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Abstract: The Chernoff information between two probability measures is a statistical divergence
measuring their deviation defined as their maximally skewed Bhattacharyya distance. Although the
Chernoff information was originally introduced for bounding the Bayes error in statistical hypothesis
testing, the divergence found many other applications due to its empirical robustness property found
in applications ranging from information fusion to quantum information. From the viewpoint of
information theory, the Chernoff information can also be interpreted as a minmax symmetrization of
the Kullback–Leibler divergence. In this paper, we first revisit the Chernoff information between two
densities of a measurable Lebesgue space by considering the exponential families induced by their
geometric mixtures: The so-called likelihood ratio exponential families. Second, we show how to
(i) solve exactly the Chernoff information between any two univariate Gaussian distributions or get a
closed-form formula using symbolic computing, (ii) report a closed-form formula of the Chernoff in-
formation of centered Gaussians with scaled covariance matrices and (iii) use a fast numerical scheme
to approximate the Chernoff information between any two multivariate Gaussian distributions.

Keywords: Chernoff information; Chernoff–Bregman divergence; Chernoff–Jensen divergence;
Chernoff information distribution; Kullback–Leibler divergence; Bhattacharyya distance; Rényi
α-divergences; regular/steep exponential family; Gaussian measures; exponential arc; information
geometry; L1 measurable space; Bregman divergence; affine group

1. Introduction
1.1. Chernoff Information: Definition and Related Statistical Divergences

Let (X ,A) denote a measurable space [1] with sample space X and finite σ-algebra
A of events. A measure P is absolutely continuous with respect to another measure Q if
P(A) = 0 whenever Q(A) = 0: P is said dominated by Q and written notationally for short
as P� Q. We shall write P 6� Q when P is not dominated by Q. When P� Q, we denote
by dP

dQ the Radon–Nikodym density [1] of P with respect to Q.
The Chernoff information [2], also called Chernoff information number [3,4] or

the Chernoff divergence [5,6], is the following symmetric measure of dissimilarity
(see Appendix A for some background on statistical divergences) between any two compa-
rable probability measures P and Q dominated by µ:

DC[P, Q] := max
α∈(0,1)

− log ρα[P : Q] = DC[Q, P], (1)

ρα[P : Q] :=
∫

pαq1−αdµ = ρ1−α[Q : P], (2)

is the α-skewed Bhattacharyya affinity coefficient [7] (a coefficient measuring the similarity
of two densities). In the remainder, we shall use the following conventions: When a
(dis)similarity is asymmetric (e.g., ρα[P : Q]), we use the colon notation “:” to separate
its arguments. When the (dis)similarity is symmetric (e.g., DC[P, Q]), we use the comma
notation “,” to separate its arguments.
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The α-skewed Bhattacharyya coefficients are always upper bounded by 1 and are
strictly greater than zero for non-empty intersecting support (non-singular PMs):

0 < ρα[P : Q] ≤ 1.

A proof can be obtained by applying Hölder’s inequality (see also Appendix A for an
alternative proof).

Since the affinity coefficient ρα[P : Q] does not depend on the underlying dominating
measure µ [4], we shall write DC[p, q] instead of DC[P, Q] in the reminder.

Let DB,α[p : q] denote the α-skewed Bhattacharyya distance [7,8]:

DB,α[p : q] := − log ρα[P : Q] = DB,1−α[q : p], (3)

The α-skewed Bhattacharyya distances are not metric distances since they can be asymmet-
ric and do not satisfy the triangle inequality even when α = 1

2 .
Thus, the Chernoff information is defined as the maximal skewed Bhattacharyya

distance:
DC[p, q] = max

α∈(0,1)
DB,α[p : q]. (4)

Grünwald [9,10] called the skewed Bhattacharyya coefficients and distances the α-
Rényi affinity and the unnormalized Rényi divergence, respectively, (see Section 19.6 of [9])
since the Rényi divergence [11,12] is defined by

DR,α[P : Q] =
1

α− 1
log

∫
pαq1−αdµ =

1
1− α

DB,α[P : Q]. (5)

Thus DB,α[P : Q] = (1− α) DR,α[P : Q] can be interpreted as the unnormalized Rényi
divergence in [9]. However, let us notice that the Rényi α-divergences are defined in
general for a wider range α ∈ [0, ∞]\{1} with limα→1 DR,α[P : Q] = DKL[P : Q] but the
skew Bhattacharyya distances are defined for α ∈ (0, 1) in general.

The Chernoff information was originally introduced to upper bound the probability
error of misclassification in Bayesian binary hypothesis testing [2] where the optimal
skewing parameter α∗ such that DC[p, q] = DB,α∗ [p : q] is referred to in the statistical
literature as the Chernoff error exponent [13–15] or Chernoff exponent [16,17] for short.
The Chernoff information has found many other fruitful applications beyond its original
statistical hypothesis testing scope like in computer vision [18], information fusion [19],
time-series clustering [20], and more generally in machine learning [21] (just to cite a few
use cases). It has been observed empirically that the Chernoff information exhibits superior
robustness [22] compared to the Kullback–Leibler divergence in distributed fusion of
Gaussian Mixtures Models [19] (GMMs) or in target detection in radar sensor network [23].
The Chernoff information has also been used for analysis deepfake detection performance
of Generative Adversarial Networks [22] (GANs).

1.2. Prior Work and Contributions

The Chernoff information between any two categorical distributions (multinomial dis-
tributions with one trial also called “multinoulli” since they are extensions of the Bernoulli
distributions) has been very well-studied and described in many reference textbooks of
information theory or statistics (e.g., see Section 12.9 of [13]). The Chernoff information
between two probability distributions of an exponential family was considered from the
viewpoint of information geometry in [24], and in the general case from the viewpoint of
unnormalized Rényi divergences in [11] (Theorem 32). By replacing the weighted geometric
mean in the definition of the Bhattacharyya coefficient ρα of Equation (2) by an arbitrary
weighted mean, the generalized Bhattacharyya coefficient and its associated divergences
including the Chernoff information was generalized in [25]. The geometry of the Chernoff
error exponent was studied in [26,27] when dealing with a finite set of mutually absolutely
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probability distributions P1, . . . , Pn. In this case, the Chernoff information amounts to the
minimum pairwise Chernoff information of the probability distributions [28]:

DC[P1, . . . , Pn] := min
i∈{1,...,n}6=j∈{1,...,n}

DC[Pi, Pj].

We summarize our contributions as follows: In Section 2, we study the Chernoff
information between two given mutually non-singular probability measures P and Q
by considering their “exponential arc” [29] as a special 1D exponential family termed a
Likelihood Ratio Exponential Family (LREF) in [10]. We show that the optimal skewing
value (Chernoff exponent) defining their Chernoff information is unique (Proposition 1)
and can be characterized geometrically on the Banach vector space L1(µ) of equivalence
classes of measurable functions (i.e., two functions f1 and f2 are said equivalent in L1(µ)
if they are equal µ-almost everywhere, abbreviated as µ-a.e. in the remainder) for which
their absolute value is Lebesgue integrable (Proposition 4). This geometric characterization
allows us to design a generic dichotomic search algorithm (Algorithm 1) to approximate
the Chernoff optimal skewing parameter, generalizing the prior work [24]. When P and
Q belong to a same exponential family, we recover in Section 3 the results of [24]. This
geometric characterization also allows us to reinterpret the Chernoff information as a
minmax symmetrization of the Kullback–Leibler divergence, and we define by analogy
the forward and reverse Chernoff–Bregman divergences in Section 4 (Definition 2). In
Section 5, we consider the Chernoff information between Gaussian distributions: We show
that the optimality condition for the Chernoff information between univariate Gaussian
distributions can be solved exactly and report a closed-form formula for the Chernoff
information between any two univariate Gaussian distributions (Proposition 10). For
multivariate Gaussian distributions, we show how to implement the dichotomic search
algorithms to approximate the Chernoff information, and report a closed-form formula for
the Chernoff information between two centered multivariate Gaussian distributions with
scaled covariance matrices (Proposition 11). Finally, we conclude in Section 7.

2. Chernoff Information from the Viewpoint of Likelihood Ratio Exponential Families
2.1. LREFs and the Chernoff Information

Recall that L1(µ) denotes the Lebesgue vector space of measurable functions f such
that

∫
X | f |dµ < ∞. Given two prescribed densities p and q of L1(µ), consider building

a uniparametric exponential family [30] Epq which consists of the weighted geometric
mixtures of p and q:

Epq :=
{
(pq)G

α (x) :=
p(x)αq(x)1−α

Zpq(α)
: α ∈ Θ

}
, (6)

where
Zpq(α) =

∫
X

p(x)αq(x)1−αdµ(x) = ρα[p : q] (7)

denotes the normalizer (or partition function) of the geometric mixture

(pq)G
α (x) ∝ p(x)αq(x)1−α

so that
∫
X (pq)G

α dµ = 1. Parameter space Θ is defined as the set of α values which yieds
convergence of the definite integral Zpq(α):

Θ := {α ∈ R : Zpq(α) < ∞}. (8)
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Let us express the density (pq)G
α in the canonical form (∗) of exponential families [30]:

(pq)G
α (x) = exp

(
α log

p(x)
q(x)

− log Zpq(α)

)
q(x), (9)

∗
=: exp

(
αt(x)− Fpq(α) + k(x)

)
. (10)

It follows from this decomposition that α ∈ Θ ⊂ R is the scalar natural pa-
rameter, t(x) = log p(x)

q(x) denotes the sufficient statistic (minimal when p(x) 6= q(x)
µ-a.e.), k(x) = log q(x) is an auxiliary carrier term wrt. measure µ (i.e., measure
dν(x) = q(x)dµ(x)), and

Fpq(α) = log Zpq(α) = −DB,α[p : q] < 0 (11)

is the log-normalizer (or log-partition or cumulant function). Since the sufficient statistic is
the logarithm of the likelihood ratio of p(x) and q(x), Grünwald [9] (Section 19.6) termed
Epq a Likelihood Ratio Exponential Family (LREF). See also [31] for applications of LREFs
to Markov chain Monte Carlo (McMC) methods.

We have p = (pq)G
1 and q = (pq)G

0 . Thus, let αp = 1 and αq = 0, and let us interpret
geometrically {(pq)G

α , α ∈ Θ} as a maximal exponential arc [29,32,33] where Θ ⊆ R is an
interval. We denote by Epq the open exponential arc with extremities p and q.

Since the log-normalizers F(θ) of exponential families are always strictly convex and
real analytic [30] (i.e., F(θ) ∈ Cω(R)), we deduce that DB,α[p : q] = −Fpq(α) is strictly
concave and real analytic. Moreover, we have DB,0[p : q] = DB,1[p : q] = 0. Hence, the
Chernoff optimal skewing parameter α∗ is unique when p 6= q µ-a.e., and we get the
Chernoff information calculated as

DC[p : q] = DB,α∗(p, q).

See Figure 1 for a plot of the strictly concave function DB,α[p : q] and the strictly convex
function Fpq(α) = −DB,α[p : q] when p = p0,1 is the standard normal density and q = p1,2
is a normal density of mean 1 and variance 2.

F_
{p

q}
(α

)=
-D

_{
B,
α}

[p
:q

]

α

skew Bhattacharyya D_{B,α}[p:q]
LREF log-normalizer F_{pq}(α)

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0  0.2  0.4  0.6  0.8  1

Figure 1. Plot of the Bhattacharryya distance DB,α(p : q) (strictly concave, displayed in blue) and the
log-normalizer Fpq(α) of the induced LREF Epq (strictly convex, displayed in red) for two univariate
normal densities p = p0,1) (standard normal) and q = p1,2: The curves DB,α(p : q) = −Fpq(α)

are horizontally mirror symmetric to each others. The Chernoff information optimal skew-
ing value α∗ between these two univariate normal distributions can be calculated exactly in
closed-form, see Section 5.2 (approximated numerically here for plotting the vertical grey line by
α∗ ≈ 0.4215580558605244).
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Consider the full natural parameter space Θpq of Epq:

Θpq = {α ∈ R : ρα(p : q) < +∞}. (12)

The natural parameter space Θpq is always convex [30] and since ρ0(p : q) = ρ1(p : q) = 1,
we necessarily have (0, 1) ∈ Θpq but not necessarily [0, 1] ∈ Θpq as detailed in the follow-
ing remark:

Remark 1. In order to be an exponential family, the densities (pq)G
α shall have the same coinciding

support for all values of α belonging to the natural parameter space. The support of the geometric
mixture density (pq)G

α is

supp
(
(pq)G

α

)
=


supp(p) ∩ supp(q), α ∈ Θpq\{0, 1}
supp(p), α = 1
supp(q), α = 0.

This condition is trivially satisfied when the supports of p and q coincide, and therefore [0, 1] ⊂ Θpq
in that case. Otherwise, we may consider the common support Xpq = supp(p) ∩ supp(q) for
α ∈ (0, 1). In this latter case, we are poised to restrict the natural parameter space to Θpq = (0, 1)
even if ρα(p : q) < ∞ for some α outside that range.

