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Abstract: The seismo-electromagnetic theory describes the growth of fractally distributed cracks
within the lithosphere that generate the emission of magnetic anomalies prior to large earthquakes.
One of the main physical properties of this theory is their consistency regarding the second law of
thermodynamics. That is, the crack generation of the lithosphere corresponds to the manifestation
of an irreversible process evolving from one steady state to another. Nevertheless, there is still
not a proper thermodynamic description of lithospheric crack generation. That is why this work
presents the derivation of the entropy changes generated by the lithospheric cracking. It is found
that the growth of the fractal cracks increases the entropy prior impending earthquakes. As fractality
is observed across different topics, our results are generalized by using the Onsager’s coefficient
for any system characterized by fractal volumes. It is found that the growth of fractality in nature
corresponds to an irreversible process.

Keywords: fractal cracks; pre-earthquake dynamics; entropy increase; seismo-electromagnetic theory;
non-reversible process

1. Introduction

Earthquakes are complex natural phenomena that can be studied by using different
approaches. Some of them are focused on fault mechanics. That is, the dislocation and
rupture of preexisting faults within the lithosphere which generate seismic radiation [1].
Others are focused on the geodetic deformation of the Earth’s surface due the tectonic
plates’ drift which generate long-term stress accumulation [2]. Finally, a recent focus
corresponds to the electromagnetic signals that can be linked to crack and microcrack
generation within the lithosphere which could be considered as the manifestation of
impending earthquakes [3].

The first approach makes impossible the forecast of major earthquakes due to two
main reasons: the vanishing seismic source information due to the attenuation of seismic
waves [4] and, the interplay among different heterogeneous physical processes that make
the rupture chaotic [5]. Despite this, it has been recently shown that any prediction should
be done using multidisciplinary precursors [6]. In that sense, the seismo-electromagnetic
approach could be considered as multidisciplinary because is based on experimental stud-
ies on brittle lithospheric rock samples, magnetic data and physical analysis. These studies
can be summarized with the following five points: (1) the volume of cracks increases before
the macroscopic failure [7,8], (2) the external mechanical loads generate detectable elec-
tromagnetic signals known as pressure stimulated currents (PSC) [9], (3) electromagnetic
signals generated from cracks are well described by the dislocation process known as
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motion of charged edge dislocations (MCD) [10–13], (4) the number of cumulative magnetic
anomalies near and prior impending megathrust earthquakes also increases [14–16], and
(5) fractally distributed cracks within the lithosphere could explain and link the above
mentioned points in the so-called seismo-electromagnetic theory [17].

The physical basis of the seismo-electromagnetic theory is focused on electromagnetic
signals that rise due to pre-failure states such as the material cracking or complex mul-
tiparametric statistical approach [18,19]. In addition, the theory also takes into account
the concept of “earthquake entropy” which relates the lithospheric stress changes to the
b-value of the Gutenberg–Richter’s law within faults [20]. That is, a fault’s properties
give information about stress states within the lithosphere. In other words, stress states
within the lithosphere can be linked to frictional properties which could be related to other
seismic parameters such as seismic magnitude or seismic moment [21]. As lithospheric
stress generates the fractally distributed cracks and earthquakes correspond to an irre-
versible process [22], it is expected that the physical process that generates fractal cracks
also increases the entropy of the lithosphere before impending earthquakes. The entropy
change for one single crack is well understood in terms of electrical current, friction, and
temperature [23]. Nevertheless, realistic cracks are fractally embedded within materials.

On the other hand, it has been shown that other systems similar to fractal cracks
evolving in time are also present in several natural phenomena. For instance, some of those
systems are (including seismology studies):

• Earthquakes spatial distributions [24],
• Earthquake slip patterns [25],
• Cracks in rocks and lithosphere [17,26],
• Structural geology [27],
• Galaxies clustering [28],
• Self-organized criticality (SOC) systems [29],
• Quantum scale properties [30,31],
• High energy collisions data [32],
• Fractal electrodynamics [33],
• Fractal structures of spacetime and mass [34],
• Snowflakes dendrites distribution [35],
• Biological structures [36,37],
• Neuropsychiatric disorders [38],
• Ecology [39],
• Economics [40],
• Urbanism [41],
• Laws [42],

among others. During the latest decades, the use of Mandelbrot’s studies [43] allows
scientists to propose that these systems are governed by fractal laws such as the “Constructal
law” [44] or principle of least action [45,46]. Nevertheless, fractals are geometrically
well described but, a general description of thermodynamics fluxes, such as Onsager’s
coefficients [47,48], which generate fractality is still missing. In order to obtain a clearer
physical meaning of one specific fractal system, Section 2.1 demonstrates the extent to which
the entropy of one single crack can lead to fractally distributed cracks. Section 2.2 describes
the relationship between entropy and seismic moment. Section 2.3 generalizes the entropy
change for any system characterized by fractal geometry by using the linear nonequilibrium
thermodynamics framework as the Onsager’s coefficients. Then, Section 2.4 discusses the
extent of the results while the conclusion is in Section 3.
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2. Results and Discussion
2.1. Entropy of Fractals Cracks Distribution

