main idea of data offloading is to transfer data to a central server that has sufficient 
computing resources to perform the DNN operations. Because the DNN model has many 
computationally intensive workloads, mobile devices must use the computing resources 
of edge nodes or cloud servers. If a device offloads all of its workloads to a server, the 
performance of the DNN will depend exclusively on the network bandwidth and the 
amount of data transmitted. In addition, studies have been conducted to selectively trans-
fer workloads or to migrate workloads through cross-node collaboration for more efficient 
data offloading [13,14]. However, unstable bandwidth can lead to performance degrada-
tion due to the latency experienced during data upload or download. 

Marco et al. [15] proposed a model selection approach that selects the optimal model 
to analyze input data with high accuracy. Figure 1 shows an example of the model selec-
tion. Training data with similar patterns are clustered into the same group. Each group is 
then paired with a DNN model that can achieve optimal performance. If there is more 
than one optimal model for the feature pattern, the model with the shortest runtime is 
defined as the optimal model. However, when the optimal model is the most complex 
DNN model, such as ResNet, unnecessary overhead results owing to the model selection 
process. 

 
Figure 1. Example of the model selection. 

2.3. Important Elements for Lightweight Object Detection 

Figure 1. Example of the model selection.

2.3. Important Elements for Lightweight Object Detection

Object detection performance depends on various factors, such as the structure of the
network, the quality of the training data, and the number of classes to be detected. In this
section, we discuss in more detail the factors that affect the performance of object detection.

2.3.1. Backbone Network

In the backbone network, there are many training parameters for feature extraction;
high-level features are extracted from low-level features. Therefore, the greater the number



Entropy 2022, 24, 77 4 of 16

of hidden layers in the backbone, the more accurate feature map extraction can be. After
AlexNet won the ILSVRC 2012, various DNN models with dozens of convolution layers,
including the VGGNet-16 model, emerged. However, if the number of hidden layers
is increased excessively, the training parameters of the front layers will converge faster
than those of the back layers, resulting in the vanishing gradient problem. To address the
vanishing gradient problem, He et al. [6] proposed a residual network (ResNet) structure
that adds a shortcut to the network. The main concept of ResNet is that when identity
mapping is optimal, it simply zeros out the residuals using a stack of nonlinear layers.
Because the addition operation is performed without an additional layer, the complexity of
the model is maintained. However, because ResNet performs an addition operation, the
uniqueness of the feature map cannot be maintained. To solve this problem, He et al. [16]
proposed the densely connected convolutional network (DenseNet), wherein each layer
accepts feature mappings from all previous layers. DenseNet reuses the unique feature
map of the previous layer through the concatenate operation. This allows the network
to be more simplified and addresses the vanishing gradient problem with fewer learning
parameters than ResNet.

2.3.2. Quality of the Dataset

Datasets are key factors in determining the performance of a model. Overfitting or
underfitting problems can occur as a result of class imbalance problems. In addition, the
performance of the model is affected by factors such as the reliability of the dataset, size of
the objects, and number of objects per image. Although reliable datasets such as MS COCO,
Visdrone, and Pascal VOC are available, it is difficult to find a dataset that completely
satisfies the purpose of the model [17–19]. In some cases, the desired object classes may
not exist in the dataset. The ideal dataset should contain images representing objects of a
suitable size, and the amount of data should be evenly distributed for all classes.

2.3.3. Number of Anchor Boxes

Most object detection methods use the region proposal method. In this method, an
anchor box is an element that is defined for the region to be considered in the extracted
feature map and is used to train whether an object in the box exists. As the number of
anchor boxes increases, an accurate bounding box can be obtained because the object’s
existence area is detected at various scales from the feature map. Fewer resources are
required to process anchor boxes than those required by the backbone layer, but excessively
increasing the number of anchor boxes can affect the overall runtime. There is a trade-off
relationship between the detection accuracy and the overhead of post-processing, such as
non-maximum suppression (NMS).

2.4. Lightweight Network

Because high-performance computational processing units are concentrated in a data
center environment, any DNN model can perform quickly when provided with high
computational capabilities. However, there is a limitation in performing complex DNN
models on devices in a single-CPU or single-GPU environment.

2.4.1. MobileNet

MobileNet is a lightweight network for object detection in resource-constrained envi-
ronments, such as mobile devices and single embedded boards [20]. To design a shallow
network, MobileNet does not contain a fully connected layer and has a max-pooling layer
on the high-level resolution layers to quickly downsample the dimensions. In addition, the
computational efficiency is increased by a factor of eight compared to the convolution layer
with depth-wise separable convolution using a 1 × 1 kernel.



Entropy 2022, 24, 77 5 of 16

2.4.2. YOLO-LITE, YOLO Nano and Tiny-YOLO

The YOLOv3 model has 68 million training parameters with a total of 106 layers,
including three prediction layers [21]. Although YOLOv3 can detect 80 classes with high
accuracy, it is difficult to perform real-time object detection in a non-GPU environment.
YOLO-LITE, YOLO Nano and Tiny-YOLO are simplified models of YOLO for object detec-
tion in a non-GPU environment [22–24]. YOLO-LITE is composed of seven convolution
layers and trains a model based on five regions. It is composed of a small number of
layers and performs object detection quickly, but its accuracy performance is poor. YOLO
Nano is highly compact DNN model for the task of object detection. To reduce operation
cost, YOLO Nano contains module-level macro architecture and micro architecture designs
tailored for the task of embedded DNN inference. Alternatively, Tiny-YOLO consists of
23 layers, including two prediction layers (YOLO), and detects objects using six anchor
boxes. Figure 2 shows the Tiny-YOLO network structure. Tiny-YOLO reduces the dimen-
sionality quickly, similar to MobileNet, and reduces the size of the backbone network by
using a narrow channel. Tiny-YOLO can quickly detect objects in a non-GPU environment
through its 6.8 million learning parameters.

Entropy 2022, 24, x FOR PEER REVIEW 5 of 16 
 

 

MobileNet is a lightweight network for object detection in resource-constrained en-
vironments, such as mobile devices and single embedded boards [20]. To design a shallow 
network, MobileNet does not contain a fully connected layer and has a max-pooling layer 
on the high-level resolution layers to quickly downsample the dimensions. In addition, 
the computational efficiency is increased by a factor of eight compared to the convolution 
layer with depth-wise separable convolution using a 1 × 1 kernel. 