To emphasize that α∗ depends on p and q, we shall use the notation α∗(p : q) whenever
necessary. We have α∗(q : p) = 1− α∗(p : q), and since DB,α(p : q) = DB,1−α(q : p), and
we check that

DC[p, q] = DB,α∗(p:q)(p : q) = DB,α∗(q:p)(q : p) = DC[q, p].

Thus the skewing value α∗(q : p) may be called the conjugate Chernoff exponent (i.e.,
depends on the convention chosen for interpolating on the exponential arc).

However, since the Chernoff information does not satisfy the triangle inequality, it is
not a metric distance and the Chernoff information is called a quasi-distance.

Proposition 1 (Uniqueness of the Chernoff information optimal skewing parameter [11,12]).
Let P and Q be two probability measures dominated by a positive measure µ with corresponding
Radon–Nikodym densities p and q, respectively. The Chernoff information optimal skewing parame-
ter α∗(p : q) is unique when p 6= q µ-almost everywhere, and

DC[p, q] = DB,α∗(p:q)(p : q) = DB,α∗(q:p)(q : p) = DC[q, p].

When p = q µ-a.e., we have DC[p : q] = 0 and α∗ is undefined since it can range in [0, 1].

Definition 1. An exponential family is called regular [30] when the natural parameter space Θ is
open, i.e., Θ = Θ◦ where Θ◦ denotes the interior of Θ (i.e., an open interval).

Proposition 2 (Finite sided Kullback–Leibler divergences). When the LREF Epq is a regular
exponential family with natural parameter space Θ ) [0, 1], both the forward Kullback–Leibler
divergence DKL[p : q] and the reverse Kullback–Leibler divergence DKL[q : p] are finite.

Proof. A reverse parameter divergence D∗(θ1 : θ2) is a parameter divergence on the
swapped parameter order: D∗(θ1 : θ2) := D(θ2 : θ1). Similarly, a reverse statisti-
cal divergence D∗[p : q] is a statistical divergence on the swapped parameter order:
D∗[p : q] := D[q : p]. We shall use the result pioneered in [34,35] that the KLD between
two densities pθ1 and pθ2 of a regular exponential family E = {pθ : θ ∈ Θ} amounts to
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a reverse Bregman divergence (BF)
∗ (i.e., a Bregman divergence on swapped parameter

order) induced by the log-normalizer of the family:

DKL[pθ1 : pθ2 ] = (BF)
∗(θ1 : θ2) = BF(θ2 : θ1), (13)

where BF is the Bregman divergence defined on domain D = dom(F) (see Definition 1
of [36]):

BF : D× ri(D)→ [0, ∞)

(θ1, θ2) 7→ BF(θ1 : θ2) = F(θ1)− F(θ2)− (θ1 − θ2)
>∇F(θ2) < +∞,

where ri(D) denotes the relative interior of domain D. Bregman divergences are always
finite and the only symmetric Bregman divergences are squared Mahalanobis distances [37]
(i.e., with corresponding Bregman generators defining quadratic forms).

For completeness, we recall the proof as follows: We have

log
pθ1(x)
pθ2(x)

= (θ1 − θ2)
>t(x)− F(θ1) + F(θ2).

Thus we get

DKL[pθ1 : pθ2 ] = Epθ1

[
log

pθ1

pθ2

]
,

= F(θ2)− F(θ1)− (θ1 − θ2)
>Epθ1

[t(x)],

using the linearity property of the expectation operator. When E is regular, we also have
Epθ1

[t(x)] = ∇F(θ1) (see [38]), and therefore we get

DKL[pθ1 : pθ2 ] = F(θ2)− F(θ1)− (θ1 − θ2)
>∇F(θ1) =: BF(θ2 : θ1) = (BF)

∗(θ1 : θ2).

In our LREF setting, we thus have:

DKL[p : q] = (BF)
∗(αp : αq) = BFpq(αq : αp) = BFpq(0 : 1),

and DKL[q : p] = BFpq(αp : αq) = BFpq(1 : 0) where BFpq(α1 : α2) denotes the following
scalar Bregman divergence:

BFpq(α1 : α2) = Fpq(α1)− Fpq(α2)− (α1 − α2)F′pq(α2).

Since Fpq(0) = Fpq(1) = 0 and BFpq : Θ× ri(Θ)→ [0, ∞), we have

DKL[p : q] = BFpq(αq : αp) = BFpq(0 : 1) = F′pq(1) < ∞.

Similarly
DKL[q : p] = BFpq(αp : αq) = BFpq(1 : 0) = −F′pq(0) < ∞.

Notice that since BFpq(α1 : α2) > 0, we have F′pq(1) > 0 and F′pq(0) < 0 when p 6= q µ-almost
everywhere (a.e.). Moreover, since Fpq(α) is strictly convex, F′pq(α) is strictly monotonically
increasing, and therefore there exists a unique α∗ ∈ (0, 1) such that F′pq(α

∗) = 0.

Example 1. When p and q belongs to a same regular exponential family E (e.g., p and q are
two normal densities), their sided KLDs [37] are both finite. The LREF induced by two Cauchy
distributions pl1,s1 and pl2,s2 is such that [0, 1] ⊂ Θ since the skewed Bhattacharyya distance is
defined and finite for α ∈ R [39]. Therefore the KLDs between two Cauchy distributions are always
finite [39], see the closed-form formula in [40].
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Remark 2. If 0 ∈ Θ◦, then BFpq(1 : 0) < ∞ and therefore DKL[q : p] < ∞. Since the KLD
between a standard Cauchy distribution p and a standard normal distribution q is +∞, we deduce
that DKL[p : q] 6= BFpq(0 : 1), and therefore 1 6∈ Θ◦. Similarly, when 1 ∈ Θ◦, we have
BFpq(0 : 1) < ∞ and therefore DKL[p : q] < ∞.

Proposition 3 (Chernoff information expressed as KLDs). (see also Theorem 32 of [11]) We
have at the Chernoff information optimal skewing value α∗ ∈ (0, 1) the following identities:

DC[p : q] = DKL[(pq)G
α∗ : p] = DKL[(pq)G

α∗ : q].

Proof. Since the skewed Bhattacharyya distance between two densities pθ1 and pθ2 of an
exponential family with log-normalizer F amounts to a skew Jensen divergence for the
log-normalizer [8,41], we have:

DB,α(pθ1 : pθ2) = JF,α(θ1 : θ2),

where the skew Jensen divergence [42] is given by

JF,α(θ1 : θ2) = αF(θ1) + (1− α)F(θ2)− F(αθ1 + (1− α)θ2).

In the setting of the LREF, we have

DB,α((pq)G
α1

: (pq)G
α2
) = JFpq ,α(α1 : α2),

= αFpq(α1) + (1− α)Fpq(α2)− Fpq(αα1 + (1− α)α2).

At the optimal value α∗, we have F′pq(α
∗) = 0. Since DKL[(pq)G

α∗ : p] = BFpq(1 : α∗) =

−F(α∗) and DKL[(pq)G
α∗ : q] = BFpq(0 : α∗) = −F(α∗) and DC[p : q] = − log ρα∗(p : q) =

JFpq ,α∗(1 : 0) = −Fpq(α∗), we get

DC[p : q] = DKL[(pq)G
α∗ : p] = DKL[(pq)G

α∗ : q].

Figure 2 illustrates the proposition on the plot of the scalar function Fpq(α).

αα∗0 1

Fpq(α)

DB,α[p : q]

(pq)Gα∗ (pq)Gα
pq

BFpq (1 : α∗)BFpq (0 : α∗)

F ′pq(α
∗) = 0

JFpq,α∗(0 : 1)

Figure 2. The best unique parameter α∗ defining the Chernoff information optimal skewing parameter
is found by setting the derivative of the strictly convex function Fpq(α) to zero. At the optimal value
α∗, we have DC[p : q] = DKL[(pq)G

α∗ : p] = DKL[(pq)G
α∗ : q] = −F(α∗) > 0.
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Corollary 1. The Chernoff information optimal skewing value α∗(p : q) ∈ (0, 1) can be used to
calculate the Chernoff information DC[p, q] as a Bregman divergence induced by the LREF:

DC[p : q] = BFpq [1 : α∗] = BFpq [0 : α∗] = JFpq ,α∗(1 : 0).

In general, the divergence JC
F (θ1, θ2) = maxα∈(0,1) JF,α(θ1 : θ2) is called a Jensen–

Chernoff divergence.
Proposition 3 let us interpret the Chernoff information as a special symmetrization of

the Kullback–Leibler divergence [43], different from the Jeffreys divergence or the Jensen–
Shannon divergence [44]. Indeed, the Chernoff information can be rewritten as

DC[p : q] = min
r∈Epq
{DKL[r : p], DKL[r : q]}. (14)

As such, we can interpret the Chernoff information as the radius of a minimum enclosing
left-sided Kullback–Leibler ball on the space L1(µ). A related concept is the radius [12] of
two densities p and q with respect to Rényi divergences of order α (see Equation (2) of [12]):

rα(p, q) := inf
c

max{DR,α[p : c], DR,α[q : c]}.

When α = 1, the radius is called the Shannon radius [12] since the Rényi divergences of
order 1 corresponds to the Kullback–Leibler divergence (relative entropy).

2.2. Geometric Characterization of the Chernoff Information and the Chernoff
Information Distribution

Let us term the probability distribution (PQ)G
α∗ � µ with corresponding density

(pq)G
α∗ the Chernoff information distribution to avoid confusion with another concept of

Chernoff distributions [45] used in statistics. We can characterize geometrically the Chernoff
information distribution (pq)G

α∗ on L1(µ) as the intersection of a left-sided Kullback–Leibler
divergence bisector:

Bileft
KL (p, q) :=

{
r ∈ L1(µ) : DKL[r : p] = DKL[r : q]

}
, (15)

with an exponential arc [29]

γG(p, q) :=
{
(pq)G

α : α ∈ [0, 1]
}

. (16)

We thus interpret Proposition 3 geometrically by the following proposition (see
Figure 3):

p

q
(pq)Gα∗

BileftKL(p, q)

γG(p, q)

L1(µ)
exponential arc

bisector

Figure 3. The Chernoff information distribution (PQ)G
α∗ with density (pq)G

α∗ is obtained as the unique
intersection of the exponential arc γG(p, q) linking density p to density q of L1(µ) with the left-sided
Kullback–Leibler divergence bisector Bileft

KL (p, q) of p and q: (pq)G
α∗ = γG(p, q) ∩ Bileft

KL (p, q).

Proposition 4 (Geometric characterization of the Chernoff information). On the vector space
L1(µ), the Chernoff information distribution is the unique distribution

(pq)G
α∗ = γG(p, q) ∩ Bileft

KL (p, q).
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The point (pq)G
α∗ has been called the Chernoff point in [24].

Proposition 4 allows us to design a dichotomic search to numerically approximate α∗

as reported in pseudo-code in Algorithm 1 (see also the illustration in Figure 4).

Algorithm 1 Dichotomic search for approximating the Chernoff information
by approximating the optimal skewing parameter value α̃ ≈ α∗ and reporting
DC[p : q] ≈ DKL[(pq)G

α̃ : p]. The search requires dlog2
1
ε e iterations to guarantee

|α∗ − α̃| ≤ ε.

input : Two densities p, q of L1(µ), and a numerical precision threshold ε > 0
αm = 0;
αM = 1;
while |αM − αm| > ε do

α = αm+αM
2 ;

if DKL[(pq)G
α : p] > DKL[(pq)G

α : q] then
αm = α;
// See Figure 4 for an illustration and Proposition 4

end
else

αM = α;
end

end
return DKL[(pq)G

α : p];

p q

αm = 0αM = αp = 1

α = 1
2

(pq)G1
2

∝ √
pq

DKL[r : p] > DKL[r : q]

Figure 4. Illustration of the dichotomic search for approximating the optimal skewing parameter α∗

to within some prescribed numerical precision ε > 0.

Remark 3. We do not need to necessarily handle normalized densities p and q since we have for
α ∈ R\{0, 1}:

(pq)G
α = ( p̃q̃)G

α ,

where p(x) = p̃(x)
Zp

and q(x) = q̃(x)
Zq

with p̃ and q̃ denoting the computationally-friendly unnor-
malized positive densities. This property of geometric mixtures is used in Annealed Importance
Sampling [46,47] (AIS), and for designing an asymptotically efficient estimator for computationally-
intractable parametric densities [48] q̃θ (e.g., distributions learned by Boltzmann machines).

2.3. Dual Parameterization of LREFs

The densities (pq)G
α of a LREF can also be parameterized by their dual moment

parameter [30] (or mean parameter):

β = β(α) := E(pq)G
α
[t(x)] = E(pq)G

α

[
log

p(x)
q(x)

]
. (17)

When the LREF is regular (and therefore steep [38]), we have β(α) = F′pq(α) and α = F∗pq
′(β),

where F∗pq denotes the Legendre transform of Fpq. At the optimal value α∗, we have
F′pq(α

∗) = 0. Therefore an equivalent condition of optimality is
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β(α∗) = F′pq(α
∗) = 0 = E(pq)G

α∗

[
log

p(x)
q(x)

]
.