The change of entropy ds0/dt required for the generation of a single crack is given
by [23]:

ds0

dt
=

(µNv)2

T2 +
Xe Je

T
(1)

where µ is the coefficient of friction generated by the inner relative displacement of the
crack boundaries, N the normal force, v the relative velocity, T the temperature, and Xe
and Je are the voltage and electrical current, respectively. Here, the first term (right side)
corresponds to the frictional heating while the second one corresponds to the electrical
production due the electrical imbalance in the semi-brittle plastic regime [10,11,49,50].
The generation of electromagnetic signals prior to main failure has been widely reported
in laboratory experiments [3,51–55] and on a geodynamic scale [16,56–58]. By contrast,
temperature changes prior to earthquakes has been poorly supported in [59]. Then, it is
expected that the entropy changes are manly driven by electrical charge generation within
microcracks. This implies that:

ds0

dt
≈ Xe Je

T0
(2)

Here and after, the temperature is considered as constant. In addition, it has been shown
that the electrical current generated by external uniaxial stress change is given by [60]:

Je =
1

Ye f f

(
dσu

dt

)
(3)

where Ye f f is the effective Young’s modulus and σu the applied uniaxial stress. The voltage

can be obtained by using the Ohm’s law for continuum medium. That is
→
J = σe

→
E ,

where σe is the electrical conductivity and
→
E the electric field [61]. The voltage definition

Xe = −
∫ →

E · d→a [62] allows us to write the voltage as:

Xe = ρe
→
J e · ∆

→
a = ρe Jea cos θ (4)

where ρe is the electrical resistivity and a is the distance where the electrical current flows
within the crack. Using Equations (2)–(4), the entropy change for a single crack is:

ds0

dt
≈ C0 J2

e a (5)

where C0 = ρe cos θ/T0. Let us consider that a and Je are parallel, then C0 is maximum.
The parameter a relates the length where the electrical current flows within a single crack,
it can also be considered as proportional to the volume occupied by the cracks. That is,
a = V/A0, where A0 corresponds to an area of reference. This implies that Equation (5)
is ds0/dt ∼ V. This equation stands for the volume of a single crack. However, there are
several cracks within a macroscopic material under uniaxial stress prior to the failure [7,8].
Then, each contribution should be considered for macroscopic material. On the other
hand, it has been shown that the total entropy change of dS corresponds to the sum of all
entropy change at different length scale [63]. For example, dS = dnanoS + dmesoS + dmacroS
means the nano, meso, and macro scale contribute to the total entropy change [63]. Here,
cracks are also observed at different length scale. Specifically, it has been observed that
the microcracks are fractally distributed [64,65]. This implies that entropy is a sum of
all the volume contributions with different length scale: dS = ∑ dis ∝ ∑ diV, where in a
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continuum fractal distribution, the entropy change turns into: dS ∝
∫

dV = V. Then, the
total change of entropy dS/dt depends on a fractal volume:

dS
dt

=
1

A0
∑

i

dis
dt
≈ C0 J2

e
A0

∫
V

dV = C1

(
dσ

dt

)2
Vf r (6)

where C1 = C0/A0Y2
e f f , σ is the macroscopic uniaxial stress and Vf r is the fractal volume

defined as [66]:

Vf r =
4π2

3
D− 2
(3− D)

(lmax)
5−D(lmin)

D−2 (7)

where D is the fractal dimension of rocks which mainly lies between 2 and 3, lmin is
the smallest rupture radius considered and lmax is the largest crack within the fractal
distribution. For simplicity, the largest crack is considered as circular crack [17].

