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Abstract: This paper presents a new step in the optimization of the Chambadal model of the Carnot
engine. It allows a sequential optimization of a model with internal irreversibilities. The optimization
is performed successively with respect to various objectives (e.g., energy, efficiency, or power when
introducing the duration of the cycle). New complementary results are reported, generalizing those
recently published in the literature. In addition, the new concept of entropy production action
is proposed. This concept induces new optimums concerning energy and power in the presence
of internal irreversibilities inversely proportional to the cycle or transformation durations. This
promising approach is related to applications but also to fundamental aspects.

Keywords: optimization; Carnot engine; Chambadal model; entropy production action; efficiency at
maximum power

1. Introduction

Sadi Carnot had a crucial contribution to thermostatics that designated him as a co-
founding researcher of equilibrium thermodynamics. He has shown that the efficiency
of a thermo-mechanical engine is bounded by the Carnot efficiency ηC [1]. Assuming an
isothermal source at THS, and an isothermal sink at TCS < THS, and in between the cycle
composed by two isothermals in perfect thermal contact with the source and sink, and two
isentropics, he obtained:

ηC = 1− TCS
THS

. (1)

Since that time, many papers have used the keyword “Carnot engine” (1290 papers
from Web of Science on 17 September 2021). That same day on Web of Science, we noted
104 papers related to the keyword “Carnot efficiency”.

Among these papers, some are related to the connection between energy, efficiency,
and power optimization. The most cited paper is probably that of Curzon and Ahlborn [2,3].
These authors proposed in 1975 an expression of the efficiency according to the first law
of thermodynamics ηI(MaxW) at the maximum mechanical energy and at the maximum
power

.
W for the endo-reversible configuration of the Carnot cycle (no internal irreversibility

for the converter in contact with two isothermal heat reservoirs):

ηI,endo(MaxW) = 1−

√
TCS
THS

(2)

This result is well-known as the nice radical, and it has been recently reconsidered
in the previous Special Issue Carnot Cycle and Heat Engine Fundamentals and Applications
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I [3] and particularly in [4]. This last paper reports on the progress in Carnot and Cham-
badal modeling of thermomechanical engines by considering entropy production and heat
transfer entropy in the adiabatic case (without heat losses).

The proposed paper gives back the basis of the modeling and a summary of the
main results obtained recently for an endo-irreversible Carnot engine. Furthermore, the
performance analysis of an extended Chambadal configuration is considered by including
the converter irreversibilities. Emphasis is placed on the entropy production method, which
is preferred over the ratio method.

2. Summary of Obtained Results for Carnot Endo-Irreversible Configuration

The consideration of endo-irreversible Carnot engine modeling was recently devel-
oped [5]. The approach considering as a reference the heat transfer entropy released at the
sink ∆SS (maximum entropy available at the source in the reversible case) [5] confirmed
that the work per cycle results (see Appendix A):

W = (THS–TCS)(∆SS–∆SI), (3)

where ∆SI is the entropy production due to the internal irreversibilities of the cycle through-
out the four thermodynamic transformations (two adiabatic and two isothermal ones).

For an engine without thermal losses, the following expression of the thermal efficiency
was retrieved:

ηI = ηC(1− dI), (4)

where dI =
∆SI
∆SS

is a coefficient of the converter’s internal irreversibility during the cycle.
This parameter was introduced by Novikov [6] and Ibrahim et al. [7] in slightly

different forms.
The reversible limit (dI = 0) in Equation (4) restores the Carnot cycle efficiency associ-

ated with equilibrium thermodynamics.
Since the reversibility is unattainable, it appears that the optimization (maximization)

of the mechanical energy at the given parameters (∆SS, THS, and TCS) is related to the
minimization of the entropy production (as was proposed by Gouy [8]).

The assumption that each of the four transformations of the endo-irreversible cycle
takes place with a duration τi (i = 1–4), leading to the inverse proportionality to τi of the
corresponding entropy production:

∆SIi =
CIi
τi

, (5)

where CIi represents the irreversibility coefficients, whose unit is Js/K [5].
These coefficients are irreversible entropic actions by analogy to the energy (mechanical)

action (Js).
By performing cycle energy optimization using the Lagrange multipliers method with

the constraint of the cycle’s finite time duration τ, one obtains the maximum work per
cycle [5]:

Max1W = Wendo −
∆TS

τ

(
∑i

√
CIi

)2
, (6)

where ∆TS = THS − TCS.
The efficiency at the maximum finite time work becomes

ηI(Max1W) = ηC

(
1–

(
∑i
√

CIi
)2

τ·∆SS

)
, (7)

where τ∆SS is the available entropic transfer action of the cycle.
The new result provided by Equation (7) gives back the Carnot efficiency limit for

the reversible case (CIi = 0). These calculations have been pursued for the case of power
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optimization, where ∆SS, THS, and TCS remain parameters. It was shown that a value of the

cycle duration τ∗ corresponding to Max
.