Notice that when [0, 1] ⊂ Θ◦, we have finite forward and reverse Kullback–Leibler di-
vergences:

• α = 1, we have (pq)G
1 = p and

β(1) = Ep

[
log

p(x)
q(x)

]
= DKL[p : q] = F′pq(1) > 0.

• α = 0, we have (pq)G
0 = q and

β(0) = Eq

[
log

p(x)
q(x)

]
= −DKL[q : p] = F′pq(0) < 0.

Since Fpq(α) is strictly convex, we have F′′pq(α) > 0 and F′pq is strictly increasing with
F′pq(0) = −DKL[q : p] < 0 and F′pq(1) = DKL[p : q] > 0. The value α∗ is thus the unique
value such that F′pq(α

∗) = 0.

Proposition 5 (Dual optimality condition for the Chernoff information). The unique Chernoff
information optimal skewing parameter α∗ is such that

OCα : DKL[(pq)G
α∗ : p] = DKL[(pq)G

α∗ : q]⇔ OCβ : β(α∗) = E(pq)G
α∗

[
log

p(x)
q(x)

]
= 0.

One can understand that the Chernoff information is more robust or stable than a
skewed Bhattacharrya distance by considering the derivative of the corresponding skewed
Bhattacharrya distance. Consider without loss of generality densities pθ1 and pθ2 of a
1D exponential family. Their skewed Bhattacharrya distances amounts to skew Jensen
divergences, and we have:

J′F,α(θ1 : θ2) :=
d

dα
JF,α(θ1 : θ2) = F(θ1)− F(θ2)− (θ1 − θ2)F′(αθ1 + (1− α)θ2).

Since JF,α∗ is by definition maximal, we have F′(α∗θ1 + (1− α∗)θ2) = 0, and therefore
|J′F,α(θ1 : θ2) − J′F,α∗(θ1 : θ2)| = |(θ1 − θ2)F′(αθ1 + (1 − α)θ2)| > 0. Further assuming
without loss of generality that θ2 − θ1 = 1, we get |J′F,α(θ1 : θ2)− J′F,α∗(θ1 : θ2)| = |F′(αθ1 +
(1− α)θ2)| > 0 = F′(α∗θ1 + (1− α∗)θ2).

As a side remark, let us notice that the Fisher information of a likelihood ratio expo-
nential family Epq is

Ipq(α) = −E(pq)G
α
[(log(pq)G

α )
′′] = F′′pq(α) > 0,

and = F′′pq(α)F∗′′pq(β) = 1.

3. Chernoff Information between Densities of an Exponential Family
3.1. General Case

We shall now consider that the densities p and q (with respect to measure µ) belong to
a same exponential family [30]:

E =

{
Pλ :

dPλ

dµ
= pλ(x) = exp(θ(λ)>t(x)− F(θ(λ))), λ ∈ Λ

}
,

where θ(λ) denotes the natural parameter associated with the ordinary parameter λ, t(x)
the sufficient statistic vector and F(θ(λ)) the log-normalizer. When θ(λ) = λ and t(x) = x,
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the exponential family is called a natural exponential family (NEF). The exponential family
E is defined by µ and t(x), hence we may write when necessary E = Eµ,t.

Example 2. The set of univariate Gaussian distributions

N = {pµ,σ2(x) : λ = (µ, σ2) ∈ Λ = R×R++}

forms an exponential family with the following decomposition terms:

λ = (µ, σ2) ∈ Λ = R×R++,

θ(λ) =

(
θ1 =

µ

σ2 , θ2 = − 1
2σ2

)
∈ Θ = R×R−−,

t(x) = (x, x2),

F(θ) = −
θ2

1
4θ2

+
1
2

log
(
− π

θ2

)
,

where R++ = {x ∈ R : x > 0} and R−− = {x ∈ R : x < 0} denotes the set of positive
real numbers and negative real numbers, respectively. Letting v = σ2 be the variance parameter,
we get the equivalent natural parameters

(
µ
v ,− 1

2v

)
. The log-normalizer can be written using the

(µ, v)-parameterization as F(µ, v) = 1
2 log(2πv) + µ2

2v and θ =
(

θ1 = µ
v ,− 1

2v

)
. See Appendix B

for further details concerning this normal exponential family.

Notice that we can check easily that the LREF between two densities of an exponential
family forms a 1D sub-exponential family of the exponential family:

pθ1(x)α pθ2(x)1−α ∝ exp(〈αθ1 + (1− α)θ2, t(x)〉 − αF(θ1)− (1− α)F(θ2)),

= pαθ1+(1−α)θ2
(x) exp(F(αθ1 + (1− α)θ2)− αF(θ1)− (1− α)F(θ2))),

= pαθ1+(1−α)θ2
(x) exp(−JF,α(θ1 : θ2)),

where JF denote the Jensen divergence induced by F.
The optimal skewing value condition of the Chernoff information between two cate-

gorical distributions [13] was extended to densities pθ1 and pθ2 of an exponential family
in [24]. The family of categorical distributions with d choices forms an exponential family
with natural parameter of dimension d− 1. Thus, Proposition 7 generalizes the analysis
in [13].

Let p = pθ1 and q = pθ2 . Then we have the property that exponential families are
closed under geometric mixtures:

(pθ1 pθ2)
G
α = pαθ1+(1−α)θ2

.

Since the natural parameter space Θ is convex, we have αθ1 + (1− α)θ2 ∈ Θ.
The KLD between two densities pθ1 and pθ2 of a regular exponential family E amounts

to a reverse Bregman divergence for the log-normalizer of E :

DKL[pθ1 : pθ2 ] = BF(θ2 : θ1),

where BF(θ2 : θ1) denotes the Bregman divergence:

BF(θ2 : θ1) = F(θ2)− F(θ1)− (θ2 − θ1)
>∇F(θ1).

Thus, when the exponential family E is regular, both the forward and reverse KLD are
finite, and we can rewrite Proposition 3 to characterize α∗ as follows:

OCEF : BF(θ1 : θα∗) = BF(θ2 : θα∗), (18)
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where θα∗ = α∗θ1 + (1− α∗)θ2.
The Legendre–Fenchel transform of F(θ) yields the convex conjugate

F∗(η) = sup
θ∈Θ
{θ>η − F(θ)} (19)

with η(θ) = ∇F(θ). Let H = {η(θ) : θ ∈ Θ} denote the dual moment parameter
space also called domain of means. The Legendre transform associates to (Θ, F(θ)) the
convex conjugate (H, F∗(η)). In order for (H, F∗(η)) to be of the same well-behaved
type of (Θ, F(θ)), we shall consider convex functions F(θ) which are steep, meaning
that their gradient diverges when nearing the boundary bd(Θ) [49] and thus ensures
that domain H is also convex. Steep convex functions are said of Legendre-type, and
((Θ, F(θ))∗)∗ = (Θ, F(θ)) (Moreau biconjugation theorem which shows that the Legendre
transform is involutive). For Legendre-type functions, there is a one-to-one mapping
between parameters θ(η) and parameters η(θ) as follows:

θ(η) = ∇F∗(η) = (∇F)−1(η), (20)

and
η(θ) = ∇F(θ) = (∇F∗)−1(θ). (21)

Exponential families with log-normalizers of Legendre-type are called steep exponen-
tial families [30]. All regular exponential families are steep, and the maximum likelihood
estimator in steep exponential families exists and is unique [38] (with the likelihood equa-
tions corresponding to the method of moments for the sufficient statistics). The set of
inverse Gaussian distributions form a non-regular but steep exponential family, and the
set of singly truncated normal distributions form a non-regular and non-steep exponential
family [50] (but the exponential family of doubly truncated normal distributions is regular
and hence steep).

For Legende-type convex generators F(θ), we can express the Bregman divergence
BF(θ1 : θ2) using the dual Bregman divergence: BF(θ1 : θ2) = BF∗(η2 : η1) since there is a
one-to-one correspondence between η = ∇F(θ) and θ = ∇F∗(η).

For Legendre-type generators F(θ), the Bregman divergence BF(θ1 : θ2) can be rewrit-
ten as the following Fenchel–Young divergence:

BF(θ1 : θ2) = F(θ1) + F∗(η2)− θ>1 η2 := YF,F∗(θ1 : η2).

Proposition 6 (KLD between densities of a regular (and steep) exponential family). The KLD
between two densities pθ1 and pθ2 of a regular and steep exponential family can be obtained
equivalently as

DKL[pθ1 : pθ2 ] = BF(θ2 : θ1) = YF,F∗(θ2 : η1) = YF∗ ,F(η1 : θ2) = BF∗(η1 : η2),

where F(θ) and its convex conjugate F∗(η) are Legendre-type functions.

Figure 5 illustrates the taxonomy of regularity and steepness of exponential families
by a Venn diagram.

It follows that the optimal condition of Equation (18) can be restated as

OCYF : YF,F∗(θ1 : ηα∗) = YF,F∗(θ2 : ηα∗), (22)

where ηα∗ = ∇F−1(α∗θ1 + (1− α∗)θ2). From the equality of Equation (22), we get the
following simplified optimality condition:

OCSEF : (θ2 − θ1)
>ηα∗ = F(θ2)− F(θ1), (23)

where ηα∗ = ∇F(α∗θ1 + (1− α∗)θ2).
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Exponential families

Probability distributions

Regular

Steep
Gaussians

Beta
Dirichlet

Weibull

Wishart
Inverse
Gaussian

Singly truncated
Gaussian

Uniform

DKL[pθ1 : pθ2 ]
=

BF (θ2 : θ1)

DKL[pθ1 : pθ2 ]
=

BF∗ (η1 : η2)

non-regular
non-steep

non-exponential family distributions

Figure 5. Taxonomy of exponential families: Regular (and always steep) or steep (but not necessarily
regular). The Kullback–Leibler divergence between two densities of a regular exponential family
amounts to dual Bregman divergences.

Remark 4. We can recover (OCSEF) by instantiating the equivalent condition Epθ̄α∗

[
log

pθ1
pθ2

]
= 0.

Indeed, since log
pθ1
pθ2

= (θ1 − θ2)
>t(x)− F(θ1) + F(θ2), we get

Epθ̄α∗
[(θ1 − θ2)

>t(x)− F(θ1) + F(θ2)] = 0,

(θ1 − θ2)
>η̄α∗ = F(θ1)− F(θ2).

Since the α-skewed Bhattacharyya distance amounts to a α-skewed Jensen diver-
gence [8], we get the Chernoff information as

DC[pλ1 : pλ2 ] = JF,α∗(θ(λ1) : θ(λ2)),

= BF(θ1 : θα∗) = BF(θ2 : θα∗),

where JF,α(θ1 : θ2) is the Jensen divergence:

JF,α(θ1 : θ2) = αF(θ1) + (1− α)F(θ2)− F(αθ1 + (1− α)θ2).

Notice that we have the induced LREF with log-normalizer expressed as the negative
Jensen divergence induced the log-normalizer of E :

Fpθ1
pθ2

(α) = − log ρα[pθ1 : pθ2 ] = −JF,α(θ1 : θ2).

We summarize the result in the following proposition:

Proposition 7. Let pλ1 and pλ2 be two densities of a regular exponential family E with natural
parameter θ(λ) and log-normalizer F(θ). Then the Chernoff information is

DC[pλ1 : pλ2 ] = JF,α∗(θ(λ1) : θ(λ2)) = BF(θ1 : θα∗) = BF(θ2 : θα∗),

where θ1 = θ(λ1), θ2 = θ(λ2), and the optimal skewing parameter α∗ is unique and satisfies the
following optimality condition:

OCEF : (θ2 − θ1)
>ηα∗ = F(θ2)− F(θ1), (24)

where ηα∗ = ∇F(α∗θ1 + (1− α∗)θ2) = Epα∗θ1+(1−α∗)θ2
[t(x)].

Figure 6 illustrates geometrically the Chernoff point [24] which is the geometric
mixture (pθ1 pθ2)α∗ induced by two comparable probability measures Pθ1 , Pθ2 � µ.
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pθ1 = γpθ1pθ2(1)

Biright(pθ1 : pθ2) = {θ ∈ Θ : BF (θ1, θ) = BF (θ2, θ)}

γpθ1pθ2(α
∗) = pα∗θ1+(1−α∗)θ2 = (pθ1pθ2)

G
α∗

M = ({pθ}, gF = ∇2F (θ),∇m,∇e)

pθ2 = γpθ1pθ2(0)

Chernoff point

∇m-flat

∇e-flatγpθ1pθ2(α) = pαθ1+(1−α)θ2

Figure 6. The Chernoff information optimal skewing parameter α∗ for two densities pθ1 and
pθ2 of some regular exponential family E inducing an exponential family dually flat manifold
M = ({pθ}, gF = ∇2F(θ),∇m,∇e) is characterized by the intersection of their ∇e-flat exponen-
tial geodesic with their mixture bisector a ∇m-flat right-sided Bregman bisector.