Experimentally, it has been shown in X-ray tomography studies on rock samples that
the generation of cracks is dominated by the growth of preexisting fractures before the
main failure [7]. This implies that the volume is increasing with time. In other words,
lmax = lmax(t). Then, Equation (6) in (7) implies that the entropy change is proportional to
the growth of the largest crack lmax(t) within the fractal volume, growth that is generated
by the external stress change dσ/dt:

dS = Λ(D)

(
dσ

dt

)2
l(5−D)
max (t)dt (8)

where Λ = C1
4π2

3
D−2
(3−D) (lmin)

D−2. Here, dS ≥ 0 because lmax is a distance which is positive
by definition. The only manner in which dS = 0 is when dσ/dt ≈ 0 or when lmin ≈ 0. The
entropy change imposes that dσ/dt 6= 0 and lmin 6= 0. The former means that there is an
input or external force required in order to generate the cracks. In other words, no stress
changes, no cracks growth, and no entropy changes in the system. The latter implies that
there is a lower boundary for fractality in nature. The relationship between the external
forces applied by F that generates the fractal volume Vf r and the entropy change dS can be
summarized as:

dS ∝
(

dF
dt

)2
Vf r (9)

Thus, Equations (8) and (9) indicate that the increase of entropy is obtained by the generation
of tridimensional fractals in a certain domain due an increasing external force.

Entropy Change in Terms of Spatial Parameters

Let us consider now a brief description of Section 2.1. Equation (8) shows the relation-
ship between entropy and spatial properties as fractal geometry. Let us consider now how
the entropy is changing in terms of specific spatial parameters as the maximum length lmax
and the fractal dimension D while dσ/dt is constant. This can be seen in Figure 1a. The
entropy changes dS increases when lmax increases regardless of the value of D. This can be
seen as the change from blue to red colors in Figure 1a. Nevertheless, the dependency of dS
on D is different and also dependent on lmax. For example, dS increases when D increases
for small values of lmax (lmax < 1). That can be seen as the increase dS from ∼ −7.3 a.u. to
−4.8 a.u. in log scale. Note that a.u. means arbitrary units and the colormap of Figure 1a
shows ln(dS) which allows negative values. Contrary, dS increases when D decreases for
large values of lmax. The latter can be seen in the marked grey rectangle in Figure 1a. That
area is characterized by a dark red color and represents large values of dS at values of lmax
close to 103 a.u and a fractal dimension lower than 2.5. The dS values decrease for the same
lmax and large D values (D > 2.5).
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Figure 1. (a) Different values of entropy change in terms of spatial parameters. Specifically, in terms
of maximum fractal length l_max and fractal dimension D. Note that the entropy is larger when
lmax is larger and D is smaller. (b) Representation of randomly located fractal volumes which are
characterized by a large D value. (c) The same volume distribution but considering lower values of D.
It is possible to observe that the volume size distribution is different when a large of smaller values of
D are considered. When D is small, the domain is filled by a large number of small volume and few
large volumes. The opposite is found for large D values.

Figure 1b,c shows spheres that represent the randomly distributed fractal cracks for
two values of fractal dimension 2.99 and 2.01 respectively when lmax is large. Small D
shows that the domain is mainly governed by small cracks while large cracks are rare
(Figure 1c). The opposite is found in (Figure 1b).

2.2. Entropy Change in Terms of External Stress Change

Now it is relevant to consider if all the fractally distributed cracks increase the entropy.
Let us consider two cases, one where the stress increases linearly and sigmoid-shaped
in time. The first case is when dσ/dt and Λ are constant (equal to 1 arbitrary unit or
a.u.). This case can be seen in the black curve in Figure 2a. Here, the entropy changes
dS and lmax increases linearly (in a log-log plot) when the fractal dimension for granite
(D = 2.6 ) is considered [66]. The second case is when dσ/dt could be considered as
proportional to the sigmoidal shape which has been found for real earthquakes [14–16].

That is, σ(t) ∼ ln
(

1 + eas(t−tC)
)

and dσ/dt ∼
(

1 + e−as(t−tC)
)−1

[17], where as is constant
(here equal to 1) and tC corresponds to the time where the macroscopic failure occurs.
Figure 2b shows the evolution of σ (black curve) and dσ/dt (red curve) for the sigmoidal
case. This input generates the entropy changes shown in Figure 2a (red curve). It is clear
that the incorporation of dσ/dt reduce the entropy change for small to medium lmax values.
That is, the red curve is lower than the black one in Figure 2a. Nevertheless, in both cases,
the black and red curves reach the same dS values for large lmax. Note that the vertical
purple segmented line in Figure 2b shows when t = tC. This can be seen in Figure 1a as
a purple dot in red curve (Figure 2a). This shows that the incorporation of an increasing
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stress (dσ/dt > 0) increases the entropy change dS. In other words, the external forces
increase the entropy from one state to another.
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c)                                                                                  d)  

a)                                                                                    b)

Figure 2. (a) Relation between entropy change dS and the maximum fractal crack of length lmax. The
black curve shows how the entropy increases in terms of the volume growth and dσ/dt is constant.
The red curve shows the incorporation of the sigmoid function in dσ/dt. The purple point shows the
dS and lmax where the earthquake occurs for the sigmoid function. (b) Stress evolution σ (black curve)
and shear stress change dσ/dt (red curve) of the lithosphere prior to and after the main failure. Here,
the earthquake time is t = tC = 5 a. u. Note that a. u. means arbitrary units. (c) Entropy increases by
using Equation (10). It is shown that there are two main behaviors: the initial slow increase that lasts
up to t ∼ 3.5 a. u. (this trend is represented as a black dotted line) and the fast increases between
3.5 a. u. and tC = 5 a.u. (d) Magnitude expected in terms of the stress change.