2.4.2. YOLO-LITE, YOLO Nano and Tiny-YOLO 
The YOLOv3 model has 68 million training parameters with a total of 106 layers, 

including three prediction layers [21]. Although YOLOv3 can detect 80 classes with high 
accuracy, it is difficult to perform real-time object detection in a non-GPU environment. 
YOLO-LITE, YOLO Nano and Tiny-YOLO are simplified models of YOLO for object de-
tection in a non-GPU environment [22–24]. YOLO-LITE is composed of seven convolution 
layers and trains a model based on five regions. It is composed of a small number of layers 
and performs object detection quickly, but its accuracy performance is poor. YOLO Nano 
is highly compact DNN model for the task of object detection. To reduce operation cost, 
YOLO Nano contains module-level macro architecture and micro architecture designs tai-
lored for the task of embedded DNN inference. Alternatively, Tiny-YOLO consists of 23 
layers, including two prediction layers (YOLO), and detects objects using six anchor 
boxes. Figure 2 shows the Tiny-YOLO network structure. Tiny-YOLO reduces the dimen-
sionality quickly, similar to MobileNet, and reduces the size of the backbone network by 
using a narrow channel. Tiny-YOLO can quickly detect objects in a non-GPU environment 
through its 6.8 million learning parameters. 

 
Figure 2. Tiny-YOLO network structure. 

3. Domain-Specific Object Detection 
In this section, we introduce the definition of OOI groups for domain-specific object 

detection and describe how to solve the class imbalance problem of open datasets. We 
also discuss various network structures for shallow networks and propose a lightweight 
model structure. 

Figure 2. Tiny-YOLO network structure.

3. Domain-Specific Object Detection

In this section, we introduce the definition of OOI groups for domain-specific object
detection and describe how to solve the class imbalance problem of open datasets. We also
discuss various network structures for shallow networks and propose a lightweight model
structure.

3.1. Domain-Specific OOI Groups

Existing object detection models are trained for many classes and can be applied to a
variety of domains. For example, 80 classes can be detected for models trained with the
MS COCO dataset and 100 classes for models trained with the CIFAR-100 dataset [17,25].
However, classes in a dataset cannot be highly relevant to all domains. For example,
vehicle-type objects are highly relevant to highway domains, and objects such as people,
trees, and benches are highly relevant to park domains. That is, the range of objects to be



Entropy 2022, 24, 77 6 of 16

detected is limited according to the domain. Figure 3 illustrates how to define the OOI
group for each domain. Object detection is performed using the SOTA DNN model on
randomly extracted data from videos for each domain, and the detection frequencies for
each object are calculated. Objects detected with high frequency are highly domain-relevant
objects, thus we define these objects as the OOI group.

Entropy 2022, 24, x FOR PEER REVIEW 6 of 16 
 

 

3.1. Domain-Specific OOI Groups 
Existing object detection models are trained for many classes and can be applied to a 

variety of domains. For example, 80 classes can be detected for models trained with the 
MS COCO dataset and 100 classes for models trained with the CIFAR-100 dataset [17,25]. 
However, classes in a dataset cannot be highly relevant to all domains. For example, ve-
hicle-type objects are highly relevant to highway domains, and objects such as people, 
trees, and benches are highly relevant to park domains. That is, the range of objects to be 
detected is limited according to the domain. Figure 3 illustrates how to define the OOI 
group for each domain. Object detection is performed using the SOTA DNN model on 
randomly extracted data from videos for each domain, and the detection frequencies for 
each object are calculated. Objects detected with high frequency are highly domain-rele-
vant objects, thus we define these objects as the OOI group. 

 
Figure 3. Decision process of domain-specific OOI groups. 

We generate a training dataset after defining domain-specific OOI groups. Open da-
tasets, such as MS COCO and PASCAL VOC, provide vast amounts of data for various 
object classes. However, because these open datasets cannot include all classes, there may 
be differences in detection accuracy because of data sparsity problems. In addition, even 
within the same class, training data with low relevance to the domain may exist. For ex-
ample, cars exhibited at motor shows have low relevance to the highway domain, and we 
should remove those images from the dataset. However, checking and filtering all the 
data is time-consuming. For classes with insufficient datasets, we should generate training 
data from the sampled data. 

Figure 4 shows an example of the generation of training data for OOI groups. If ships, 
cars, and trucks are detected, the location and information of the car and truck classes are 
stored, and the ship is excluded as it is not in the OOI group. In this study, training dataset 
are generated using continuous frame extraction based on YouTube videos, allowing 
more data to be generated at different sizes and angles for the same object. 

Figure 3. Decision process of domain-specific OOI groups.

We generate a training dataset after defining domain-specific OOI groups. Open
datasets, such as MS COCO and PASCAL VOC, provide vast amounts of data for various
object classes. However, because these open datasets cannot include all classes, there may
be differences in detection accuracy because of data sparsity problems. In addition, even
within the same class, training data with low relevance to the domain may exist. For
example, cars exhibited at motor shows have low relevance to the highway domain, and
we should remove those images from the dataset. However, checking and filtering all the
data is time-consuming. For classes with insufficient datasets, we should generate training
data from the sampled data.

Figure 4 shows an example of the generation of training data for OOI groups. If ships,
cars, and trucks are detected, the location and information of the car and truck classes are
stored, and the ship is excluded as it is not in the OOI group. In this study, training dataset
are generated using continuous frame extraction based on YouTube videos, allowing more
data to be generated at different sizes and angles for the same object.

Entropy 2022, 24, x FOR PEER REVIEW 7 of 16 
 

 

 
Figure 4. Example of the generation of training data for OOI groups. 