In information geometry [51], the manifold of densities M = {pθ : θ ∈ Θ} of this
exponential family is a dually flat space [51]M = ({pθ}, gF(θ) = ∇2F(θ),∇m,∇e) with
respect to the exponential connection ∇e and the mixture connection ∇m, where gF(θ) is
the Fisher information metric expressed in the θ-coordinate system as ∇2F(θ) (and in the
dual moment parameter η as gF(η) = ∇2F∗(η)). Then the exponential geodesic ∇e is flat
and corresponds to the exponential arc of geometric mixtures when parameterized with
the ∇e-affine coordinate system θ.

The left-sided Kullback–Voronoi bisector:

Bileft
KL (pθ1 , pθ2) = {pθ : DKL[pθ : pθ1 ] = DKL[pθ : pθ1 ]}

corresponds to a Bregman right-sided bisector [52] and is ∇m flat (i.e., an affine subspace
in the η-coordinate system):

Biright
F (θ1, θ2) = {θ ∈ Θ : BF(θ1, θ) = BF(θ2, θ)}.

The Chernoff information distribution (pθ1 pθ2)
G
α∗ is called the Chernoff point on this

exponential family manifold (see Figure 6). Since the Chernoff point is unique and since in
general statistical manifolds (M, g,∇,∇∗) can be realized by statistical models [53], we
deduce the following proposition of interest for information geometry [51]:

Proposition 8. Let (M, g,∇,∇∗) be a dually flat space with corresponding canonical divergence
a Bregman divergence BF. Let γe

pq(α) and γm
pq(α) be a e-geodesic and m-geodesic passing through

the points p and q ofM, respectively. Let Bim(p, q) and Bie(p, q) be the right-sided ∇m-flat and
left-sided ∇e-flat Bregman bisectors, respectively. Then the intersection of γe

pq(α) with Bim(p, q)
and the intersection of γm

pq(α) with Bie(p, q) are unique. The point γe
pq(α) ∩ Bim(p, q) is called the

Chernoff point and the point γm
pq(α) ∩ Bie(p, q) is termed the reverse or dual Chernoff point.

3.2. Case of One-Dimensional Parameters

When the exponential family has one-dimensional natural parameter α ∈ Θ ⊂ R, we
thus get from OCSEF:

ηα∗ =
F(α2)− F(α1)

α2 − α1
.
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That is, α∗ can be obtained as the following closed-form formula:

α∗ =
F′−1

(
F(α2)−F(α1)

α2−α1

)
− α2

α1 − α2
. (25)

Example 3. Consider the exponential family {pv(x) : v > 0} of 0-centered scale univariate
normal distributions with variance v = σ2 and density

pv(x) =
1√
2πv

exp
(
−1

2
x2

v

)
.

The natural parameter corresponding to the sufficient statistic t(x) = x2 is θ = − 1
2v . The log-

normalizer is F(θ) = 1
2 log π

−θ . We have η = F′(θ) = − 1
2θ and F′−1(η) = − 1

2η . It follows that

α∗(pv1 : pv2) =
v1 log v1

v2
− v1 + v2

(v2 − v1) log v2
v1

.

Let s = v2
v1

. Then we can rewrite α∗ as

α∗(pv1 : pv2) =
s− 1− log s
(s− 1) log s

.

The Chernoff information is DC[pv1 , pv2 ] = − log ρα∗ [pv1 , pv2 ], with

ρα[pv1 , pv2 ] =
σ1−α

1 σα
2√

(1− α)σ2
1 + ασ2

2

.

This result will be generalized in Proposition 11 to multivariate centered Gaussians with scaled
covariance matrices.

For multi-dimensional parameters θ, we may consider the one-dimensional LREF
Epθ1

pθ2
induced by pθ1 and pθ2 with Fθ1,θ2(α) = F((1− α)θ1 + αθ2), and write F′pq(α) as the

following directional derivative:

∇θ2−θ1 Fθ1,θ2(α) := lim
ε→0

F(θ1 + (ε + α)(θ2 − θ1))− F(θ1 + α(θ2 − θ1))

ε
, (26)

= (θ2 − θ1)
>∇F(θ1 + α(θ2 − θ1)), (27)

using a first-order Taylor expansion. Thus, the optimality condition

OCSEF′ : F′θ1,θ2
(α) = 0

amounts to

OCSEF : (θ2 − θ1)
>∇F(θ1 + α∗(θ2 − θ1)) = F(θ2)− F(θ1). (28)

This is equivalent to Equation (8) of [24].

Remark 5. In general, we may consider multivariate Bregman divergences as univariate Bregman
divergences: We have

BF(θ1 : θ2) = BFθ1,θ2
(0 : 1), ∀θ1, θ2 ∈ Θ (29)

where
Fθ1,θ2(u) := F(θ1 + u(θ2 − θ1)). (30)
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The functions Fθ1,θ2 are 1D Bregman generators (i.e., strictly convex and C1), and we have the
directional derivative

∇θ2−θ1 Fθ1,θ2(u) = lim
ε→0

F(θ1 + (ε + u)(θ2 − θ1))− F(θ1 + u(θ2 − θ1))

ε
,

= (θ2 − θ1)
>∇F(θ1 + u(θ2 − θ1)),

Since Fθ1,θ2(0) = F(θ1), Fθ1,θ2(1) = F(θ2), and F′θ1,θ2
(u) = ∇θ2−θ1 Fθ1,θ2(u), it follows that

BFθ1,θ2
(0 : 1) = Fθ1,θ2(0)− Fθ1,θ2(1)− (0− 1)∇θ2−θ1 Fθ1,θ2(1),

= F(θ1)− F(θ2) + (θ2 − θ1)
>∇F(θ2) = BF(θ1 : θ2).

Similarly, we can reparameterize Bregman divergences on a k-dimensional simplex by k-dimensional
Bregman divergences.

Remark 6. Closing the loop: The Chernoff information although obtained from the one-dimensional
likelihood ratio exponential family yields as a corollary the general multi-parametric exponential
families which as a special instance includes the one-dimensional exponential families (e.g., LREFs!).

4. Forward and Reverse Chernoff–Bregman Divergences

In this section, we shall define Chernoff-type symmetrizations of Bregman divergences
inspired by the study of Chernoff information, and briefly mention applications of these
Chernoff–Bregman divergences in information theory.

4.1. Chernoff–Bregman Divergence

Let us define a Chernoff-like symmetrization of Bregman divergences [43] different
from the traditional Jeffreys–Bregman symmetrization:

BJ
F(θ1 : θ2) = BF(θ1 : θ2) + BF(θ2 : θ1),

= (θ1 − θ2)
>(∇F(θ1)−∇F(θ2)),

or Jensen–Shannon-type symmetrization [44,54] which yields a Jensen divergence [42]:

BJS
F (θ1 : θ2) =

1
2

(
BF

(
θ1 :

θ1 + θ2

2

)
+ BF

(
θ2 :

θ1 + θ2

2

))
,

=
F(θ1) + F(θ2)

2
− F

(
θ1 + θ2

2

)
=: JF(θ1, θ2).

Definition 2 (Chernoff–Bregman divergence). Let the Chernoff symmetrization of Bregman
divergence BF(θ1; θ2) be the forward Chernoff–Bregman divergence CF(θ1, θ2) defined by

CF(θ1, θ2) = max
α∈(0,1)

JF,α(θ1 : θ2), (31)

where JF,α is the α-skewed Jensen divergence.

The optimization problem in Equation (31) may be equivalently rewritten [43] as minθ R
such that both BF(θ1 : θ) ≤ R and BF(θ2 : θ) ≤ R. Thus, the optimal value of α defines
the circumcenter θ∗ = αθ1 + (1− α)θ2 of the minimum enclosing right-sided Bregman
sphere [55,56] and the Chernoff–Bregman divergence:

CF(θ1, θ2) = min
θ
{BF(θ1 : θ), BF(θ2 : θ)}, (32)
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corresponds to the radius of a minimum enclosing Bregman ball. To summarize, this Cher-
noff symmetrization is a min-max symmetrization, and we have the following identities:

CF(θ1, θ2) = min
θ
{BF(θ1 : θ), BF(θ2 : θ)},

= min
θ∈Θ
{αBF(θ1 : θ) + (1− α)BF(θ2 : θ)},

= max
α∈(0,1)

{αBF(θ1 : αθ1 + (1− α)θ2) + (1− α)BF(θ2 : αθ1 + (1− α)θ2)},

= max
α∈(0,1)

JF,α(θ1 : θ2).

The second identity shows that the Chernoff symmetrization can be interpreted as a
variational Jensen–Shannon-type divergence [54].

Notice that in general CF(θ1, θ2) 6= CF∗(η1, η2) because the primal and dual geodesics
do not coincide. Those geodesics coincide only for symmetric Bregman divergences which
are squared Mahalanobis divergences [52].

When F(θ) = FShannon(θ) = ∑D
i=1 θi log θi (discrete Shannon negentropy), the Chernoff–

Bregman divergence is related to the capacity of a discrete memoryless channel in informa-
tion theory [13,43].

Conditions for which CF(θ1, θ2)
a (with a > 0) becomes a metric have been studied

in [43]: For example, C
1
e
FShannon

is a metric distance [43] (i.e., a = 1
e ' 0.36787944117). It is

also known that the square root of the Chernoff distance between two univariate normal
distributions is a metric distance [57].

We can thus use the Bregman generalization of the Badoiu–Clarkson (BC) algo-
rithm [55] (Algorithm 2) to compute an approximation of the smallest enclosing Bregman
ball which in turn yields an approximation of the Chernoff–Bregman divergence:

Algorithm 2 Approximating the circumcenter of the Bregman smallest enclosing
ball of two parameters θ1 and θ2.

input : Two parameters θ1 and θ2 of Θ, and a number of iterations T ∈ N
// Initialize circumcenter
i← 0;
θ(i) ← θ1+θ2

2 ;
// Repeat T times
while i < T do

// Find which of θ1 or θ2 is the farthest parameter to θ(i)

if BF(θ1 : θ(i)) > BF(θ2 : θ(i)) then
fi = 1

end
else

fi = 2
end
// Update the circumcenter by walking on θ-geodesic
// This update corresponds to walking on the exponential arc (θ(i−1)θ fi )

G

i← i + 1;
θ(i) ← i

i+1 θ(i−1) + 1
i+1 θ fi ;

end
// Report the approximation of the circumcenter
return θ(T)

Notice that when there are only two points to compute their smallest enclosing Breg-
man ball, all the arcs (θ(i−1)θ fi

)G are sub-arcs of the exponential arc (θ1θ2)
G. See [55] for

convergence results of this iterative algorithm. Let us notice that Algorithm 1 approxi-
mates α∗ while the Bregman BC Algorithm 2 approximates in spirit DC(θ1, θ2) (and as a
byproduct α∗).
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Remark 7. To compute the farthest point to the current circumcenter with respect to Bregman
divergence, we need to find the sign of

BF(θ2 : θ)− BF(θ1 : θ) = F(θ2)− F(θ1)− (θ2 − θ1)∇F(θ).

Thus we need to pre-calculate only once F(θ1) and F(θ2) which can be costly (e.g., − log det(Σ)
functions need to be calculated only once when approximating the Chernoff information between
Gaussians).

4.2. Reverse Chernoff–Bregman Divergence and Universal Coding

Similarly, we may define the reverse Chernoff–Bregman divergence by considering
the minimum enclosing left-sided Bregman ball:

CR
F (θ1, θ2) = min

θ
{BF(θ : θ1), BF(θ : θ2)}. (33)

Thus the reverse Bregman Chernoff divergence DR
C [θ1, θ2] = R∗ is the radius of a minimum

enclosing left-sided Bregman ball.
This reverse Chernoff–Bregman divergence finds application in universal coding in in-

formation theory (chapter 13 of [13], pp. 428–433): Let X = {A1, . . . , Ad} be a finite discrete
alphabet of d letters, and X be a random variable with probability mass function p onX . Let
pλ(x) denote the categorical distribution corresponding to X so that Pr(X = Ai) = pλ(Ai)
with λ = (λ1, . . . , λd) ∈ Rd

++ and ∑d
i=1 λi = 1. The Huffman codeword for x ∈ X is

of length l(x) = − log p(x) (ignoring integer ceil rounding), and the expected codeword
length of X is thus given by Shannon’s entropy H(X) = −∑x p(x) log p(x).

If we code according to a distribution pλ′ instead of the true distribution pλ, the code
is not optimal, and the redundancy R(pλ, pλ′) is defined as the difference between the
expected lengths of the codewords for pλ′ and pλ:

R(pλ, pλ′) = (−Epλ
[log pλ′(x)]− (−Epλ

[log pλ(x)]) = DKL[pλ : pλ′ ] ≥ 0,

where DKL is the Kullback–Leibler divergence.
Now, suppose that the true distribution pλ belong to one of two prescribed distributions

that we do not know: pλ ∈ P = {pλ1 , pλ2}. Then we seek for the minimax redundancy:

R∗ = min
pλ

max
i∈{1,2}

DKL[pλi : pλ]. (34)

The distribution pλ∗ achieving the minimax redundancy is the circumcenter of the right-
centered KL ball enclosing the distributions P .