W, the mean power output over the cycle, exists,
and it is expressed as

τ∗ = 8
CIi
∆SS

, (8)

and

Max
.

W =
∆TS·∆SS

2

16 CIi
. (9)

Equation (9) proves that Max
.

W is a decreasing function of the total entropic action of
the cycle and that the associated efficiency with the maximum of the mean power corre-
sponds to half the Carnot efficiency, as appeared repeatedly in some recent works [9–11].

3. Summary of the Obtained Results for the Chambadal Configuration

In the present paper, we intend to reconsider the approach of the Chambadal model
of a Carnot engine [12]. This configuration is common for thermomechanical engines,
since the cold sink mainly refers to the environment (i.e., the atmosphere or water sink).
This corresponds to the Chambadal approach (Figure 1), with a temperature gradient
at the hot source (THS, TH) but with perfect thermal contact at the sink (TCS or T0 at
ambient temperature).
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We propose here to extend the results (Equations (6)–(9)) to enhance the Chambadal
configuration modeling. This extension starts from the endo-irreversible case, to which
external irreversibilities due to heat transfer between the hot finite source and the converter
are added. Thus, the new results obtained complete the endo-irreversible Carnot model [5]
and an earlier paper on Chambadal configuration [12].

3.1. The Modified Chambadal Engine

To help understand the extension of the modeling in Section 3, we report here the case
with the following hypothesis:

1. Adiabaticity (no thermal losses);
2. Linear heat transfer law at the source such that

QH = GH(THS–TH), (10)

where GH is the heat transfer conductance expressed by GH = KHτ when we consider
the mean value over the cycle duration τ or GH = K′HτH when we consider the mean
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value over the isothermal heat transfer at the hot source (as was performed by Curzon
and Ahlborn [2]).

Equation (10) corresponds to the heat expense of the engine.
Note that other heat transfer laws, namely the Stefan–Boltzmann radiation law, the

Dulong–Petit law, and another phenomenological heat transfer law can be considered in
the maximum power regime search [13];

3. Presence of irreversibility in the converter (internal irreversibility).

Two approaches are proposed in the literature, which introduce the internal irre-
versibility of the engine by (1) the irreversibility ratio IH, [6,7], respectively (2) the entropy
production over the cycle ∆SI, [5].

We preconized this second approach for a long time. We also note that the origi-
nal model of Chambadal is endo-reversible [14]. Hence, we prefer to name the present
model the “modified Chambadal model” due to some other differences that will be
specified hereafter.

Note that only the second approach regarding the presence of irreversibilities in the
converter will be considered in the following section.

3.2. Optimization of the Work per Cycle of the Modified Chambadal Engine with the Entropy
Production Method

The first law of thermodynamics applied to the cycle implies conservation of energy,
written as

W = Qconv −QS (11)

where Qconv and QS are defined in Appendix A.
One supposes here that ∆SI is a parameter representing the total production of entropy

over the cycle composed by four irreversible transformations. Thus, the entropy balance
corresponds to

Qconv

TH
+ ∆SI =

QS
T0

. (12)

By combining Equations (11) and (12), we easily obtained

W = Qconv

(
1− T0

TH

)
− T0∆SI . (13)

If Qconv (∆Sconv) is a given parameter, we retrieve the Gouy-Stodola theorem stating
that Max W corresponds to min ∆SI with the known consequences reported in Section 4.1.

3.3. Optimization of the Work per Cycle of the Modified Chambadal Engine with the Heat
Transfer Constraint

In this case, the energy balance between the source and isothermal transformation
implies the combination of Equations (13) and (A1):

W = (QH − TH∆SIH)

(
1− T0

TH

)
− T0∆SI . (14)

Knowing QH from Equation (10), one obtains

W = GH(THS–TH)

(
1− T0

TH

)
− TH∆SIH − T0∆S′I , (15)

where ∆S′I = ∆SIEx + ∆SIC + ∆SICo.
The maximum of W with respect to TH is obtained for

T∗H =

√
THST0

1 + sI
, (16)
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where sI =
∆SIH
GH

, a specific ratio relative to the irreversible isothermal transformation TH.
Finally, the expression of Max1W yields

Max1W = GH

(√
THS −

√
(1 + sI)T0

)2
− T0∆SI . (17)

4. Complement to the Previous Results

Now, we will consider the time variable related to entropy production for each ther-
modynamic transformation, defined as ∆SIi =

CIi
τi

. This form of the entropy production
satisfying the second law induces that the entropy production method is well adapted to
subsequent optimizations of energy and power as well.