3.2. Lightweight Object Detection Model Structure 
For on-device object detection, the domain-specific model should consist of few train-

ing parameters. We conducted an empirical search for an optimal model design. Figure 5 
shows the baseline model structure used for the empirical search. The baseline structure 
was a mixed structure of Tiny-YOLO and YOLOv3. To design the shallow and narrow 
network, two convolution layers with a stride value of two were used to quickly reduce 
the dimension, and the maximum number of filters was set to 512. The baseline model 
size is 15.1 MB, which is approximately 94% lighter than the YOLOv3 model and approx-
imately 44% lighter than the Tiny-YOLO model. The baseline model requires less than 10 
min to train using 18,000 images on a desktop equipped with an RTX 2060 SUPER GPU. 

 
Figure 5. Baseline network structure, which is a mixed structure of Tiny-YOLO and YOLOv3. 

3.2.1. Partial Routing for Feature Reuse 

Figure 4. Example of the generation of training data for OOI groups.



Entropy 2022, 24, 77 7 of 16

3.2. Lightweight Object Detection Model Structure

For on-device object detection, the domain-specific model should consist of few train-
ing parameters. We conducted an empirical search for an optimal model design. Figure 5
shows the baseline model structure used for the empirical search. The baseline structure
was a mixed structure of Tiny-YOLO and YOLOv3. To design the shallow and narrow
network, two convolution layers with a stride value of two were used to quickly reduce the
dimension, and the maximum number of filters was set to 512. The baseline model size is
15.1 MB, which is approximately 94% lighter than the YOLOv3 model and approximately
44% lighter than the Tiny-YOLO model. The baseline model requires less than 10 min to
train using 18,000 images on a desktop equipped with an RTX 2060 SUPER GPU.

Entropy 2022, 24, x FOR PEER REVIEW 7 of 16 
 

 

 
Figure 4. Example of the generation of training data for OOI groups. 

3.2. Lightweight Object Detection Model Structure 
For on-device object detection, the domain-specific model should consist of few train-

ing parameters. We conducted an empirical search for an optimal model design. Figure 5 
shows the baseline model structure used for the empirical search. The baseline structure 
was a mixed structure of Tiny-YOLO and YOLOv3. To design the shallow and narrow 
network, two convolution layers with a stride value of two were used to quickly reduce 
the dimension, and the maximum number of filters was set to 512. The baseline model 
size is 15.1 MB, which is approximately 94% lighter than the YOLOv3 model and approx-
imately 44% lighter than the Tiny-YOLO model. The baseline model requires less than 10 
min to train using 18,000 images on a desktop equipped with an RTX 2060 SUPER GPU. 

 
Figure 5. Baseline network structure, which is a mixed structure of Tiny-YOLO and YOLOv3. 

3.2.1. Partial Routing for Feature Reuse 

Figure 5. Baseline network structure, which is a mixed structure of Tiny-YOLO and YOLOv3.

3.2.1. Partial Routing for Feature Reuse

Since the lightweight network consists of a small number of layers, it has fewer training
parameters to perform feature extraction. To perform high-accuracy object detection with a
small number of training parameters, it is necessary to reuse the features extracted from
each layer. Figure 6 shows the designed partial routing structure for feature reuse. All
layers share feature maps with other layers with the same dimensionality; the feature
maps are merged at each prediction layer by concatenating operations in three branches.
The model performance can be improved using the partial routing structure because the
concatenate operation is performed to maintain the unique feature map. The size of the
network with the partial routing structure added is 22.8 MB, which is approximately 33%
lower than that the Tiny-YOLO model.



Entropy 2022, 24, 77 8 of 16

Entropy 2022, 24, x FOR PEER REVIEW 8 of 16 
 

 

Since the lightweight network consists of a small number of layers, it has fewer train-
ing parameters to perform feature extraction. To perform high-accuracy object detection 
with a small number of training parameters, it is necessary to reuse the features extracted 
from each layer. Figure 6 shows the designed partial routing structure for feature reuse. 
All layers share feature maps with other layers with the same dimensionality; the feature 
maps are merged at each prediction layer by concatenating operations in three branches. 
The model performance can be improved using the partial routing structure because the 
concatenate operation is performed to maintain the unique feature map. The size of the 
network with the partial routing structure added is 22.8 MB, which is approximately 33% 
lower than that the Tiny-YOLO model. 

 
Figure 6. Partial routing structure for feature reuse. 

3.2.2. Dual-Residual Block 
Since the shallow network has fewer learning parameters, it has limitations in ex-

tracting precise feature maps. The baseline model is a structure in which a convolutional 
layer and a max-pooling layer are repeated, and the dimensionality is rapidly reduced to 
a low-level resolution. Additional layers should be placed to extract feature maps of the 
high-level resolution of the baseline model. We design a backbone network, as depicted 
in Figure 7, to extract feature maps of high-level resolutions while minimizing the model 
complexity. Figure 7a is the residual block used in ResNet, and Figure 7b is a dual-residual 
block, the extension of the residual block, which allows the extraction of feature maps for 
multiple dimensions by using max-pooling and upsampling layers simultaneously. The 
dual-residual block performs a concatenate operation to reuse the unique feature maps of 
different channels. The size of the model using the residual block is 15.5 MB, which is 
approximately 55% lower than that of the Tiny-YOLO model, and the size of the backbone 
with the dual-residual block is 20.6 MB, which is approximately 55% lower than that of 
Tiny-YOLO. 

Figure 6. Partial routing structure for feature reuse.

3.2.2. Dual-Residual Block

Since the shallow network has fewer learning parameters, it has limitations in ex-
tracting precise feature maps. The baseline model is a structure in which a convolutional
layer and a max-pooling layer are repeated, and the dimensionality is rapidly reduced to
a low-level resolution. Additional layers should be placed to extract feature maps of the
high-level resolution of the baseline model. We design a backbone network, as depicted
in Figure 7, to extract feature maps of high-level resolutions while minimizing the model
complexity. Figure 7a is the residual block used in ResNet, and Figure 7b is a dual-residual
block, the extension of the residual block, which allows the extraction of feature maps for
multiple dimensions by using max-pooling and upsampling layers simultaneously. The
dual-residual block performs a concatenate operation to reuse the unique feature maps
of different channels. The size of the model using the residual block is 15.5 MB, which is
approximately 55% lower than that of the Tiny-YOLO model, and the size of the backbone
with the dual-residual block is 20.6 MB, which is approximately 55% lower than that of
Tiny-YOLO.