Using the natural coordinates θ = (θ1, . . . , θD) ∈ RD with θi = log λi

λd of the log-
normalizer of the categorical distributions (an exponential family of order D = d− 1), we
end up with calculating the smallest left-sided Bregman enclosing ball for the Bregman
generator [58]: FCategorical(θ) = log(1 + ∑D

i=1 exp θi):

R∗ = min
θ∈∈RD

max
i∈{1,2}

BFcategorical(θ : θi).

This latter minimax problem is unconstrained since θ ∈ RD = Rd−1.

5. Chernoff Information between Gaussian Distributions
5.1. Invariance of Chernoff Information under the Action of the Affine Group

The d-variate Gaussian density pλ(x) with parameter λ = (λv = µ, λM = Σ) where
µ ∈ Rd denotes the mean (µ = Epλ

[x]) and Σ is a positive-definite covariance matrix
(Σ = Covpλ

[X] for X ∼ pλ) is given by
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pλ(x; λ) =
1

(2π)
d
2
√
|λM|

exp
(
−1

2
(x− λv)

>λ−1
M (x− λv)

)
,

where | · | denotes the matrix determinant. The set of d-variate Gaussian distribu-
tions form a regular (and hence steep) exponential family with natural parameters
θ(λ) =

(
λ−1

M λv, 1
2 λ−1

M

)
and sufficient statistics t(x) = (x, xx>).

The Bhattacharrya distance between two multivariate Gaussians distributions pµ1,Σ1

and pµ2,Σ2 is

DB,α[pµ1,Σ1 , pµ2,Σ2 ] =
1
2

(
αµ>1 Σ−1

1 µ1 + (1− α)µ>2 Σ−1
2 µ2 − µ>α Σ−1

α µα + log
|Σ1|α|Σ2|1−α

|Σα|

)
,

where

Σα = (αΣ−1
1 + (1− α)Σ−1

2 )−1,

µα = Σα(αΣ−1
1 µ1 + (1− α)Σ−1

2 ).

The Gaussian density can be rewritten as a multivariate location-scale family:

pλ(x; λ) = |λM|−
1
2 pstd(λ

1
2
M(x− λv)),

where

pstd(x) =
1

(2π)
d
2

exp
(
−1

2
x>x

)
= p(0,I)

denotes the standard multivariate Gaussian distribution. The matrix λ
1
2
M is the unique

symmetric square-root matrix which is positive-definite when λM is positive-definite.

Remark 8. Notice that the product of two symmetric positive-definite matrices P1 and P2 may not

be symmetric but P
1
2

1 P2P
1
2

1 is always symmetric positive-definite, and the eigenvalues of P
1
2

1 P2P
1
2

1

coincides with the eigenvalues of P1P2. Hence, we have λsp(P−
1
2

1 P2P−
1
2

1 ) = λsp(P−1
1 P2) where

λsp(M) denotes the eigenspectrum of matrix M.

We may interpret the Gaussian family as obtained by the action of the affine group
Aff(Rd) = Rd o GLd(R) on the standard density pstd: Let the dot symbol “.” denotes the
group action. The affine group is equipped with the following (outer) semidirect product:

(l1, A1).(l2, A2) = (l1 + A1l2, A1 A2), (35)

and this group can be handled as a matrix group with the following mapping of its elements
to matrices:

(l, A) ≡
[

A l
0 1

]
.

Then we have

p(µ,Σ)(x) = (µ, Σ−
1
2 ).pstd(x) = (µ, Σ−

1
2 ).p0,I(x) = p

(µ,Σ−
1
2 ).(0,I)

(x).

We can show the following invariance of the skewed Bhattacharyya divergences:

Proposition 9 (Invariance of the Bhattacharyya divergence and f -divergences under the
action of the affine group (Equation (35))). We have
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DB,α[(µ, Σ−
1
2 ).pµ1,Σ1 : (µ, Σ−

1
2 ).pµ2,Σ2 ] := DB,α[p

(µ,Σ−
1
2 ).(µ1,Σ1)

: p
(µ,Σ−

1
2 ).(µ2,Σ2

)],

= DB,α

[
p

Σ−
1
2 (µ1−µ):Σ−

1
2 Σ1Σ−

1
2

, p
Σ−

1
2 (µ2−µ),Σ−

1
2 Σ2Σ−

1
2

]
,

= DB,α[pµ1,Σ1 : pµ2,Σ2 ].

Proof. The proof follows from the ( f , g)-form of Ali and Silvey’s divergences [59]. We can
express DB,α[p : q] = g(Ihα

[p : q]) where hα(u) = −uα (convex for α ∈ (0, 1)) and
g(v) = − log−v. Then we rely on the proof of invariance of f -divergences under the action
of the affine group (see Proposition 3 of [60] relying on a change of variable in the integral):

I f [pµ1,Σ1 : pµ2,Σ2 ] = I f

[
p0,I , p

Σ
− 1

2
1 (µ2−µ1):Σ

− 1
2

1 Σ2Σ
− 1

2
1

]
= I f

[
p

Σ
− 1

2
2 (µ1−µ2),Σ

− 1
2

2 Σ1Σ
− 1

2
2

: p0,I

]
,

where I denotes the identity matrix.

Thus, by choosing (µ, Σ) = (µ1, Σ1) and (µ, Σ) = (µ2, Σ2), we obtain the following
corollary:

Corollary 2 (Bhattacharyya divergence from canonical Bhattacharyya divergences).
We have

DB,α[pµ1,Σ1 : pµ2,Σ2 ] = DB,α

[
p0,I , p

Σ
− 1

2
1 (µ2−µ1):Σ

− 1
2

1 Σ2Σ
− 1

2
1

]
= DB,α

[
p

Σ
− 1

2
2 (µ1−µ2):Σ

− 1
2

2 Σ1Σ
− 1

2
2

, p0,I

]
.

It follows that the Chernoff optimal skewing parameter enjoys the same
invariance property:

α∗(pµ1,Σ1 : pµ2,Σ2) = α∗
(

p0,I , p
Σ
− 1

2
1 (µ2−µ1),Σ

− 1
2

1 Σ2Σ
− 1

2
1

)
= α∗

(
p

Σ
− 1

2
2 (µ1−µ2):Σ

− 1
2

2 Σ1Σ
− 1

2
2

, p0,I

)
.

As a byproduct, we get the invariance of the Chernoff information under the action of
the affine group:

Corollary 3 (Invariance of the Chernoff information under the action of the affine group).
We have:

DC[pµ1,Σ1 , pµ2,Σ2 ] = DC

[
p0,I , p

Σ
− 1

2
1 (µ2−µ1),Σ

− 1
2

1 Σ2Σ
− 1

2
1

]
= DC

[
p

Σ
− 1

2
2 (µ1−µ2),Σ

− 1
2

2 Σ1Σ
− 1

2
2

, p0,I

]
.

Thus, the formula for the Chernoff information between two Gaussians

DC(µ1, Σ1, µ2, Σ2) := DC[pµ1,Σ1 , pµ2,Σ2 ] = DC(µ12, Σ12)

can be written as a function of two terms µ12 = Σ−
1
2

1 (µ2 − µ1) and Σ12 = Σ−
1
2

1 Σ2Σ−
1
2

1 .

5.2. Closed-Form Formula for the Chernoff Information between Univariate Gaussian Distributions

We shall report the exact solution for the Chernoff information between univariate
Gaussian distributions by solving a quadratic equation. We can also report a complex
closed-form formula by using symbolic computing because the calculations are lengthy
and thus prone to human error.
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Instantiating Equation (24) for the case of univariate Gaussian distributions paramter-
ized by (µ, σ2), we get the following equation for the optimality condition of α∗:

〈θ2 − θ1, ηα∗〉 = F(θ2)− F(θ1), (36)〈(
µ2

σ2
2
− µ1

σ2
1

,
1

2σ2
1
− 1

2σ2
2

)
, (mα, vα)

〉
=

1
2

log
σ2

2
σ2

1
+

µ2
2

2σ2
2
−

µ2
1

2σ2
1

, (37)

where 〈·, ·〉 denotes the scalar product and with the interpolated mean and variance along
an exponential arc {(mα, vα)}α∈(0,1) passing through (µ1, σ2

1 ) when α = 1 and (µ2, σ2
2 ) when

α = 0 given by

mα =
αµ1σ2

2 + (1− α)µ2σ2
1

(1− α)σ2
1 + ασ2

2
=

α(µ1σ2
2 − µ2σ2

1 ) + µ2σ2
1

σ2
1 + α(σ2

2 − σ2
1 )

, (38)

vα =
σ2

1 σ2
2

(1− α)σ2
1 + ασ2

2
=

σ2
1 σ2

2
σ2

1 + α(σ2
2 − σ2

1 )
. (39)

That is, for p = pµ1,σ2
1

and q = pµ2,σ2
2
, we have the weighted geometric mixture

(pq)G
α = pmα ,vα .
Thus, the optimality condition of the Chernoff optimal skewing parameter is given by:

OCGaussian :

(
µ2

σ2
2
− µ1

σ2
1

)
mα −

(
1

2σ2
2
− 1

2σ2
1

)
vα =

1
2

log
σ2

2
σ2

1
+

µ2
2

2σ2
2
−

µ2
1

2σ2
1

. (40)

Let us rewrite compactly Equation (40) as

OCGaussian : a12mα + b12vα + c12 = 0, (41)

with the following coefficients:

a12 =
µ2

σ2
2
− µ1

σ2
1

, (42)

b12 =
1

2σ2
1
− 1

2σ2
2

, (43)

c12 =
1
2

log
σ2

1
σ2

2
+

µ2
1

2σ2
1
−

µ2
2

2σ2
2

. (44)

By multiplying both sides of Equation (41) by σ2
1 + α∆v where ∆v := σ2

2 − σ2
1 and

rearranging terms, we get a quadratic equation with positive root being α∗.
Using the computer algebra system (CAS) Maxima, we can also solve exactly this

quadratic equation in α as a function of µ1, σ2
1 , µ2, and σ2

2 : See listing in Appendix C.
Once we get the optimal value of α∗ = α∗(µ1, σ2

1 , µ2, σ2
2 ), we get the Chernoff

information as
DC[pµ1,σ2

1
, pµ2,σ2

2
] = DKL[pmα∗ ,vα∗ : pµ1,σ2

1
]

with the Kullback–Leibler divergence between two univariate Gaussians distributions
pµ1,σ2

1
and pµ2,σ2

2
given by

DKL[pµ1,σ2
1

: pµ2,σ2
2
] =

1
2

(
(µ2 − µ1)

2

σ2
2

+
σ2

1
σ2

2
− log

σ2
1

σ2
2
− 1

)
.

Notice that from the invariance of Proposition 9, we have for any (µ, σ2) ∈ R×R++:

DKL[pµ1,σ2
1

: pµ2,σ2
2
] = DKL

[
p

µ1−µ
σ ,

σ2
1

σ2

: p
µ2−µ

σ ,
σ2

2
σ2

]
,
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and therefore by choosing (µ, σ2) = (µ1, σ2
1 ), we have

DKL[pµ1,σ2
1

: pµ2,σ2
2
] = DKL

p0,1, p
µ2−µ1

σ1
:

σ2
2

σ2
1

.

Proposition 10. The Chernoff information between two univariate Gaussian distributions can be
calculated exactly in closed form.

One can also program these closed-form solutions in Python using the SymPy pack-
age (https://www.sympy.org/en/index.html (accessed on 30 July 2022)) for performing
symbolic computations.

Let us report special cases with some illustrating examples.

• First, let us consider the Gaussian subfamily with prescribed variance. When σ2
1 =

σ2
2 = σ2, we always have α∗ = 1

2 , and the Chernoff information is

DC[pµ1,σ2 : pµ2,σ2 ] =
(µ2 − µ1)

2

8σ2 . (45)

Notice that it amounts to one eight of the squared Mahalanobis distance (see [60] for a
detailed explanation).