4.1. Work Optimization Relative to the Time Variables

The expression of Max1W with GH as an extensive parameter (Equation (17)) shows
that Max1W is always the optimum in the endo-reversible case. Nevertheless, if there are
separate irreversibilities for each cycle transformation (as is the case with finite entropic
actions), the irreversibility on the high temperature isotherm possesses a specific role (see
Equation (17) and the sI ratio).

The constraint on the transformation duration or preferably frequencies fi (finite
cycle duration) allows one to seek for the optimal transformation duration allocation (see
Appendix B for the derivation).

We obtained Max2W for the following optimal durations:

τH
∗ =

√√
T0THS

CIH
λ

, (18)

and

τi
∗ =

√
T0CIi

λ
, (19)

where λ is given in Appendix B and i = Ex, C, Co.
Thus, the second optimization of W (see Appendix B) leads to

Max2W ≈Wendo −
T0

τ
N2 . (20)

Furthermore, a third sequential optimization could be performed by considering the fi-
nite entropic action as a new constraint. This case is not developed here for brevity reasons.

4.2. Power Optimization in the Case of a Finite Heat Source (When GH Is the Parameter)

The mean power of the modified Chambadal cycle for the condition of maximum
work Max2W is defined by

.
W(Max2W) =

Wendo
τ

–
T0

τ2 N2, (21)

where Wendo = GH
(√

THS –
√

T0
)2 is the mechanical work output of the endo-reversible engine.

The power is maximized with respect to the cycle period τ. Thus, the expression of
the optimum period is

τ∗ =
2T0N2

Wendo
. (22)

This expression is analogous to the similar results obtained in [5], leading to

Max
.

W =
Wendo

2

4T0N2 . (23)
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The action of entropy production appearing in N diminishes the mean power of
the engine. At the given endo-reversible work, the maximum power corresponds to the
minimum of the N function, depending on the four entropy actions of the cycle, such that

N =

√
T0

THS
CIH +

√
CIEx +

√
CIC +

√
CICo . (24)

The main difference between Equation (23) and the previous results [5] comes from
the imperfect heat transfer between the source and the converter in the Chambadal model.

5. Discussion

This paper proposed that the Special Issue Carnot Cycle and Heat Engine Fundamentals
and Applications II completes the previous paper [12] published in Special Issue 1 and adds
new results to a recently published paper [5].

Whatever variable is chosen for the modified Chambadal model work optimization
(TH or ∆S), the same optimum for the work per cycle is obtained with parameters GH, THS,
and T0.

It appears that by introducing the duration of each transformation τi and the period of
the cycle τ, the modified Chambadal model satisfies the Gouy-Stodola theorem. At the min-
imum of entropy production, the optimal durations are dependent on the transformation
entropy actions. This result is new to our knowledge.

This new concept [5] allows a new subsequent sequential optimization. The optimal
allocation of the entropy action coefficients is slightly different from the equipartition (a
new form of the equipartition theorem [15,16]).

Thus, the fundamental aspect related to irreversibilities through the new concept of
entropy production action seems promising. Furthermore, this new concept could contribute
to the improvement of the global system analysis by conducting optimal dimension alloca-
tion. In this respect, finite physical dimensions analysis could be a complementary way to
correlate with exergy analysis.

Further extensions of this work are foreseen in the near future.

6. Conclusions

Similarities and differences present in the literature regarding the optimization of
energy, first law efficiency, and power of the modified Chambadal engine have been
resituated and summarized since the publication of [12].

This approach allows for highlighting the evolution of the obtained results from the
reversible Carnot engine case (thermostatics) to the endo-irreversible models related to the
approaches of Novikov [6] and Ibrahim et al. [7] or to the entropy production method that
we promote.

By generalizing a proposal from Esposito et al. [9] and defining the new concept of
entropic action through a coefficient CI (Js/K) for the entropy production of transformations
all along the cycle, we achieved a new form of power optimization different from the one
of Curzon and Ahlborn, since the internal converter irreversibilities and the heat transfer
irreversibility between the heat source and converter were accounted for.