Entropy 2022, 24, x FOR PEER REVIEW 9 of 16 
 

 

 
Figure 7. Shallow network structure for high-level resolution feature extraction, (a) residual block, 
(b) dual-residual block. 

3.2.3. Prediction Layer 
The prediction layer converts the dimensions of the extracted feature map into the 

output dimensions. The number of channels in the output layers depends on the number 
of anchor boxes and classes. Because the number of classes is dependent on the domain, 
as the number of classes increases, additional layers should be placed to ensure the accu-
racy of the detection model. Figure 8 shows the structure of the OOI group’s adaptive 
prediction layer. To maintain the shallow network, we reduce the number of channels by 
half until the number of channels is less than 32 times the number of classes. When there 
are five classes in the OOI group, the model size is 23.2 MB. 

 
Figure 8. Structure of the object of interest (OOI) group adaptive prediction layer. 

3.2.4. Proposed Lightweight Object Detection Model 
Figure 9 shows the lightweight network structure with the best performance as meas-

ured by an empirical search for on-device object detection. The details of the experiment 
are described in Section 5. With a structure in which the dual-residual block and OOI 
group adaptive prediction layer are added to the baseline model, the model size is 25.8 
MB, which is approximately 36% smaller than the Tiny-YOLO model. 

Figure 7. Shallow network structure for high-level resolution feature extraction, (a) residual block,
(b) dual-residual block.

3.2.3. Prediction Layer

The prediction layer converts the dimensions of the extracted feature map into the
output dimensions. The number of channels in the output layers depends on the number
of anchor boxes and classes. Because the number of classes is dependent on the domain, as
the number of classes increases, additional layers should be placed to ensure the accuracy



Entropy 2022, 24, 77 9 of 16

of the detection model. Figure 8 shows the structure of the OOI group’s adaptive prediction
layer. To maintain the shallow network, we reduce the number of channels by half until the
number of channels is less than 32 times the number of classes. When there are five classes
in the OOI group, the model size is 23.2 MB.

Entropy 2022, 24, x FOR PEER REVIEW 9 of 16 
 

 

 
Figure 7. Shallow network structure for high-level resolution feature extraction, (a) residual block, 
(b) dual-residual block. 

3.2.3. Prediction Layer 
The prediction layer converts the dimensions of the extracted feature map into the 

output dimensions. The number of channels in the output layers depends on the number 
of anchor boxes and classes. Because the number of classes is dependent on the domain, 
as the number of classes increases, additional layers should be placed to ensure the accu-
racy of the detection model. Figure 8 shows the structure of the OOI group’s adaptive 
prediction layer. To maintain the shallow network, we reduce the number of channels by 
half until the number of channels is less than 32 times the number of classes. When there 
are five classes in the OOI group, the model size is 23.2 MB. 

 
Figure 8. Structure of the object of interest (OOI) group adaptive prediction layer. 

3.2.4. Proposed Lightweight Object Detection Model 
Figure 9 shows the lightweight network structure with the best performance as meas-

ured by an empirical search for on-device object detection. The details of the experiment 
are described in Section 5. With a structure in which the dual-residual block and OOI 
group adaptive prediction layer are added to the baseline model, the model size is 25.8 
MB, which is approximately 36% smaller than the Tiny-YOLO model. 

Figure 8. Structure of the object of interest (OOI) group adaptive prediction layer.

3.2.4. Proposed Lightweight Object Detection Model

Figure 9 shows the lightweight network structure with the best performance as mea-
sured by an empirical search for on-device object detection. The details of the experiment
are described in Section 5. With a structure in which the dual-residual block and OOI group
adaptive prediction layer are added to the baseline model, the model size is 25.8 MB, which
is approximately 36% smaller than the Tiny-YOLO model.

Entropy 2022, 24, x FOR PEER REVIEW 10 of 16 
 

 

 
Figure 9. Proposed lightweight network structure for on-device object detection. 

4. Experiments and Discussion 
4.1. Experimental Environment Setup 

To evaluate the performance of the domain-specific on-device object detection 
method proposed in this study, we conducted a comparative experiment with YOLOv3-
SPP, Tiny-YOLO, and YOLO Nano. YOLOv3-SPP is a version of YOLOv3 that contains a 
spatial pyramid pooling (SPP) block. The training was performed on a desktop computer 
equipped with an Intel Core i7 10700K CPU, 16 GB RAM, and an NVIDIA RTX 2060 SU-
PER GPU. All models were implemented using the PyTorch framework. GPU operations 
were performed in an environment where CUDA 10.1 version and cuDNN 8.1 version 
software were installed. 

4.1.1. Experimental Dataset 
In this study, we limited the domains to streets and parks for our experiments. To 

define the OOI groups, six YouTube videos for each domain were used, and the DETR 
model was used as the SOTA DNN model [26]. Training datasets were generated using 
MS COCO 2017, Open Image v4, and randomly sampled images [17,27]. We defined OOI 
groups from the street and park domains as follows: car, bus, motorcycle, traffic light, stop 
sign, truck, and person, bench, bicycle, umbrella, ball, and dog, respectively. Table 1 
shows the number of images and the number of classes used for training each domain. 

Table 1. Overview of number of images and number of classes for each domain. 

Domain Training Dataset Validation Dataset Number of Classes 
Street 29,073 1252 6 
Park 18,350 899 6 

4.1.2. Evaluation Metrics 
We used three metrics for performance evaluation, precision, recall, and f-measure, 

as given in Equations (1)–(3) [28]. True positive (TP) refers to a case in which an OOI object 
is detected. The higher the number of TPs, the higher the accuracy of the model. False 
positive (FP) refers to when OOI objects are detected but incorrectly classified, and false 

Figure 9. Proposed lightweight network structure for on-device object detection.

4. Experiments and Discussion
4.1. Experimental Environment Setup

To evaluate the performance of the domain-specific on-device object detection method
proposed in this study, we conducted a comparative experiment with YOLOv3-SPP, Tiny-
YOLO, and YOLO Nano. YOLOv3-SPP is a version of YOLOv3 that contains a spatial
pyramid pooling (SPP) block. The training was performed on a desktop computer equipped
with an Intel Core i7 10700K CPU, 16 GB RAM, and an NVIDIA RTX 2060 SUPER GPU. All
models were implemented using the PyTorch framework. GPU operations were performed



Entropy 2022, 24, 77 10 of 16

in an environment where CUDA 10.1 version and cuDNN 8.1 version software were
installed.