On the other hand, the length of correlation ξ describes the length at which the stress
perturbation in cracks affect the surrounding volume [67]. It has been considered similar to
the length of the largest crack during the load cycle: ξ ∝ lmax [68,69]. This ξ is related to a
second order power law for heterogeneous materials given by [69]:

ξ = k(σP − σ)−p (10)

where σP is the stress required for the macroscopic failure, and k and p are parameters
that describe the stress evolution. Note that Equation (10) corresponds to the best fit from
experiments on rock samples under compression stress. By replacing Equations (7) and (10)
into Equation (6), the entropy changes of the whole system prior to the macroscopic
failure is:

dS
dt
≈ C2

(
dσ

dt

)2

(σP − σ)−p(5−D) (11)

where C2 = Λk5−D. Figure 2c shows how the entropy increases by using Equation (11)
and p = 0.64 [69], σP = 5 (a.u.) and C2 = 1 a.u. Overall entropy increases prior to the
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earthquake. Nevertheless, it increases particularly fast from t = 3.5 a.u. up to the main
failure at t = 5 a.u. (purple curve in Figure 2c). This means that the generation of cracks
prior the macroscopic failure is part of an irreversible process which maximizes the entropy
in time (see reference [70] for the relationship between maximum entropy principle and
irreversibility). Figure 3 shows the schematic representation of stress evolution, crack
generation, entropy increases, and final rupture. For example, Figure 3a shows the onset
of the system when no stress changes are applied. That is, no cracks are generated, and
entropy is at lowest value (blue circles). An increase in the stress will create a small number
of cracks while the entropy slowly increases (Figure 3b). Before the main earthquake, the
stress increases even more while the entropy rises faster (blue circles in Figure 3b). This
state is characterized by a large number of cracks within the lithosphere. Right before the
earthquake, the entropy, and crack numbers are at maximum values while the stress change
is at its maximum acceleration (Figure 3d).
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Figure 3. Schematic representation of the of shear stress change dσ/dt, entropy change dS/dt given
by Equation (10) and the growth of microcracks prior the main failure. Initially (a) the almost zero
dσ/dt generates no considerable stress change nor microcrack growth (blue circles). (b) The dσ/dt
increase (red curve) is determined by a small linear increase of dS/dt (blue circles). (c) The fast
entropy increases y related to the fast increase of the uniaxial stress. Finally, (d) shows that the
maximum entropy change is found right before the impending main failure (marked as green area).

Seismic Moment and Entropy

As the entropy is rapidly increasing before the main earthquake, let us consider the
effect of Equations (8) and (11) into other seismic parameters as the earthquake’s magnitude.
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The ruptured area A for earthquakes can be approximate by A = πl2
max [17]. Then the area

in terms of the entropy from Equation (8) is:

A = Γ0

(
D,

dσ

dt

)(
dS
dt

) 2
5−D

(12)

where Γ0

(
D, dσ

dt

)
= π

(
Λ(D)

(
dσ
dt

)2
)− 2

5−D
. On the other hand, the experimental rela-

tion between seismic moment M0 and the rupture area is given by A = aA M2/3
0 , where

aA = 1.34× 10−10
(

m5s
kg2

)1/3
[71]. By introducing Equation (12), the seismic moment is:

M0 = Γ
(

D,
dσ

dt

)(
dS
dt

) 3
5−D

(13)

where Γ = a−3/2
A Γ3/2

0 . Note that Equation (8) states that dS ≥ 0. Here, the seismic moment
is only possible if dS 6= 0 and dσ/dt 6= 0. That is: dS > 0. In other words, earthquake’s
occurrence requires a change of stress which generates an irreversible process that increases
entropy. The Equation (13) into the seismic magnitude equation [1] gives:

MW =
2
3

log10

(
Γ×

(
dS
dt

) 3
5−D
× 107

)
− 10.7 (14)

Equation (14) corresponds to the most probable expected magnitude of impending earth-
quake by regarding the entropy of the lithosphere. That is, if entropy change or stress
change are known, an estimation of the expected magnitude at that moment could be
obtained by using Equation (14). This can be seen in Figure 2d for the sigmoidal stress
change. Note that if no earthquake occurs, it is implied that entropy or stress will keep
increasing. This means that the expected magnitude will also increase.