The maximum work per cycle was obtained for the irreversible cycle case. It depended
on the entropic action coefficient of the four transformations of the cycle CIi, after which
the power of the engine was sequentially optimized.

An optimal period of the cycle τ* appeared, corresponding to the maximum mean
power of the cycle. It generalized the recent published results [5] for a modified Cham-
badal engine.

This research continues to be developed by our team to obtain more general results.
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Figure A1. Carnot engine cycle with internal irreversibilities along the four transformations of the
cycle, illustrated in a T-S diagram.

It results from Figure A1 that the various heats exchanged over the irreversible cycle
(1–2–3–4) are expressed as follows:

• QH = TH∆SH is the heat received by the cycled medium from the hot source (energy
expense), corresponding to the heat transfer at the hot side;

• Qconv = TH∆Sconv, heat converted in mechanical energy during the isothermal process
at TH , with corresponding production of entropy ∆SIH such that:

Qconv = TH(∆SH − ∆SIH). (A1)

• QC = T0∆SC, where ∆SC = ∆SS − ∆SIC.

Note that ∆SIC is the entropy production during the irreversible isotherm at T0 and
∆SS is the entropy rejected to the sink such that QS = T0∆SS.

Thus, the entropy balance over the cycle is

∆Sconv + ∆SI = ∆SS (A2)

The total entropy production over the cycle ∆SI is represented by

∆SI = ∆SIH + ∆SIEx + ∆SIC + ∆SICo, (A3)

where
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∆SIH is the entropy production during the isothermal transformation at TH, ∆SIE is
the entropy production during the adiabatic expansion from TH to T0, ∆SIC is the entropy
production during the isothermal transformation at T0, and ∆SICo, is the entropy production
during the adiabatic compression from T0 to TH.

The energy balance over the cycle for the system comprising the converter, the heat
source, and the sink (with the source and sink as perfect thermostats) provides

W = Qconv −QS. (A4)

Various forms of mechanical energy are obtainable from this point by combining the
preceding relations. Thus, one may express W as follows:

1. With ∆Sconv as the reference entropy:

W = TH∆Sconv − T0∆SS, (A5)

W = (TH − T0)∆Sconv − T0∆SI . (A6)

2. With ∆SS as the reference entropy:

W = (TH − T0)∆SS − TH∆SI . (A7)

3. With ∆SS or ∆SS as the reference entropy:

W = TH(∆SH − ∆SIH)− TC(∆SC + ∆SIC). (A8)

We prefer to choose between Equations (A6) and (A7). Note that Equation (A7) was
the one used by Esposito et al. [9].

We use Equation (A6) here because it gave back known results, particularly the Gouy-
Stodola theorem, with ∆Sconv being a parameter. Thus, the maximum energy occurs when
∆SI = 0 such that

Wendo = (TH − T0)∆Sconv. (A9)

This corresponds to the endo-reversible model of Chambadal.
In Section 3, we proposed a complete Chambadal model taking account entropy

production all along the cycle.

Appendix B. Work Optimization Relative to Time (Frequency)

Using the Lagrange multipliers method with the frequencies fi =
1
τi

as variables, we
get the following function:

L( fi) =
(√

GHTHS −
√
(GH + CIH fH)T0

)2

−T0(CIH fH + CIEx fEx + CIC fC + CICo fCo)

−λ
(

1
fH

+ 1
fEx

+ 1
fC
+ 1

fCo
− τ

)
.

(A10)

The vector of optimal values is

f ∗Ex =

√
λ

T0CIEx
; f ∗C =

√
λ

T0CIC
; f ∗Co =

√
λ

T0CICo
, (A11)

Additionally, the following is a non-linear equation to solve numerically for f ∗H :

f 2
H = λ

√
GH + CIH fH

GH

1√
THST0CIH

. (A12)



Entropy 2022, 24, 84 9 of 9

In the reasonable case of low irreversibility on the TH isotherm (CIH fH � GH), a good
approximation of f ∗H is

f ∗H =

√
λ√

THST0CIH
. (A13)

The finitude constraint on τi allows for determining the
√

λ expression as

√
λ =

N
√

T0

τ
, (A14)

where

N =

√
T0

THS
CIH +

√
CIEx +

√
CIC +

√
CICo . (A15)

Finally, we get

Max2W ≈Wendo −
T0

τ
N2 . (A16)
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