4.1.1. Experimental Dataset

In this study, we limited the domains to streets and parks for our experiments. To
define the OOI groups, six YouTube videos for each domain were used, and the DETR
model was used as the SOTA DNN model [26]. Training datasets were generated using
MS COCO 2017, Open Image v4, and randomly sampled images [17,27]. We defined OOI
groups from the street and park domains as follows: car, bus, motorcycle, traffic light, stop
sign, truck, and person, bench, bicycle, umbrella, ball, and dog, respectively. Table 1 shows
the number of images and the number of classes used for training each domain.

Table 1. Overview of number of images and number of classes for each domain.

Domain Training Dataset Validation Dataset Number of Classes

Street 29,073 1252 6
Park 18,350 899 6

4.1.2. Evaluation Metrics

We used three metrics for performance evaluation, precision, recall, and f-measure, as
given in Equations (1)–(3) [28]. True positive (TP) refers to a case in which an OOI object
is detected. The higher the number of TPs, the higher the accuracy of the model. False
positive (FP) refers to when OOI objects are detected but incorrectly classified, and false
negative (FN) refers to when the OOI object is not detected. Precision is the proportion of
correctly detected objects among true answers. Recall denotes the proportion of the true
answers among detected objects, that is, recall refers to the hit ratio of the object detection
results. The f-measure is the arithmetic mean of precision and recall.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

f − measure =
2 ∗ Precision ∗ Recall

Precision + Recall
(3)

4.2. Experimental Results for Different Trials

Various object detection models, from Trials 1 to 7, were defined and evaluated to find
the optimal lightweight model, as shown in Table 2. For all trials, 90 epochs of training were
carried out using the MS COCO 2017 dataset, Open Image v4, and the randomly sampled
image training dataset to obtain the optimal model. The input image size used in the model
training and testing was set to 416 × 416, which is consistent with that of the Tiny-YOLO
model. For fairness of the experiment, the YOLOv3-SPP, Tiny-YOLO and YOLO Nano
models were trained for 90 epochs and tested in the same experimental environment and
parameter settings. The experimental results for all the trials are shown in Table 3. The test
dataset contained 1337 images of Open Image v4, MS COCO 2017, and randomly sampled
images. The details of the experiment are as follows.



Entropy 2022, 24, 77 11 of 16

Table 2. Network structure descriptions of different trials.

Model Structure Description

Baseline Backbone uses Tiny-YOLO while using yolov3-spp detector as the branch (Figure 5)

Trial 1 Based on baseline, using partial routing structure at the branch layer (backbone of
baseline + Figure 6)

Trial 2 Based on baseline, using a residual block after the max-pooling layers (baseline +
Figure 7a)

Trial 3 Based on baseline, using a dual-residual block after the max-pooling layers (baseline
+ Figure 7b)

Trial 4 Based on Trial 1, using a dual-residual block after the max-pooling layers (backbone
of baseline + Figure 6 + Figure 7b)

Trial 5 Based on baseline, using an OOI adaptive prediction layer every branch layer
(backbone of baseline + Figure 8)

Trial 6 Based on Trial 3, using an OOI adaptive prediction layer every branch layer
(baseline + Figure 7b + Figure 8)

Trial 7 Based on Trial 4, using an OOI adaptive prediction layer every prediction layer
(backbone of baseline + Figure 6 + Figure 7b + Figure 8)

Table 3. Results of the different trials. The best performances are labelled out in bold.

Model Size (MB) Precision Recall F-Measure FPS (GPU) FPS (CPU)

YOLOv3-SPP 224.8 0.418 0.934 0.577 20.67 1.26
Tiny-YOLO 33.9 0.653 0.630 0.641 64.45 12.65
YOLO Nano 11.5 0.536 0.599 0.557 51.20 9.12

Baseline 15.1 0.644 0.622 0.632 67.12 14.30
Trial 1 22.8 0.666 0.605 0.634 61.15 11.00
Trial 2 15.6 0.686 0.672 0.679 66.61 12.72
Trial 3 20.6 0.737 0.763 0.749 59.02 10.91
Trial 4 23.3 0.717 0.702 0.709 58.13 9.57
Trial 5 15.3 0.704 0.722 0.713 61.41 14.05
Trial 6 21.7 0.752 0.770 0.760 57.70 9.42
Trial 7 25.8 0.720 0.699 0.709 54.40 8.30

4.2.1. Deep Network and Shallow Network

The YOLOv3-SPP model has the most training parameters of all networks. Theoreti-
cally, the YOLOv3-SPP model should perform best in terms of precision and recall metrics.
However, we observed that the YOLOv3-SPP model had the lowest precision performance.
The YOLOv3-SPP model overfits the training data because it has too many training param-
eters for a small number of classes. The Tiny-YOLO and YOLO Nano model were 23.5%
and 11.8% better than YOLOv3-SPP in the precision metric, respectively. In addition, in
an environment with limited resources (i.e., only a CPU), the object detection speed of
the Tiny-YOLO model was approximately 10 times faster than that of the YOLOv3 model.
Theoretically, YOLO Nano model should have the fastest detection speed, but Tiny-YOLO
and the Baseline model are more faster detection rates than YOLO Nano. Although YOLO
Nano has 1 × 1 and 3 × 3 size kernels of narrow channels between layers, it includes 100
convolution blocks. Therefore, YOLO Nano has a deeper network than Tiny-YOLO and
baseline models. We confirm that a shallow network is more suitable than a deep network
as a backbone network structure for on-device object detection.

4.2.2. Partial Routing for Feature Map Reuse

Because the shallow network consists of a small number of layers, the feature map
that can be extracted is smaller than that of a deep network. To solve this problem, the
partial routing structure shown in Figure 6 was applied to the baseline model (Trial 1). The
precision of Trial 1 was increased by 1.8%, but the object detection speed was decreased by
3.3 FPS in the CPU environment. Comparing Trial 1 with a baseline model, the precision
increased slightly, but the number of parameters and model size increased remarkably. We



Entropy 2022, 24, 77 12 of 16

confirm that the partial routing structure for feature reuse is not suitable for domain-specific
on-device object detection.