2.3. Entropy and Fractal Geometry Generalization for Linear Nonequilibrium Thermodynamics

Let us consider now the generalization for Equations (8) and (9). The first step is to
consider the entropy change in time which is defined as [72]:

dS
dt

=
N

∑
k=1

Xk Jk (15)

where Xk and Jk are the N thermodynamics forces and flows in the system. These forces
and flows are related by the phenomenological equations which are defined as:

Xk =
n
∑

l=1
Kkl Jl

Jk =
n
∑

l=1
LklXl

(16)

where Kkl and Lkl are the phenomenological coefficient. Specifically, the resistance and con-
ductance coefficients respectively. The phenomenological coefficient obeys the Onsager’s
relations when no external magnetic field or Coriolis force are present [47,48]:

Lkk > 0 (k = 1, 2, . . . , n) (17)
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The condition from Equation (17) is satisfied because the magnetic anomalies are the results
of the crack generation. Magnetism is not generating or affecting the lithospheric stress
states as shown in Equation (3). Then, Equation (17) for different indices becomes:

Lll Lkk >
1
4
(Lil + Lli)

2 (l 6= k; k, l = 1, 2, . . . , n) (18)

Additionally, the matrix Lkl and Kkl are related by:

K = L−1 (19)

Let us consider the entropy change dSµ/dt for different subdomain µ (µ = 1, 2, . . . , m).
Then, Equation (15) becomes:

dSµ

dt
=

N

∑
k=1

Xµ
k Jµ

k (20)

and the thermodynamic forces and flows are now expressed as:

Xµ
k =

n
∑

l=1
Kµ

kl Jµ
l

Jµ
k =

n
∑

l=1
Lµ

klX
µ
l

(21)

Replacing the forces from Equation (21) into (20) gives:

dSµ

dt
=

N

∑
k=1

n

∑
l=1

Kµ
kl Jµ

l Jµ
k (22)

Here, the phenomenological coefficient cannot be negative while flows (or forces) are
quadratic in forms which implies that dSµ/dt ≥ 0 [73]. Equations (16) and (21) show that
all the forces Xi can be generated by all the flows Ji (and vice versa) by a linear combination
of the resistance (or conductance) coefficients. For example, Equation (4) shows that the
proportionality between electrical currents and volts holds when the distance at which
the volt is considered is not zero. In other words, the phenomenological coefficients are
related to the domain’s length for this case. Similarly, thermal conductivity depends on the
Knudsen number which depends on the characteristic length [74–76] while the hydraulic
conductivity is proportional to the hydraulic permeability which is a measure of the pore
geometry of the pore structure [77]. In addition, the resistivity K can be related to the local
metric tensor which represents the geometric measurement of the distance traveled [78].
Other examples of the relation among thermodynamics forces, flows, and phenomeno-
logical coefficients that require geometrical properties as volume or characteristic length
can be seen in Table 3.1 in reference [79]. The above-mentioned examples suggest that
phenomenological coefficients Kµ

kl describe the geometrical properties as the characteristic
length rµ

kl which defines those domains where Xµ
k and Jµ

k are valid. This means that the

phenomenological coefficients can be written as: Kµ
kl = η0K ′µkl

(
rµ

kl

)α
r−α

0 , where η0 is di-

mensionless constants, r0 a constant of units of length, K ′µkl correspond to a constant with
the phenomenological coefficient units, and α is a constant that determine the dimension of
the characteristic length r. That is, α represents Euclidian dimensions or fractal dimensions.
Then, the total entropy change is:

dS
dt

=
m

∑
µ=1

dSµ

dt
= η0

m

∑
µ=1

{
N

∑
k=1

n

∑
l=1

(
rµ

kl

)α K′µkl Jµ
l Jµ

k
rα

0

}
(23)

In other words, the total entropy depends on the entropy of each subdomain
(dS/dt = dS/dt(dSµ/dt), (µ = 1, 2, . . . , m)). On the first hand, a general self-affine trans-
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formation between a pair of nonoverlapped subdomains Mµ and M′µ (µ = 1, 2, . . . , m) is
governed by the relation M′µ = ξMµ, where

ξ =


ξ11 0 · · · 0
0 ξ22 . . . 0
...

...
. . .