• Second, let us consier Gaussian subfamily with prescribed mean. When µ1 = µ2 = µ,
we get the optimal skewing value independent of the mean µ:

α∗ = − v1 log(2 v2)− v2 − v1 log(2 v1) + v1

(v2 − v1) log(2 v2)− log(2 v1) v2 + v1 log(2 v1)

where v1 = σ2
1 and v2 = σ2

2 . The Chernoff information is

DC[pµ1,v1 : pµ2,v2 ]−
(v2 − v1) log

(
v2 log(2 v2)−log(2 v1) v2

v2−v1

)
− v2 log(2 v2) + (log(2 v1) + 1) v2 − v1

2 v2 − 2 v1
. (46)

• Third, consider the Chernoff information between the standard normal distribution
and another normal distribution. When (µ1, σ2

1 ) = (0, 1) and (µ2, σ2
2 ) = (µ, v), we get

α∗ =

√
(4 µ2 v2−4 µ2 v) log(2 v)+v4−4 v3+(6−4 log 2 µ2) v2+(4 µ4+4 log 2 µ2−4) v+1+(2−2 v) log(2 v)+v2+(2 log 2−2) v−2 µ2−2 log 2+1

(2 v2−4 v+2) log(2 v)−2 log 2 v2+(2 µ2+4 log 2) v−2 µ2−2 log 2

Example 4. Let us consider N(µ1 = 0, σ2
1 = 1) and N(µ2 = 1, σ2

2 = 2). The Chernoff
exponent is

α∗ =

√
8 log 4− 8 log 2 + 9− 2 log 4 + 2 log 2− 1

2 log 4− 2 log 2 + 2
≈ 0.4215580558605244,

and the Chernoff information is (zoom in for the formula):

−
√

8 log 4−8 log 2+9
(
(2 log 4−2 log 2+3) log

(
4 log 4−4 log 2+4√
8 log 4−8 log 2+9+1

)
−4 (log 4)2+(8 log 2−6) log 4−4 (log 2)2+6 log 2−2

)
+(6 log 4−6 log 2+7) log

(
4 log 4−4 log 2+4√
8 log 4−8 log 2+9+1

)
+4 (log 4)2+(10−8 log 2) log 4+4 (log 2)2−10 log 2+6

(4 log 4−4 log 2+6)
√

8 log 4−8 log 2+9+12 log 4−12 log 2+14

≈ 0.1155433222682347

Using the bisection search of [24] with ε = 10−8 takes 28 iterations, and we get

α∗ ≈ 0.42155805602669716,

and the Chernoff information is approximately 0.11554332226823472. Now, if we swap
pµ1,σ2

1
↔ pµ2,σ2

2
, we find α∗ = 0.5784419439733028 (and 0.5784419439733028 +

0.42155805602669716 ≈ 1).

https://www.sympy.org/en/index.html


Entropy 2022, 24, 1400 23 of 35

Notice that in general, we may evaluate how good is the approximation α̃ of α∗ by
evaluating the deficiency of the optimal condition:∣∣∣(θ2 − θ1)

>ηα̃ − F(θ2) + F(θ1)
∣∣∣.

Example 5. Let us consider µ1 = 1, σ2
1 = 3 and µ2 = 5 and σ2

2 = 5. We get

α∗ =

√
120 log 10− 120 log 6 + 961− 3 log 10 + 3 log 6− 23

2 log 10− 2 log 6 + 16
≈ 0.4371453168322306

and the Chernoff information is reported in closed form and evaluated numerically as

0.5242883659200144.

In comparison, the bisection algorithm of [24] with ε = 10−8 takes 28 iterations, and reports
α∗ ≈ 0.43714531883597374 and the Chernoff information about

0.5242883659200137.

Corollary 4. The smallest enclosing left-sided Kullback–Leibler disk of n univariate Gaussian
distributions can be calculated exactly in randomized linear time [56].

5.3. Fast Approximation of the Chernoff Information of Multivariate Gaussian Distributions

In general, the Chernoff information between d-variate Gaussians distributions is not
known in closed-form formula when d > 1, see for example [61–63]. We shall consider
below some special cases:

• When the Gaussians have the same covariance matrix Σ, the Chernoff information
optimal skewing parameter is α = 1

2 and the Chernoff information is

DC[pµ1,Σ, pµ2,Σ] =
1
8

∆2
Σ(µ1, µ2),

where ∆2
Σ(µ1, µ2) = (µ2−µ1)

>Σ−1(µ2−µ1) is the squared Mahalanobis distance. The
Mahalanobis distance enjoys the following property by congruence transformation:

∆Σ(µ1, µ2) = ∆AΣA>(Aµ1, Aµ2), ∀A ∈ GL(d). (47)

Notice that we can rewrite the (squared) Mahalanobis distance as

∆2
Σ(µ1, µ2) = tr

(
Σ−1(µ2 − µ1)(µ2 − µ1)

>
)

using the matrix trace cyclic property. Then we check that

∆2
AΣA>(Aµ1, Aµ2) = tr

(
A−>Σ−1 A−1 A(µ2 − µ1)(µ2 − µ1)

>A>
)

,

= tr(Σ−1(µ2 − µ1)(µ2 − µ1)
>) = ∆2

Σ(µ1, µ2).

• The Chernoff information for the special case of centered multivariate Gaussians
distributions was studied in [62]. The KLD between two centered Gaussians pµ,Σ1 and
pµ,Σ2 is half of the matrix Burg distance:

DKL[pµ,Σ1 : pµ,Σ2 ] =
1
2

(
log

det(Σ2)

det(Σ1)
+ tr(Σ−1

2 Σ1)− d
)
=:

1
2

DBurg[Σ1 : Σ2]. (48)

When d = 1, the Burg distance corresponds to the well-known Itakura–Saito diver-
gence. The matrix Burg distance is a matrix spectral distance [62]:
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DBurg[Σ1 : Σ2] =

(
d

∑
i=1

λi − log λi − 1

)
,

where the λi’s are the eigenvalues of Σ2Σ−1
1 . The reverse KLD divergence DKL[pµ,Σ2 :

pµ,Σ1 ] =
1
2 DBurg[Σ2 : Σ1] is obtained by replacing λi ↔ 1

λi
:

DKL[pµ,Σ2 : pµ,Σ1 ] =
1
2

(
d

∑
i=1

1
λi

+ log λi − 1

)
.

More generally, the f -divergences between centered Gaussian distributions are always
matrix spectral divergences [60].

Otherwise, for the general multivariate case, we implement the dichotomic search of
Algorithm 1 in Algorithm 3 with the KLD between two multivariate Gaussian distributions
expressed as

DKL[pµ1,Σ1 : pµ2,Σ2 ] =
1
2

∆2
Σ(µ1, µ2) +

1
2

DBurg[Σ1 : Σ2], (49)

=
1
2

(
tr(Σ−1

2 Σ1)− log
det(Σ2)

det(Σ1)
− d + (µ2 − µ1)

>Σ−1
2 (µ2 − µ1)

)
. (50)

Algorithm 3 Dichotomic search for approximating the Chernoff information be-
tween two multivariate normal distributions pµ1,Σ1 and pµ2,Σ2 by approximating
the optimal skewing parameter value α ≈ α∗.

input : Two normal densities pµ1,Σ1 and pµ2,Σ2 , and a numerical precision
threshold ε > 0

αm = 0;
αM = 1;
while |αM − αm| > ε do

α = αm+αM
2 ;

Σe
α =

(
(1− α)Σ−1

1 + αΣ−1
2

)−1
;

µe
α = Σe

α

(
(1− α)Σ−1

1 µ1 + αΣ−1
2 µ2

)
;

// Formula of the KLD between two normal distributions in Equation (50)

if DKL[pµe
α ,Σe

α
: pµ1,Σ1 ] > DKL[pµe

α ,Σe
α

: pµ2,Σ2 ] then
αm = α;
// See Figure 4 for an illustration and Proposition 4

end
else

αM = α;
end

end
return DKL[pµe

α ,Σe
α

: pµ1,Σ1 ];

Example 6. Let d = 2, pµ1,Σ1 = p0,I be the standard bivariate Gaussian distribution and
pµ2,Σ2 be the bivariate Gaussian distribution with mean µ2 = [1 2]> and covariance matrix

Σ2 =

[
1 −1
−1 2

]
. Setting the numerical precision threshold ε to ε = 10−8, the dichotomic

search performs 28 split iterations, and approximate α∗ by

α∗ ≈ 0.5825489424169064.

The Chernoff information DC[p0,I , pµ2,Σ2 ] is approximated by 0.8827640697808525.
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The m-interpolation of multivariate Gaussian distributions pµ1,Σ1 and pµ2,Σ2 with
respect to the mixture connection ∇m is given by

γm
pµ1,Σ1 ,pµ2,Σ2

(α) = pµm
α ,Σm

α
,

where

µm
α = (1− α)µ1 + αµ2 =: µ̄α,

Σm
α = (1− α)Σ1 + αΣ2 + (1− α)µ1µ>1 + αµ2µ>2 − µ̄αµ̄>α .

To e-interpolation of multivariate Gaussian distributions pµ1,Σ1 and pµ2,Σ2 with respect
to the exponential connection ∇e is given by

γe
pµ1,Σ1 ,pµ2,Σ2

(α) = pµe
α ,Σe

α
,

where

µe
α = Σe

α

(
(1− α)Σ−1

1 µ1 + αΣ−1
2 µ2

)
,

Σe
α =

(
(1− α)Σ−1

1 + αΣ−1
2

)−1
.

In information geometry, both these e- and m-connections defined with respect to an
exponential family are shown to be flat. These geodesics correspond to linear interpolations
in the ∇e-affine coordinate system θ and in the dual ∇m coordinate system η, respectively.

Figure 7 displays these two e-geodesic and m-geodesic between two multivariate
normal distributions. Notice that the Riemannian geodesic with the Levi–Civita metric con-
nection ∇

e+∇m

2 is not known in closed form for boundary value conditions. The expression
of the Riemannian geodesic is known only for initial value conditions [64] (i.e., starting
point with a given vector direction).

pµ1,Σ1

pµ2,Σ2

∇e

γepµ1,σ1
,pµ2,Σ2

(α) =: pµeα,Σeα = p(1−α)θ1+αθ2

γmpµ1,σ1
,pµ2,Σ2

(α) =: pµmα ,Σmα = p(1−α)η1+αη2

∇m

µeα = Σeα
(
(1− α)Σ−1

1 µ1 + αΣ−1
2 µ2

)
Σeα =

(
(1− α)Σ−1

1 + αΣ−1
2

)−1

µmα = (1− α)µ1 + αµ2 =: µ̄α

Σmα = (1− α)Σ1 + αΣ2 + (1− α)µ1µ
>
1 + αµ2µ

>
2 − µ̄αµ̄>α

∇ = ∇e+∇m

2

θ =
(
Σ−1µ, 1

2Σ−1
)

η =
(
µ,−Σ− µµ>

)

Figure 7. Interpolation along the e-geodesic and the m-geodesic passing through two given multi-
variate normal distributions. No closed-form is known for Riemannian geodesic with respect to the
metric Levi–Civita connection (shown in dashed style).

5.4. Chernoff Information between Centered Multivariate Normal Distributions

The set

N0 =

{
pΣ(x) =

1√
det(2πΣ)

exp
(
−1

2
x>Σ−1x

)
: Σ � 0

}

of centered multivariate normal distributions is a regular exponential family with natural
parameter θ = Σ−1, sufficient statistic t(x) = − 1

2 xx>, log-normalizer F(θ) = − 1
2 log det(θ)

and auxiliary carrier term k(x) = − d
2 log(2π). FamilyN0 is also a multivariate scale family

with scale matrices Σ
1
2 (standard deviation σ in 1D).
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Let 〈A, B〉 = tr(A>B) defines the inner product between two symmetric matrices A
and B. Then we can write the centered Gaussian distribution pΣ(x) in the canonical form
of exponential families:

pθ(x) = exp(〈θ, t(x)〉 − F(θ) + k(x)).

The function log det of a positive-definite matrix is strictly concave [65], and hence we
check that F(θ) is strictly convex. Furthermore, we have ∇X log det(X) = X−> so that
∇θ F(θ) = − 1

2 θ−>.
The optimality condition equation of Chernoff best skewing parameter α∗ becomes:

〈θ2 − θ1,∇F(θ1 + α∗(θ2 − θ1))〉 = F(θ2)− F(θ1), (51)

−1
2

tr((θ2 − θ1)
>(θ1 + α∗(θ2 − θ1))

−1) = −1
2

log
det(θ2)

det(θ1)
, (52)

tr((θ2 − θ1)
>(θ1 + α∗(θ2 − θ1))

−1) = log
det(θ2)

det(θ1)
, (53)

tr((Σ−1
2 − Σ−1

1 ) (Σ−1
1 + α∗(Σ−1

2 − Σ−1
1 ))−1) = log

det(Σ1)

det(Σ2)
= log det

(
Σ1Σ−1

2

)
. (54)

When Σ2 = sΣ1 (and Σ−1
2 = 1

s Σ−1
1 ) for s > 0 and s 6= 1, we get a closed-form for α∗

using the fact that det
(

I
s

)
= 1

sd and tr(I) = d for d-dimensional identity matrix I. Solving
Equation (54) yields

α∗(s) =
s− 1− log s
(s− 1) log s

∈ (0, 1). (55)

Therefore the Chernoff information between two scaled centered Gaussian distributions
pµ,Σ and pµ,sΣ is available in closed form.

Proposition 11. The Chernoff information between two scaled d-dimensional centered Gaussian
distributions pµ,Σ and pµ,sΣ of Nµ (for s > 0) is available in closed form:

DC[pµ,Σ, pµ,sΣ] = DB,α∗ [pµ,Σ, pµ,sΣ] = d
(s− 1) log

( s
s−1 log s

)
− s log s + s− 1

2(1− s)
, (56)

where α∗ = s−1−log s
(s−1) log s ∈ (0, 1).

Notice that α∗(pµ,Σ : pµ,sΣ) = α∗(pµ,Σ, pµ, 1
s Σ) and DC[pµ,Σ, pµ,sΣ] = DC[pµ,Σ, pµ, 1

s Σ].

Example 7. Consider µ1 = µ2 = 0 and Σ1 = I, Σ2 = 1
2 I. We find that α∗ = 2 log 2−1

log 2 , which is
independent of the dimension of the matrices. The Chernoff information depends on the dimension:

DC[p0,I , p0, 1
2 I ] = d

log 2− log log 2− 1
2

.