4.2.3. Residual Block and Dual-Residual Block

To extract feature maps of the high-level resolution, Trials 2 and 3 added residual
blocks and dual-residual blocks, respectively, to the backbone network. Compared with
the baseline model, the precisions of Trials 2 and 3 were improved by 4.2% and 9.3%,
respectively, and for Trial 3, recall was significantly improved by 14.1%. Although the
detection speed of Trial 3 increased by approximately 24% compared with the baseline
model, it was fast enough to perform object detection in the CPU environment. These
results show that the residual block and the dual-residual block are suitable for lightweight
networks. In addition, when dual-residual blocks were used instead of the residual blocks,
the precision and recall were improved by 5.1% and 9.1%, respectively. This confirms the
efficiency of the dual-residual block in shallow networks.

4.2.4. OOI Adaptive Layer

Trials 5, 6, and 7 used the OOI group adaptive prediction layers to extract additional
feature maps of the output layers. Compared with the baseline model, the precision and
recall of Trial 5 were improved by 6% and 10%, respectively. For Trial 6, the precision and
recall increased by 10.8% and 14.8%, respectively, compared with the baseline model. Thus,
we confirmed that the most influential element for the performance improvement of the
lightweight model is to use the dual-resident block and the OOI group adaptive prediction
layer simultaneously (Trial 6).

4.3. Experimental Results for Different Dataset
4.3.1. MS COCO 2017 Dataset

To evaluate the detailed performance of Trial 6, which is the best lightweight model,
we used the MS COCO 2017 dataset. Table 4 shows the precision and recall measurements
for the street domain classes. The precision and recall were measured up to 82.26% and
77.69% for cars, buses, trucks, and motorcycles, respectively, for which data collection is
relatively easy. However, there was still a class imbalance problem for stop signs and traffic
light classes, which are relatively difficult data to obtain. We found that in deep networks,
such as the YOLOv3-SPP model, the problem of data imbalance did not significantly affect
the performance degradation, whereas the problem of data sparsity in the shallow network
had a significant impact on performance degradation. A portion of the experimental results
for the Trial 6 model using the MS COCO 2017 dataset are shown in Figure 10.

Table 4. Evaluation results for Trial 6 using MS COCO 2017 dataset.

Class Name Car Bus Truck Stop Sign Traffic Light Motorcycle

Precision (%) 64.39 82.26 58.51 53.35 45.66 69.32
Recall (%) 62.18 77.96 74.47 48.76 47.12 65.15

Class Name Person Bench Bicycle Umbrella Ball Dog

Precision (%) 62.28 61.33 62.23 49.12 68.16 68.71
Recall (%) 60.65 63.90 60.57 53.06 71.40 67.74



Entropy 2022, 24, 77 13 of 16

Entropy 2022, 24, x FOR PEER REVIEW 13 of 16 
 

 

4.3.1. MS COCO 2017 Dataset 
To evaluate the detailed performance of Trial 6, which is the best lightweight model, 

we used the MS COCO 2017 dataset. Table 4 shows the precision and recall measurements 
for the street domain classes. The precision and recall were measured up to 82.26% and 
77.69% for cars, buses, trucks, and motorcycles, respectively, for which data collection is 
relatively easy. However, there was still a class imbalance problem for stop signs and traf-
fic light classes, which are relatively difficult data to obtain. We found that in deep net-
works, such as the YOLOv3-SPP model, the problem of data imbalance did not signifi-
cantly affect the performance degradation, whereas the problem of data sparsity in the 
shallow network had a significant impact on performance degradation. A portion of the 
experimental results for the Trial 6 model using the MS COCO 2017 dataset are shown in 
Figure 10. 

Table 4. Evaluation results for Trial 6 using MS COCO 2017 dataset. 

Class Name Car Bus Truck Stop Sign Traffic Light Motorcycle 
Precision (%) 64.39 82.26 58.51 53.35 45.66 69.32 

Recall (%) 62.18 77.96 74.47 48.76 47.12 65.15 
Class Name Person Bench Bicycle Umbrella Ball Dog 
Precision (%) 62.28 61.33 62.23 49.12 68.16 68.71 

Recall (%) 60.65 63.90 60.57 53.06 71.40 67.74 

 
Figure 10. Partial test results of the Trial 6 model for MS COCO 2017 dataset. 

4.3.2. PASCAL VOC 2007 and Open Image v4 
To evaluate the detection performance of the Trial 6 model on data that contained 

objects of different scales, we conducted experiments on the PASCAL VOC 2007 and Open 
Image v4 datasets. Object classes such as traffic lights, stop sign, truck, bench, tree, um-

Figure 10. Partial test results of the Trial 6 model for MS COCO 2017 dataset.

4.3.2. PASCAL VOC 2007 and Open Image v4

To evaluate the detection performance of the Trial 6 model on data that contained
objects of different scales, we conducted experiments on the PASCAL VOC 2007 and Open
Image v4 datasets. Object classes such as traffic lights, stop sign, truck, bench, tree, um-
brella, and ball, which did not exist in the PASCAL VOC 2007 dataset, were collected from
the Open Image v4 dataset; the test dataset contained 938 images from both datasets. To
evaluate the general applicability of the proposed lightweight model to object detection
tasks, an experiment was conducted without any additional model training. Table 5 shows
the precision and recall results for the person, dog, bicycle, bus, car, and motorcycle classes
included in the PASCAL VOC 2007 and Open Image v4 datasets. The precision of the car,
traffic light, stop sign, and truck classes were revealed to be 5.16, 10.46, 5.35, and 2.67%
higher than when tested with the MS COCO dataset, respectively. However, the precision
of the bus and motorcycle classes decreased by 7.91 and 1.93%, respectively. These results
confirmed the applicability of the proposed lightweight model to object detection in various
datasets. The partial test results of the Trial 6 model for the PASCAL VOC 2007 dataset are
shown in Figure 11.