...
0 0 · · · ξmm


m×m

(24)

And ξ11, ξ22, . . . , ξµµ are constants that represent dilatancy (ξµµ > 1) or contractions (ξµµ < 1)
among different subdomains Mµ [80]. Here, Equation (24) represents the diagonal self-affinity
when all the terms of the diagonals are equals. That is, when ξ11 = ξ22 = . . . = ξµµ = . . . =
ξmm = ξ0. Then, the self-affine transformation is given by: (M′1, M′2, . . . , M′µ, . . . , M′m) =(
ξ11M1, ξ22M2, . . . , ξµµ Mµ, . . . , ξmm Mm) = ξ0

(
M1, M2, . . . , Mµ, . . . , Mm). In other words,

each subdomain M′µ corresponds to a larger or smaller version of other subdomain Mµ.
Mathematically, this scale invariance can be written as [80]:

g(λ, x) = λα0 g(x) (25)

where λ is a factor and α0 is a constant. To consider our system as self-affine, each length
ξµµ must be constant and characterize the length of each subdomain µ. This means that
if the self-affine property is applied to Equation (23), it implies that rµ

kl does not depend
on indices k and l. In other words, the N net forces and flows of each subdomain µ are
restricted within a specific length scale (rµ)α. Thus, the latter turn Equation (23) into:

dS
dt

=
m

∑
µ=1

dSµ

dt
= η0

m

∑
µ=1

(rµ)α

{
N

∑
k=1

n

∑
l=1

K′µkl Jµ
l Jµ

k
rα

0

}
= η0

m

∑
µ=1

(rµ)α
N

∑
k=1

X̂k Ĵk = η0

m

∑
µ=1

(rµ)α dŜµ

dt
(26)

where X̂k, Ĵk, and Ŝµ are defined as the thermodynamics forces density, thermodynamics
flows density, and entropy change density and include the quadratic forces. Then, it is
possible to observe from 26 that f (λ, r) = dS

dt (λ, r) = λα dS
dt (r) = λα f (r) which satisfy

the scale invariance definition from Equation (25) and where α0 = α. In the continuum
self-affine limit, the total entropy is:

dS
dt

= η0

∫ rmax

rmin

dŜ
dt

rαdr (27)

On the second hand, a general fractal geometrical volume VE is obtained when VE ∼
∫

rDE dN,
where N = k1r−D, k1 is a constant DE is the Euclidian dimension, and D is the fractal
dimension [66]. This gives the relation: VE ∼ −Dk1

∫
rDE−D−1dr. Then, the entropy is

fractally distributed when α = DE−D− 1. In other words, Equation (27) is a generalization
of the relation dS/dt =

∫
V dSv/dtdV used in reference [73], where Sv is the entropy density

(chapter 3.9.1). If the entropy change density is fractally distributed, the contributions
are only a dilated or contracted version of a constant dŜ0/dt (Equation (26). Thus, the
contribution of entropy change of Equation (27) is independent of r. Thus, the total entropy
change is:

dS
dt

= −η0Dk1
dŜ0

dt

∫ rmax

rmin

rDE−D−1dr = − η0Dk1

DE − D
dŜ0

dt

[
rDE−D

max − rDE−D
min

]
(28)

The constant k1 can be found by using the topological dimension DT that obeys
AT = −Dk1

∫
rDT−D−1dr, where AT is a known positive constant. Then, the total en-

tropy change is:

dS
dt

=
dŜ0

dt
η0 AT(DT − D)

(DE − D)

[
rDE−D

max − rDE−D
min

]
[
rDT−D

max − rDT−D
min

] (29)
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Fractal dimension values range from DT < D < DE [43] which implies that DE − D > 0
and DT − D < 0. This also implies that (DT − D)/(DE − D) < 0. Note that dS

dt = 0 if
D = DT . For fractal, it is also valid that: rDE−D

max � rDE−D
min and rDT−D

max � rDT−D
min . These

results applied to Equation (29) show that the geometrical part of Equation (29) is always
positive. Then, Equation (29) becomes:

dS
dt
≈ dŜ0

dt
η0 AT(D− DT)

(DE − D)

(
rDE−D

max

)(
rD−DT

min

)
(30)

As Equation (22) is defined always as nonnegative, Equations (29) and (30) can be written
in a more general manner as:

dS
dt
≈ dŜ0

dt
ΦV(rmax, DT , D, DE) ≥ 0 (31)

where ΦV = η0 AT(D−DT)
(DE−D)

(rDE−D
max )(rD−DT

min ). Here a fixed rmin is used. Note that Equation (6)
is recovered if we consider the volumetric contribution V by using the Euclidean dimension
DE = 3, DT = DE − 1, η0 = 4π/3 and AT = πr2

max. While the quadratic forces are
represented by dŜ0/dt as shown in Equation (26).

Finally, it is possible to observe that the volume part V in Equation (31) grows when
the larger fractal structure length rmax = rmax(t) is larger. In other words the larger the
fractal volume, the larger the entropy increases.