Notice that when d = 1, we have s = σ2
2

σ2
1

, and we recover a special case of the closed-

form formula for the Chernoff information between univariate Gaussians.
In [62], the following equation is reported for finding α∗ based on Equation (54):

OCCenteredGaussians :
d

∑
i=1

1− λi
α∗ + (1− α∗)λi

+ log λi = 0 (57)

where the λi’s are generalized eigenvalues of Σ1Σ−1
2 (this excludes the case of all λi’s

equal to one). The value of α∗ satisfying Equation (57) is unique. Let us notice that the
product of two symmetric positive-definite matrices is not necessarily symmetric anymore.
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We can derive Equation (57) by expressing Equation (54) using the identity matrix I and

matrix Σ−
1
2

2 Σ1Σ−
1
2

2 .

Remark 9. We can get closed-form solutions for α∗ and the corresponding Chernoff information
in some particular cases. For example, when the dimension d = 2, we need to solve a quadratic
equation to get α∗. Thus, for d ≤ 4, we get a closed-form solution for α∗ by solving a polynomial
equation characterizing the optimal condition, and obtain the Chernoff information in closed-form
as a byproduct.

Example 8. Consider the Chernoff information between p0,I and p0,Λ with Λ = diag(1, 2, 3, 4).
We get the exact Chernoff exponent value α∗ by taking the root of a quartic polynomial equation
falling in (0, 1). By evaluating numerically this root, we find that α∗ ' 0.59694 and that the Cher-
noff information is DC[p0,I , p0,Λ] ' 0.22076. See Appendix C for some symbolic computation code.

6. Chernoff Information between Densities of Different Exponential Families

Let
E1 = {pθ = exp(〈θ, t1(x)〉 − F1(θ)) : θ ∈ Θ},

and
E2 = {qθ′ = exp(〈θ′, t2(x)〉 − F2(θ

′) : θ′ ∈ Θ′},

be two distinct exponential families, and consider the Chernoff information between the
densities pθ1 and qθ′2

. The exponential arc induced by pθ1 and qθ′2
is

{(pθ1 qθ′2
)G

α ∝ pα
θ1

q1−α
θ′2

: α ∈ (0, 1)}.

Let E12 denote the exponential family with sufficient statistics (t1(x), t2(x)), log-normalizer
F12(θ, θ′), and denote by Θ12 its natural parameter space. Family E12 can be interpreted as
a product exponential family which yields an exponential family. We have

(pθ1 qθ′2
)G

α = exp
(
〈(t1(x), t2(x)), (αθ1, (1− α)θ′2)〉 − F12(αθ1, (1− α)θ′2)

)
.

Thus the induced LREF Epθ1
qθ′2

with natural parameter space Θpθ1
qθ′2

can be interpreted as a

1D curved exponential family of the product exponential family E12.
The optimal skewing parameter α∗ is found by setting the derivative of

F12(αθ1, (1− α)θ′2) with respect α to zero:

d
dα

F12(αθ1, (1− α)θ′2) = 0.

Example 9. Let E1 can be chosen as the exponential family of exponential distributions

E1 = {eλ(x) = λ exp(−λx), λ ∈ (0,+∞)}

defined on the support X1 = (0, ∞) and E2 can be chosen as the exponential family of half-normal
distributions

E2 =

{
hσ(x) =

√
2

πσ2 exp(− x2

2σ2 ) : σ2 > 0

}
with support X2 = (0, ∞).

The product exponential family corresponds to the singly truncated normal family [50] which
is a non-regular (i.e., parameter space is not topologically an open set):

Θ12 = (R×R++) ∪Θ0,

with Θ0 = {(θ, 0) : θ < 0} (the part corresponding to the exponential family of exponential
distributions). This exponential family E12 = {pθ1,θ2} of singly truncated normal distributions is
also non-steep [50]. The log-normalizer is
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F12(θ1, θ2) =
1
2

log
π

θ2
+ log Φ

(
θ1√
2θ2

)
+

θ2
1

4θ2
,

where θ1 = µ

σ2 and θ2 = 1
2σ2 , and Φ denotes the cumulative distribution function of the standard

normal. Function F12 is proven of class C1 on Θ12 (see Proposition 3.1 of [50]) with F12(θ, 0) =
− log(−θ) for θ < 0.

Notice that the KLD between an exponential distribution and a half-normal distribution is +∞
since the definite integral diverges (hence DKL[eλ : hσ] is not equivalent to a Bregman divergence,
and Θeθ1

hθ′2
is not open at 1) but the reverse KLD between a half-normal distribution and an

exponential distribution is available in closed-form (using symbolic computing):

DKL[hσ : eλ] =

√
√

8σλ−
√

π(1 + log
πλ2σ2

2
)2
√

π.

Figure 8 illustrate the domain of the singly truncated normal distributions and displays an
exponential arc between an exponential distribution and a half-normal distribution. Notice that
we could have also considered a similar but different example by taking the exponential family of
Rayleigh distributions which exhibit an additional extra carrier term k(x).

The Bhattacharyya α-skewed coefficient calculated using symbolic computing (see Ap-
pendix C) is

ρα[hσ : eλ] = ρ1−α[eλ : hσ ] =

π
1
2−

α
2 e−σ2 λ2

(
2

α
2 +

1
2 σ λ e

α σ2 λ2
2 + σ2 λ2

2 α erf
(
(
√

2 α−
√

2) σ λ

2
√

α

)
+ 2

α
2 +

1
2 σ λ e

α σ2 λ2
2 + σ2 λ2

2 α

)
2
√

α σα λα
,

where erf denotes the error function.

(0, 0)
e−θ

hθ2

pθ1,θ2

Figure 8. The natural parameter space of the non-regular full exponential family of singly trun-
cated normal distributions is not regular (i.e., not open): The negative real axis corresponds to the
exponential family of exponential distributions.

7. Conclusions

In this work, we revisited the Chernoff information [2] (1952) which was originally
introduced to upper bound Bayes’ error in binary hypothesis testing. A general characteriza-
tion of Chernoff information between two arbitrary probability measures was given in [11]
(Theorem 32) by considering Rényi divergences which can be interpreted as scaled skewed
Bhattacharyya divergences. Since its inception, the Chernoff information has proven use-
ful as a statistical divergence (Chernoff divergence) in many applications ranging from
information fusion to quantum metrology due to its empirical robustness property [19]. In-
formally, we may observe empirically that in practice the skewed Bhattacharyya divergence
is more stable around the Chernoff exponent α∗ than in other part of the range (0, 1). By
considering the maximal extension of the exponential arc joining two densities p and q on a
Lebesgue space L1(µ), we built full likelihood ratio exponential families [10] Epq (LREFs)
in Section 2. When the LREF Epq is a regular exponential family (with coinciding support
of p and q), both the forward and reverse Kullback–Leibler divergence are finite and can be
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rewritten as finite Bregman divergences induced by the log-normalizer Fpq of Epq which
amounts to minus skewed Bhattacharyya divergences. Since log-normalizers of exponential
families are strictly convex, we deduced that the skewed Bhattacharyya divergences are
strictly concave and their maximization yielding the Chernoff information is hence proven
unique. As a byproduct, this geometric characterization in L1(µ) allowed us to prove
that the intersection of a e-geodesic with a m-bisector is unique in dually flat subspaces
of L1(µ), and similarly that the intersection of a m-geodesic with a e-bisector is unique
(Proposition 8). We then considered the exponential families of univariate and multivariate
normal distributions: We reported closed-form solutions for the Chernoff information of
univariate normal distribution and centered normal distributions with scaled covariance
matrices, and show how to implement efficiently a dichotomic search for approximating
the Chernoff information between two multivariate normal distributions (Algorithm 3).
Table 1 summarizes the various optimal condition studied characterizing the Chernoff
exponent. Finally, inspired by the Chernoff information study, we defined in Section 4, the
forward and reverse Bregman–Chernoff divergences [66], and show how these divergences
are related to the capacity of a discrete memoryless channel and the minimax redundancy
of universal coding in information theory [13].

Table 1. Summary of the optimal conditions characterizing the Chernoff exponent.

Generic case

Primal LREF OCα : DKL[(pq)G
α∗ : p] = DKL[(pq)G

α∗ : q]
Dual LREF OCβ : β(α∗) = E(pq)G

α∗

[
log p(x)

q(x)

]
= 0

Geometric OC (pq)G
α∗ = γG(p, q) ∩ Bileft

KL (p, q]

Case of exponential families

Bregman OCEF : BF(θ1 : θα∗ ) = BF(θ2 : θα∗ )
Fenchel–Young OCYF : YF,F∗ (θ1 : ηα∗ ) = YF,F∗ (θ2 : ηα∗ )
Simplified OCSEF′ : F′θ1,θ2

(α) = 0
OCSEF : (θ2 − θ1)

>∇F(θ1 + α∗(θ2 − θ1)) = F(θ2)− F(θ1)
Geometric OC γe

pq(α) ∩ Bim(p, q)

1D EF α∗ =
F′−1

(
F(θ2)−F(θ1)

θ2−θ1

)
−θ2

θ1−θ2

Gaussian case

1D Gaussians OCGaussian :
(

µ2

σ2
2
− µ1

σ2
1

)
mα −

(
1

2σ2
2
− 1

2σ2
1

)
vα = 1

2 log σ2
2

σ2
1
+

µ2
2

2σ2
2
− µ2

1
2σ2

1

α∗ is root of quadratic polynomial in (0, 1)

Centered Gaussians OCCenteredGaussians : ∑d
i=1

1−λi
α∗+(1−α∗)λi

+ log λi = 0

where λi is the i-th eigenvalue of Σ1Σ−1
2

Centered Gaussians α∗ = s−1−log s
(s−1) log s ∈ (0, 1)

scaled covariances when Σ2 = sΣ1

Additional material including MAXIMA and JAVA® snippet codes is available online
at https://franknielsen.github.io/ChernoffInformation/index.html (accessed on 30 July
2022).
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Appendix A. Background on Statistical Divergences

We introduce some statistical dissimilarities like the Kullback–Leibler divergence,
the Bhattacharyya distance or the Hellinger divergence which have been proven among
others useful is characterizing or bounding the probability of error in Bayesian statistical
hypothesis testing [4,25,67].

The Kullback–Leibler divergence [13] (KLD) between two probability measures (PMs)
P and Q is defined as

DKL[P : Q] =

{ ∫
X log

(
dP
dQ

)
dP, if P� Q

+∞ if P 6� Q

Two PMs P and Q are mutually singular when there exists an event A ∈ A such that
P(A) = 0 and Q(X\A) = 0. Mutually singular measures P and Q are notationally written
as P ⊥ Q. Let P and Q be two non-singular probability measures on (X ,A) dominated by
a common σ-finite measure µ, and denote by p = dP

dµ and q = dQ
dµ their Radon–Nikodym

densities with respect to µ. Then the KLD between P and Q can be calculated equivalently
by the KLD between their densities as follows:

DKL[P : Q] = DKL[p : q] =
∫
X

p log
(

p
q

)
dµ. (A1)

It can be shown that DKL[p : q] is independent of the chosen dominating measure µ [4], and
thus when P, Q� µ, we write for short DKL[P : Q] = DKL[p : q]. Although the dominating
measure µ can be set to µ = P+Q

2 in general, it is either often chosen as µL the Lebesgue
measure for continuous sample spaces Rd (with the σ-algebra A = B(Rd) of Borel sets)
or as the counting measure µ# for discrete sample spaces (with the σ-algebra A of power
sets). The KLD is not a metric distance because it is asymmetric and does not satisfy the
triangle inequality.

Let supp(µ) = cl{A ∈ A : µ(A) 6= 0} denote the support of a Radon positive
measure [1] µ where cl denotes the topological closure operation. Notice that DKL[p :
q] = +∞ when the definite integral of Equation (A1) divergences (e.g., the KLD between
a standard Cauchy distribution and a standard normal distribution is +∞ but the KLD
between a standard normal distribution and a standard Cauchy distributions is finite), and
DKL[P : Q] = ∞ when the probability measures have disjoint supports (P ⊥ Q). Thus,
when the supports of P and Q are distinct but not nested, both the forward KLD DKL[P : Q]
and the reverse KLD DKL[Q : P] are infinite.