Table 5. Evaluation results for Trial 6 using PASCAL VOC 2007 and Open Image v4 dataset.

Class Name Car Bus Truck Stop Sign Traffic Light Motorcycle

Precision (%) 69.55 74.35 61.18 58.70 56.12 67.30
Recall (%) 71.84 68.24 55.50 51.47 48.90 58.61

Class Name Person Bench Bicycle Umbrella Ball Dog

Precision (%) 70.90 67.51 62.46 51.33 68.92 66.24
Recall (%) 68.02 54.53 59.08 53.04 75.20 57.98



Entropy 2022, 24, 77 14 of 16

Entropy 2022, 24, x FOR PEER REVIEW 14 of 16 
 

 

brella, and ball, which did not exist in the PASCAL VOC 2007 dataset, were collected from 
the Open Image v4 dataset; the test dataset contained 938 images from both datasets. To 
evaluate the general applicability of the proposed lightweight model to object detection 
tasks, an experiment was conducted without any additional model training. Table 5 shows 
the precision and recall results for the person, dog, bicycle, bus, car, and motorcycle clas-
ses included in the PASCAL VOC 2007 and Open Image v4 datasets. The precision of the 
car, traffic light, stop sign, and truck classes were revealed to be 5.16, 10.46, 5.35, and 2.67% 
higher than when tested with the MS COCO dataset, respectively. However, the precision 
of the bus and motorcycle classes decreased by 7.91 and 1.93%, respectively. These results 
confirmed the applicability of the proposed lightweight model to object detection in vari-
ous datasets. The partial test results of the Trial 6 model for the PASCAL VOC 2007 dataset 
are shown in Figure 11. 

Table 5. Evaluation results for Trial 6 using PASCAL VOC 2007 and Open Image v4 dataset. 

Class Name Car Bus Truck Stop Sign Traffic Light Motorcycle 
Precision (%) 69.55 74.35 61.18 58.70 56.12 67.30 

Recall (%) 71.84 68.24 55.50 51.47 48.90 58.61 
Class Name Person Bench Bicycle Umbrella Ball Dog 
Precision (%) 70.90 67.51 62.46 51.33 68.92 66.24 

Recall (%) 68.02 54.53 59.08 53.04 75.20 57.98 

 
Figure 11. Partial test results of the Trial 6 model for PASCAL VOC 2007 dataset. 

5. Conclusions 
In this paper, we proposed a domain-specific on-device object detection method. To 

perform domain-specific object detection, we defined objects with a high frequency of de-
tection as OOI groups by performing object detection based on the DETR model with im-
ages sampled from domain-related videos. The training data, which contained objects of 
the OOI group, consisted of the MS COCO 2017 dataset, Open Image v4, and randomly 
sampled data, and were used to train the domain-specific detection model. To design the 
shallow network structure for each domain, high-level resolution features were extracted 
at minimal cost using dual-residual blocks. To consider the OOI group characteristics, we 
used the OOI group adaptive prediction layers. The experimental results reveal that the 

Figure 11. Partial test results of the Trial 6 model for PASCAL VOC 2007 dataset.

5. Conclusions

In this paper, we proposed a domain-specific on-device object detection method. To
perform domain-specific object detection, we defined objects with a high frequency of
detection as OOI groups by performing object detection based on the DETR model with
images sampled from domain-related videos. The training data, which contained objects of
the OOI group, consisted of the MS COCO 2017 dataset, Open Image v4, and randomly
sampled data, and were used to train the domain-specific detection model. To design the
shallow network structure for each domain, high-level resolution features were extracted
at minimal cost using dual-residual blocks. To consider the OOI group characteristics, we
used the OOI group adaptive prediction layers. The experimental results reveal that the
size of the proposed lightweight model is 21.7 MB, which is 91.35% and 36.98% smaller
than that of YOLOv3-SPP and Tiny-YOLO, respectively. The precision scores achieved
using the MS COCO 2017 dataset were 9.9% and 33.4% higher than those of Tiny-YOLO
and YOLOv3-SPP, respectively. In addition, the proposed lightweight model performed
object detection approximately 7.5 times faster than the YOLO-SPPv3 model in a CPU-only
environment. These results prove that the proposed lightweight model can achieve higher
efficiency and better performance than existing models on non-GPU devices, such as mobile
devices and embedded boards. The proposed object detection method satisfies the latency
and accuracy requirements; thus, it can process continuous data such as video in real time.
However, because one detection model per domain is required, there is a problem that the
overhead of preprocessing such as OOI group definition and model training is too large
to apply it to various domains. In future work, we aim to design a generalized model
applicable to multiple domains with an attention-based network structure.

Author Contributions: Conceptualization, S.K. and K.C.; methodology, S.K.; software, K.C. and J.H.;
validation, S.K. and K.C.; investigation, S.K. and J.H.; resources, S.K.; data curation, S.K. and J.H.;
writing—original draft preparation, S.K. and K.C.; writing. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by Institute for Information and Communications Technology
Planning and Evaluation (IITP) grant funded by the Korean Government (MSIT) (No.2020-0-00959,
Development of 5G Environments On-device IoT High-speed Intelligent HW and SW Engine Technol-



Entropy 2022, 24, 77 15 of 16

ogy to Drones and Robots). In addition, this work was conducted by a Research Grant of Kwangwoon
University in 2021.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, Y.; Tian, Y.; He, M. Monocular human pose estimation: A survey of deep learning-based methods. Comput. Vis. Image

Underst. 2020, 192, 102897. [CrossRef]
2. Bah, S.M.; Ming, F. An Improved Face Recognition Algorithm and Its Application in Attendance Management System. Array

2020, 5, 100014. [CrossRef]
3. Wang, T.; Wu, D.J.; Coates, A.; Ng, A.Y. End-to-end Text Recognition with Convolutional Neural Networks. In Proceedings of the

21st International Conference on Pattern Recognition (ICPR2012), Tsukuba, Ibaraki, Japan, 11–15 November 2012; pp. 3304–3308.
4. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale recognition. arXiv 2014, arXiv:1409.1556.
5. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhouche, V.; Rabinovich, A. Going deeper with

convolutions. arXiv 2014, arXiv:1409.4842.
6. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.
7. Bucilua, C.; Caruana, R.; Niculescu-Mizil, A. Model compression. In Proceedings of the 12th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, Philadelphia, PA, USA, 20–23 August 2006; pp. 535–541.
8. Wu, J.; Leng, C.; Wang, Y.; Hu, Q.; Cheng, J. Quantized convolutional neural networks for mobile devices. In Proceedings of the

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 4820–4828.
9. Rastegari, M.; Ordonez, V.; Redmon, J.; Farhadi, A. XNOR-Net: ImageNet classification using binary convolutional neural

networks. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016;
pp. 525–542.