Multifractal Entropy for Linear Nonequilibrium Thermodynamics

Equation (31) depends on the fractal dimension D. Nevertheless, D is not a fixed value
because there could be infinite D values between DT and DE. This raises the possibility
to take into account a system composed by subdomains characterized by different fractal
dimensions. If each subdomain is restricted to a specific volume, it is possible to consider
the volume growth of several non-interacting fractal structures by adding k different
entropy contribution. That is:

dS
dt
≈ dŜ0

dt
ΦV0

(
rmax0 , DT0 , D0, DE0

)
+

dŜ1

dt
ΦV1

(
rmax1 , DT1 , D1, DE1

)
+ . . . +

dŜk
dt

ΦVk

(
rmaxk , DTk , Dk, DEk

)
≥ 0 (32)

Equivalently:
dS
dt
≈∑

k

dŜk
dt

ΦVk ≥ 0 (33)

Then, the contribution of several non-interacting fractals volumes’ also increase the total
entropy of the system. The interacting systems case is different.

2.4. Discussion

Cracks and fractures within the lithosphere are well described by scaling laws or
fractals distributions [81]. This implies that experiments on rock samples could also give
information regarding the geodynamic scale. One relevant property of rock samples is
the increasing number of cracks before the main failure [7,8,54,69]. This means that the
role of cracking and its electromagnetic signals correspond to a pre-failure feature that can
be used as a forecast for major earthquakes [4]. On the other hand, it is known that the
lithospherical surface deformation is a feature of the interseismic cycle which is observed
in the middle of two large earthquakes [82]. Then, the link between interseismic and the
pre-failure process could be stated as it follows: the surface deformation is the first reaction
to the stress increases while the cracking generation rises when the lithosphere cannot
hold more strain. That is, the cracking is generally generated when no deformation is
clearly observed. Up to some point, the strain and cracking will not be sufficient to hold the
still-increasing stress. It is at this moment when the main earthquake is expected to occur.
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Here, as Equation (8) shows that the crack generation rapidly increases the entropy, it
could be considered that the fractally distributed cracking process corresponds to the main
manifestation of lithospheric dynamics despite the not clearly observed deformation. Note
that large scale strain-rate perturbation still could exist [83]. As the main earthquake is also
a manifestation of entropy increases, the entropy change can be used in order to link the pre-
failure dynamic to the main failure (or crack) in order to estimate an approximate magnitude
of the impending earthquake. This can be done by considering the Equations (13) and (14).
These Equations show that the larger the entropy (or stress) change, the larger the expected
earthquake magnitude. In addition, Equations (13) and (14) also state that no earthquake
can be expected if there is no entropy (stress) change. In other words, both the main rupture
and crack generation are linked by the entropy increases. This means that the earthquake
process must be preceded by the crack generation within the lithosphere that also could
generate electromagnetic signals. This contradicts those claims that consider the space
weather and solar activity as the main source of pre-failure electromagnetic signals [84].
Despite this, there is one manner in which space weather could influence the lithospherical
cracking. That is, by means of external forces. Specifically, part of the stress changes might
be generated by solar activity. This also implies that a reliable space weather mechanism
must be presented. Otherwise, if no relation between solar activity and lithospherical
stress changes is confirmed, implies that the cracking process required to increase the
lithospherical entropy is driven only by tectonic forces.

As those tectonic forces increase the number of cracks, it is implied that they also
increase the interaction between fractures and pores which leads to the increase of the
fracture permeability [85]. In addition, the Darcy’s law states that the larger the perme-
ability, the larger the fluid flow within the media [86]. This means that the increase of
fractal cracks imply the increase of the permeability, which also allows fluid migration
within the lithosphere. This fluid migration disturbs the lithospheric effective stresses [87]
which could destabilize stress states within faults [88]. Additionally, the fluid migration
could also flow upward the Earth’s surface while carrying high temperatures, different
gases, and electric charges that could ionize the lower atmosphere [89–92]. The latter
physical description can be added to the cascade of physical processes that rise due the
entropy increases. The whole schematic representation can be seen in Figure 4. Here,
the main physical property that triggers the cascade of other physical phenomena is the
stress increase and the increase of the entropy. The green arrow represents the different
process that can be explained by the seismo-electromagnetic theory when non-equilibrium
thermodynamics is considered. This includes the fractal cracking, electromagnetic signals,
fluids migration, frictional changes, b-value changes, main earthquake generation, and
other less direct processes such as gases liberation [93], electrical charge movement [94], or
ionospheric anomalies (see Figure 10 in reference [89] for the cascade of physical process
considered as not direct effect). The black arrows show the classical seismological relations
such as tsunamis, aftershocks, and gravitational signals. Figure 4 shows that the seismo-
electromagnetic theory in the context of non-equilibrium thermodynamics complements
classical seismology and gives a multidisciplinary physical explanation of the earthquake’s
generation. Note that this description is regardless of the geological context because all
of these cascades of phenomena have been reported in different seismic events and rises
because of the cracking of intact rock [95–97].