Let fα(u) = uα for α ∈ R. The functions fα(u) are convex for α ∈ R\[0, 1] and concave
for α ∈ [0, 1]. Thus, we can define the f -divergences [59,68]

I fα
[p : q] =

∫
p fα(q/p)dµ =

∫
p1−αqαdµ, (A2)

for α ∈ R\[0, 1] and I− fα
[p : q] = −

∫
p fα(q/p)dµ = −

∫
p1−αqαdµ for α ∈ (0, 1) (or

equivalently take the convex generator hα(u) = −uα for α ∈ (0, 1)). Notice that the
conjugate f -divergence is obtained for the generator f ∗α (u) = u fα(1/u) = u1−α: I fα

[q : p] =
I f ∗α [p : q]. By Jensen’s inequality, we have that the f -divergences are lower bounded by f (1).
Thus, Ih∗α [p : q] ≥ hα(1) = −1. Since f -divergences are upper bounded by f (0) + f ∗(0),
we have that Ih∗α [p : q] < 0 for α ∈ (0, 1). This gives another proof that the Bhattacharyya
coefficient ρα[p : q] = −Ih1−α

[p : q] is bounded between 0 and 1 since the Ih1−α
divergence

is bounded between −1 and 0. Moreover, Ali and Silvey [59] further defined the ( f , g)-
divergences as I f ,g[p : q] = g(I f [p : q]) for a strictly monotonically increasing function
g(v). Letting g(v) = − log(−v) (with g′(v) = − 1

v < 0 when v ∈ (0, 1)), we get that
the (h1−α, g)-divergences are the Bhattacharyya distances for α ∈ (0, 1). However, the
Chernoff information is not a f -divergence despite the fact that Bhattacharyya distances
are Ali–Silvey ( f , g)-divergences because of the maximization criterion [59] of Equation (4).
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We refer the reader to [69] (Chapter 14), [70] (Figure 1) and [71] (Figure 3) for other
statistical distances and statistical dissimilarities with their connections.

Appendix B. Exponential Family of Univariate Gaussian Distributions

Consider the family of univariate normal distributions:

N =

{
pµ,σ2(x) =

1√
2πσ2

exp
(
−1

2
(x− µ)2

σ2

)
, µ ∈ R, σ2 > 0

}
.

Let λ = (λ1 = µ, λ2 = σ2) denote the mean-variance parameterization, and consider the
sufficient statistic vector t(x) = (x, x2). Then the densities of N can be written in the
canonical form of exponential families:

pλ(x) = exp(〈θ(λ), t(x)〉 − F(θ)),

where θ(λ) =
(

λ1
λ2

,− 1
2λ2

)
and the log-normalizer is

F(θ) = −
θ2

1
4θ2

+
1
2

log
π

−θ2
.

The dual moment parameterization is η(λ) = Epλ
[t(x)] =

(
λ1, λ2

1 + λ2
)
, and the convex

conjugate is:
F∗(η) = sup

θ∈Θ
{〈θ, η〉 − F(η)} = −1

2
(log(2πe(η2 − η2

1)).

We check that the convex conjugate coincides with the negentropy [72]:

h[pλ] = −F∗(η(λ)).

The conversion formulæ between the dual natural/moment parameters and the ordi-
nary parameters are given by:

θ(λ) =

(
λ1

λ2
,− 1

2λ2

)
, (A3)

λ(θ) =

(
− θ1

2θ2
,− 1

2θ2

)
, (A4)

η(λ) =
(

λ1, λ2
1 + λ2

)
, (A5)

λ(η) =
(

η1, η2 − η2
1

)
, (A6)

η(θ) = (E[x], E[x2]) = ∇F(θ) =

(
− θ1

2θ2
,− 1

2θ2
+

θ2
1

4θ2
2

)
, (A7)

θ(η) = ∇F∗(η) =

(
− η1

η2
1 − η2

,
1

2(η2
1 − η2)

)
(A8)

We check that

DKL[pλ : pλ′ ] =
1
2

(
(λ1 − λ′1)

2

λ′2
2 +

λ2
2

λ′2
2 − log

λ2
2

λ′2
2 − 1

)
,

= BF(θ(λ
′) : θ(λ)) = BF∗(η(λ) : η(λ′)),

= YF,F∗(θ(λ
′) : η(λ)) = YF∗ ,F(η(λ) : θ(λ′)),

where BF and BF∗ are the dual Bregman divergences and YF,F∗ and YF∗ ,F are the dual
Fenchel–Young divergences.
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Appendix C. Code Snippets in MAXIMA

Code for plotting Figure 1.

Listing A1: Plot the cumulant function of a log ratio exponential family induced by two normal
distributions.

varalpha ( v1 , v2 , alpha ) : = ( v1 * v2 ) /((1 − alpha ) * v1+alpha * v2 ) $
mualpha (mu1, v1 , mu2, v2 , alpha ) : = ( alpha *mu1* v2+(1− alpha ) *mu2* v1 ) /((1 − alpha ) * v1+

alpha * v2 ) $
assume ( v1 >0) $assume ( v2 >0) $
t h e t a 1 (mu, v ) :=mu/v$
t h e t a 2 (mu, v ) := −1/(2*v ) $ ;
F ( theta1 , t h e t a 2 ) := ( ( − t h e t a 1 * * 2 ) /(4* t h e t a 2 ) ) +(1/2) * log(−%pi/t h e t a 2 ) $
JF ( alpha , theta1 , theta2 , theta1p , theta2p ) := alpha * F ( theta1 , t h e t a 2 ) +(1− alpha ) * F (

theta1p , theta2p ) −F ( alpha * t h e t a 1 +(1− alpha ) * theta1p , alpha * t h e t a 2 +(1− alpha ) *
theta2p ) ;

m1 : 0 ; v1 : 1 ; m2 : 1 ; v2 : 2 ;

plot2d ( [ JF ( alpha , t h e t a 1 (m1, v1 ) , t h e t a 2 (m1, v1 ) , t h e t a 1 (m2, v2 ) , t h e t a 2 (m2, v2 ) ) ,
−JF ( alpha , t h e t a 1 (m1, v1 ) , t h e t a 2 (m1, v1 ) , t h e t a 1 (m2, v2 ) , t h e t a 2 (m2, v2 ) ) ,
[ d i s c r e t e , [ [ 0 . 4 2 1 5 5 8 0 5 5 8 6 0 5 2 4 4 , − 0 . 1 5 ] , [ 0 . 4 2 1 5 5 8 0 5 5 8 6 0 5 2 4 4 , 0 . 1 5 ] ] ] ,
[ d i s c r e t e , [ 0 . 4 2 1 5 5 8 0 5 5 8 6 0 5 2 4 4 ] , [ 0 . 1 1 5 5 4 3 3 2 2 2 6 8 2 3 4 7 ] ] ,
[ d i s c r e t e , [ 0 . 4 2 1 5 5 8 0 5 5 8 6 0 5 2 4 4 ] , [ −0 .1155433222682347] ]
] ,
[ alpha , 0 , 1 ] , [ x labe l , " alpha " ] , [ y label , " F_ { pq } ( alpha ) =−D_{ B , alpha } [ p : q ] " ] ,
[ s t y l e , [ l i n e s , 1 , 1 ] , [ l i n e s , 1 , 2 ] ,
[ l i n e s , 2 , 0 ] , [ points , 3 , 3 ] , [ points , 3 , 3 ] ] , [ legend , " skew Bhattacharyya D_{ B ,

alpha } [ p : q ] " , " LREF log −normalizer F_ { pq } ( alpha ) " , " " , " " , " " ] ,
[ color , blue , red , black , black , black ] , [ point_type , a s t e r i s k ] ) ;

Code for calculating the Chernoff information between two univariate Gaussian
distributions (Proposition 10):

Listing A2: Calculate symbolically the exact Chernoff information between two univariate normal
distributions.

varalpha ( v1 , v2 , alpha ) : = ( v1 * v2 ) /((1 − alpha ) * v1+alpha * v2 ) $
mualpha (mu1, v1 , mu2, v2 , alpha ) : = ( alpha *mu1* v2+(1− alpha ) *mu2* v1 ) /((1 − alpha ) * v1+

alpha * v2 ) $

/* Kullback −− L e i b l e r divergence */
KLD(mu1, v1 , mu2, v2 ) : = ( 1 / 2 ) * ( ( ( ( mu2−mu1) * * 2 ) /v2 ) +( v1/v2 ) −log ( v1/v2 ) −1)$

assume ( alpha >0) $assume ( alpha <1) $
assume ( v1 >0) $assume ( v2 >0) $
t h e t a 1 (mu, v ) :=mu/v$
t h e t a 2 (mu, v ) := −1/(2*v ) $ ;
F ( theta1 , t h e t a 2 ) := − t h e t a 1 * * 2 / ( 4 * t h e t a 2 ) + 0 . 5 * log (−1/ t h e t a 2 ) $

eq : ( t h e t a 1 (mu1, v1 ) −t h e t a 1 (mu2, v2 ) ) * mualpha (mu1, v1 , mu2, v2 , alpha ) +( t h e t a 2 (mu1, v1 )
−t h e t a 2 (mu2, v2 ) ) * ( mualpha (mu1, v1 , mu2, v2 , alpha ) **2+ varalpha ( v1 , v2 , alpha ) ) −F (
t h e t a 1 (mu1, v1 ) , t h e t a 2 (mu1, v1 ) ) +F ( t h e t a 1 (mu2, v2 ) , t h e t a 2 (mu2, v2 ) ) ;

so la lpha : so lve ( eq , alpha ) $
a l p h a s t a r : rhs ( so la lpha [ 1 ] ) ;

ChernoffInformation : KLD( mualpha (mu1, v1 , mu2, v2 , a l p h a s t a r ) , varalpha ( v1 , v2 ,
a l p h a s t a r ) ,mu1, v1 ) $

p r i n t ( " Chernoff information =" ) $ratsimp ( ChernoffInformation ) ;

Example of a plot of the α-Bhattacharryya distance for α ∈ [0, 1] when p and q are two
normal distributions.
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Listing A3: Plot the skewed Bhattacharrya divergences between two normal distributions as an
equivalent skewed Jensen divergence between two normal distributions.

varalpha ( v1 , v2 , alpha ) : = ( v1 * v2 ) /((1 − alpha ) * v1+alpha * v2 ) $
mualpha (mu1, v1 , mu2, v2 , alpha ) : = ( alpha *mu1* v2+(1− alpha ) *mu2* v1 ) /((1 − alpha ) * v1+

alpha * v2 ) $
assume ( v1 >0) $assume ( v2 >0) $
t h e t a 1 (mu, v ) :=mu/v$
t h e t a 2 (mu, v ) := −1/(2*v ) $ ;
F ( theta1 , t h e t a 2 ) := ( ( − t h e t a 1 * * 2 ) /(4* t h e t a 2 ) ) +(1/2) * log(−%pi/t h e t a 2 ) $
JF ( alpha , theta1 , theta2 , theta1p , theta2p ) := alpha * F ( theta1 , t h e t a 2 ) +(1− alpha ) * F (

theta1p , theta2p ) −F ( alpha * t h e t a 1 +(1− alpha ) * theta1p , alpha * t h e t a 2 +(1− alpha ) *
theta2p ) ;

m1 : 0 ; v1 : 1 ; m2 : 1 ; v2 : 2 ;
plot2d ( JF ( alpha , t h e t a 1 (m1, v1 ) , t h e t a 2 (m1, v1 ) , t h e t a 1 (m2, v2 ) , t h e t a 2 (m2, v2 ) ) , [ alpha

, 0 , 1 ] ) ;

Example which calculates exactly the Chernoff exponent between two centered 4D
Gaussians by solving the polynomial roots of the Chernoff optimal condition:

Listing A4: Calculate the Chernoff information between two 4D centered normal distributions based
on their eigenvalues.

assume ( l1 >0) ; assume ( l2 >0) ; assume ( l3 >0) ; assume ( l4 >0) ;
assume ( alpha >0) ; assume ( alpha <1) ;
l 1 : 1 ; l 2 : 2 ; l 3 : 3 ; l 4 : 4 ;
eq : (1 − l 1 ) /( alpha +(1− alpha ) * l 1 ) + (1 − l 2 ) /( alpha +(1− alpha ) * l 2 ) + (1 − l 3 ) /( alpha +(1−

alpha ) * l 3 ) + (1 − l 4 ) /( alpha +(1− alpha ) * l 4 ) + log ( l 1 ) +log ( l 2 ) +log ( l 3 ) +log ( l 4 ) ;
so lve ( eq , alpha ) ;
s o l : f l o a t (%) ;
r e a l p a r t ( s o l ) ; imagpart ( s o l ) ;
/* alpha =0.5969427599369763 */

Example of choosing two different exponential families: The half-normal distributions
and the exponential distributions:

Listing A5: Calculate symbolically the Kullback–Leibler divergence and the Bhattacharyya coefficient
between a half normal distribution and an exponential distribution.

assume ( sigma >0) ;
halfnormal ( x , sigma ) : = ( s q r t ( 2 ) /( s q r t (%pi * sigma * * 2 ) ) ) * exp( −x * * 2 / ( 2 * sigma * * 2 ) ) ;
assume ( lambda >0) ;
exponent ia l ( x , lambda ) := lambda * exp( −lambda * x ) ;
/* KLD diverges */
i n t e g r a t e ( exponent ia l ( x , lambda ) * log ( exponent ia l ( x , lambda ) /halfnormal ( x , sigma ) ) , x

, 0 , i n f ) ;
/* KLD converges */
i n t e g r a t e ( halfnormal ( x , sigma ) * log ( halfnormal ( x , sigma ) /exponent ia l ( x , lambda ) ) , x

, 0 , i n f ) ;
/* Bhattacharyya c o e f f i c i e n t */
assume ( alpha >0) ;
assume ( alpha <1) ;
i n t e g r a t e ( ( halfnormal ( x , sigma ) * * alpha ) * ( exponent ia l ( x , lambda ) ** (1 − alpha ) ) , x

, 0 , i n f ) ;
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