10. Han, S.; Mao, H.; Dally, W.J. Deep compression: Compressing deep neural networks with pruning trained quantization and
Huffman coding. arXiv 2015, arXiv:1510.00149.

11. Zhao, X.; Yang, K.; Chen, Q.; Peng, D.; Jiang, H.; Xu, X.; Shuang, X. Deep learning based mobile data offloading in mobile edge
computing systems. Future Gener. Comput. Syst. 2019, 99, 346–355. [CrossRef]

12. Mochizuki, D.; Abiko, Y.; Saito, T.; Ikeda, D.; Mineno, H. Delay-tolerance-based mobile data offloading using deep reinforcement
learning. Sensors 2019, 19, 1674. [CrossRef] [PubMed]

13. Wang, X.; Han, Y.; Wang, C.; Zhao, Q.; Chen, X.; Chen, M. In-Edge AI: Intelligentizing mobile edge computing, caching, and
communication by federated learning. IEEE Netw. 2019, 33, 156–165. [CrossRef]

14. Li, E.; Zeng, L.; Zhou, Z.; Chen, X. Edge AI: On-demand accelerating deep neural network inference via edge computing. IEEE
Trans. Wireless Commun. 2020, 19, 447–457. [CrossRef]

15. Marco, V.S.; Taylor, B.; Wang, Z.; Elkhatib, Y. Adaptive deep learning model selection on embedded systems. ACM Trans.
Embedded Comput. Syst. 2020, 19, 31–43. [CrossRef]

16. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

17. Lin, T.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dalloar, P.; Zitnick, C.L. Microsoft COOC: Common objects in
context. Comput. Vis. 2014, 8693, 740–755.

18. Zhu, P.; Wen, L.; Bian, X.; Ling, H.; Hu, Q. Vision meets drones: A challenge. arXiv 2018, arXiv:1804.07437.
19. Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal visual object classes (VOC) challenge. Int. J.

Comput. Vis. 2010, 88, 303–338. [CrossRef]
20. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L. MobileNetV2: Inverted residuals and linear bottlenecks. In

Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22
June 2018; pp. 4510–4520.

21. Redmon, J.; Farhadi, A. YOLOv3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
22. Pedoeem, J.; Huang, R. YOLO-LITE: A real-time object detection algorithm optimized for non-GPU computers. In Proceedings of

the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 2503–2510.
23. Wong, A.; Famuori, M.; Shafiee, J.M.; Li, F.; Chwyl, B.; Chung, J. YOLO Nano: A highly compact you only look once convolutional

neural network for object detection. arXiv 2019, arXiv:1910.01271.
24. Redmon, J. Darknet: Open Source Neural Networks in C. 2013–2016. Available online: http://pjreddie.com/darknet/ (accessed

on 21 April 2021).
25. Krizhevsky, A. Learning multiple layers of features from tiny images. Technol. Rep. 2009. Available online: http://citeseerx.ist.

psu.edu/viewdoc/download?doi=10.1.1.222.9220&rep=rep1&type=pdf (accessed on 21 April 2021).

http://doi.org/10.1016/j.cviu.2019.102897
http://doi.org/10.1016/j.array.2019.100014
http://doi.org/10.1016/j.future.2019.04.039
http://doi.org/10.3390/s19071674
http://www.ncbi.nlm.nih.gov/pubmed/30965633
http://doi.org/10.1109/MNET.2019.1800286
http://doi.org/10.1109/TWC.2019.2946140
http://doi.org/10.1145/3371154
http://doi.org/10.1007/s11263-009-0275-4
http://pjreddie.com/darknet/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.9220&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.9220&rep=rep1&type=pdf


Entropy 2022, 24, 77 16 of 16

26. Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers. arXiv
2020, arXiv:2005.12872.

27. Kuznetsova, A.; Rom, H.; Alldrin, N.; Uijlings, J.; Krasin, I.; Pont-Tuset, J.; Kamali, S.; Popov, S.; Malloci, M.; Kolesnikov, A.; et al.
The Open Images Dataset V4: Unified image classification, object detection, and visual relationship detection at scale. arXiv 2018,
arXiv:1811.00982. [CrossRef]

28. David, M.W. Evaluation: From Precision, Recall and F-measure to ROC, Informedness, Markedness and Correlation. J. Mach.
Learn. Technol. 2011, 2, 37–63.

http://doi.org/10.1007/s11263-020-01316-z

	Introduction 
	Materials and Methods 
	Deep Neural Network 
	Previous Research in Resource-Constrained Environment 
	Important Elements for Lightweight Object Detection 
	Backbone Network 
	Quality of the Dataset 
	Number of Anchor Boxes 

	Lightweight Network 
	MobileNet 
	YOLO-LITE, YOLO Nano and Tiny-YOLO 


	Domain-Specific Object Detection 
	Domain-Specific OOI Groups 
	Lightweight Object Detection Model Structure 
	Partial Routing for Feature Reuse 
	Dual-Residual Block 
	Prediction Layer 
	Proposed Lightweight Object Detection Model 


	Experiments and Discussion 
	Experimental Environment Setup 
	Experimental Dataset 
	Evaluation Metrics 

	Experimental Results for Different Trials 
	Deep Network and Shallow Network 
	Partial Routing for Feature Map Reuse 
	Residual Block and Dual-Residual Block 
	OOI Adaptive Layer 

	Experimental Results for Different Dataset 
	MS COCO 2017 Dataset 
	PASCAL VOC 2007 and Open Image v4 


	Conclusions 
	References