Regarding the geometrical distribution of cracks, this is a key feature that allows us
to obtain Equations (8), (13), and (14). This is the same fractal distribution which is also
observed in other fields under other names as “Constructal law” [44,98]. That is why
Equations (29)–(31) were obtained in Section 2.3 and correspond to the generalization of
Equation (8). Specifically, it is shown how geometrical properties of the phenomenolog-
ical coefficients (Onsager’s relations), which relates thermodynamics forces and flows,
can also be valid for fractal distribution (Equations (29)–(31) in Section 2.3). Note that
Equations (31) and (33) also share the shape shown in Equation 9. Here, the terms dŝ/dt

represent the quadratic time derivative force (dŝ ∼
.
F

2
).
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Figure 4. Schematic representation of the seismo-electromagnetic domain. It is possible to observe
that the cascade of physical phenomena start with stress changes that increase the entropy of the
lithosphere. Then, the green arrows represent the seismo-electromagnetic branch that explain the
observed seismic and non-seismic pre-earthquake measurements. The black arrows represent the
classical seismic domain. Note that the physics that explain earthquake occurrences come from the
seismo-electromagnetic domain. That is, the change of b-value, the main earthquake, and secondary
effects and fault’s frictional changes are due the entropy increases. Those green-black arrows represent
relation that can be stablished by classical seismology and seismo-electromagnetic phenomena.

Equations (29)–(31) also show the general relation between the growth of a fractal
distribution and the increase of entropy in time. By considering this, it is possible to claim
that the growth of fractals in nature correspond to the rise of one kind of irreversible
‘disorder’ governed by Equations (29)–(31).

It is also important to note the link between the Constructal law, the Onsager’s rela-
tions, the metric tensor, and multiscale thermodynamics. As the Constructal Law describes
the energy flux of natural systems that are characterized by fractal geometry [99], and
the Onsager’s coefficients describe the thermodynamic flux in non-equilibriums systems
(Equation 16), it is possible to state that the Constructal law is equivalent to the phenomeno-
logical coefficients when time-dependent fractal geometry is considered. Furthermore,
as the metric tensor is related to the Onsager’s resistivity K [78], and the fractal volume
in Equations (31) and (33) scales K (Equation (26)), which implies that the metric tensor
could have fractal or multiscale properties. This also implies that future works should
relate this fractal entropy (Equation (32)) to the multiscale thermodynamics [100] or even
cosmological evolution [101] and quantum gravity [102,103]. This is because these kinds
of links would allow other deepest question to be asked, such as: are fractals the results
of random fluxes and forces or the results of space time properties? Are those forces and
fluxes being shaped by the fractal metric tensor? Are fractals the milestone required to link
quantum and gravity realms? More work must be done in this direction.
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3. Conclusions

This work has described the thermodynamics of fractals cracks presented in the seismo-
electromagnetic theory prior to main earthquakes. This example has been useful in order to
generalize the thermodynamics of systems characterized by fractal geometries. Regarding
the fractal cracking process, it is possible to conclude that:

• As Equation (8) is always positive, it is implied that the generation of cracks are the
manifestation of irreversible process.

• The pre-failure and failure process can be linked by means of the entropy changes.
• The seismic moment and magnitude exist if external stress, that increases of the

entropy of the lithosphere, and increases in the number of cracks and electromagnetic
signals also exist.

• It is possible to estimate an expected seismic magnitude in terms of the entropy
change/stress change.

• Entropy rapidly increases before earthquakes.
• No entropy increase, no earthquake.
• The seismo-electromagnetic theory explains the non-seismic pre-earthquakes signals

and gives physical foundations to the generation of earthquakes.

Regarding the generalization of other non-equilibrium system characterized by fractal
properties, it can be concluded:

• The tendency in which nature creates fractals corresponds to a geometrical manifesta-
tion of that tendency in which the universe increases the entropy.

• Fractals rising in several fields and topics reveals the increase of ‘disorder’ of those systems.
• The phenomenological coefficients can describe geometrical properties of forces

and fluxes.
• The Constructal law is one geometrical application of Onsager’s relations.
• The entropy density is defined as dŝ, which represents the quadratic time derivative of

those forces (
.
F

2
) that generate the fractal geometry Vf r. No changing force F implies

no fractality.
• More work must be done in order to link metric tensor, fractal entropy and multi-

scale thermodynamics.
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