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Abstract: This paper aims to empirically examine long memory and bi-directional information
flow between estimated volatilities of highly volatile time series datasets of five cryptocurrencies.
We propose the employment of Garman and Klass (GK), Parkinson’s, Rogers and Satchell (RS),
and Garman and Klass-Yang and Zhang (GK-YZ), and Open-High-Low-Close (OHLC) volatility
estimators to estimate cryptocurrencies’ volatilities. The study applies methods such as mutual
information, transfer entropy (TE), effective transfer entropy (ETE), and Rényi transfer entropy
(RTE) to quantify the information flow between estimated volatilities. Additionally, Hurst exponent
computations examine the existence of long memory in log returns and OHLC volatilities based
on simple R/S, corrected R/S, empirical, corrected empirical, and theoretical methods. Our results
confirm the long-run dependence and non-linear behavior of all cryptocurrency’s log returns and
volatilities. In our analysis, TE and ETE estimates are statistically significant for all OHLC estimates.
We report the highest information flow from BTC to LTC volatility (RS). Similarly, BNB and XRP
share the most prominent information flow between volatilities estimated by GK, Parkinson’s, and
GK-YZ. The study presents the practicable addition of OHLC volatility estimators for quantifying the
information flow and provides an additional choice to compare with other volatility estimators, such
as stochastic volatility models.

Keywords: volatility; transfer entropy; mutual information; flow of information; financial time series

1. Introduction
1.1. Complex Systems and Statistical Relationships

In the study of complex systems, statistical relationships such as correlation-based
techniques have been extensively used to investigate linear dependence. The most common
statistical methods exclusively rely on second-order statistics, such as correlation analysis
and Principal Component Analysis (PCA). For example, Granger causality (GC) [1] is based
on second-order statistics and focuses on correlation, which constrains its relevance to only
linear systems. As a matter of fact, due to the highly increased evidence of nonlinear trends
in financial time series analysis, researchers have drawn significant attention to the use of
the econophysics framework, such as wavelet transforms, mutual information, correlation
dimension test, Hurst exponent, Lyapunov exponent, and information-theoretic measures.
For instance, Chu et al. used the wavelet decomposition method and nonlinear causality
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testing based on Taylor series approximation and investigated bi-directional nonlinear
causality between stock returns and investor sentiment in China [2]. Zhao et al. proposed a
new mutual-information matrix analysis to study the nonlinear interactions of multivariate
time series and revealed the interactions among the individual stocks [3]. The rolling
window Spearman correlation and wavelet coherence have been employed to study the
dynamic relationships between stock markets [4]. The long and short nonlinear dynamics
in Moroccan family business stock returns were studied using stationary wavelet transform,
Hurst exponent, and largest Lyapunov exponent methods to investigate the presence of both
fractal and chaos in their trend and instant variations [5]. Some studies use applications of
non-parametric complexity measures and information-theoretic measures for financial time
series. For example, Hurst exponent, Kolmogorov complexity, Lempel–Ziv complexity,
and Shannon entropy have been used to compute long memory, information content,
information generation, and randomness in various industrial sectors from the Casablanca
Stock Exchange (CSE) and Dow Jones and S&P500 [6]. In a study of the unidirectional
causal relationship of cryptocurrencies with the COVID-19 pandemic, Toda and Yamamoto
(linear) and Diks and Panchenko (nonlinear) Granger causality tests confirm the existence
of unidirectional causality [7]. Ghorbel et al. uncovered asymmetric correlations between
the stock indexes and cryptocurrencies in both the short and long run and concluded that
most stock prices respond more to the negative shocks of cryptocurrencies than to the
positive ones [8]. Moreover, Tong et al. examined cryptocurrency price volatility changes
over time and are positively correlated. Additionally, Bitcoin has fractal characteristics,
and cryptocurrency price fluctuations have a long memory of price volatility. The price
fluctuation of cryptocurrency does not follow the random walk model and is a system
with chaotic characteristics [9]. In literature, information-theoretic measures frameworks
have been significantly used to detect the nonlinear dynamics of asset prices, volatilities,
and construction of risk-neutral densities. See, for example, dynamics of volatility and
randomness of the Pakistan Stock Exchange (PSX-100), analysis of randomness in estimated
GARCH volatilities, return series, and closing prices using Shannon’s, Tsallis, approximate
and sample entropies, and construction of risk-neutral densities in [10,11].

1.2. Transfer Entropy and Mutual Information

We can identify that several methods to examine the interactions between complex
processes have been developed. For example, Causality among variables, events, or objects
has been the fundamental question in the literature that can be understood as a “flow”
among processes and expressed and analyzed in mathematical language [12]. For instance,
mutual information entropy explores only the statistical dependence between two random
variables, whereas a non-parametric method for measuring causal information transfer
between systems was proposed by Schreiber to demonstrate the bi-directional flow [13].
Following the concept of transfer entropy, Marschinski and Kantz introduced effective
transfer entropy and attempted to measure the information flow between the time series
data of Dow Jones and the DAX stock index [14]. Indeed, the concept of TE expands to
introduce effective transfer entropy (ETE) and Rényi transfer entropy (RTE). The former
method improves TE by reducing the influence caused due to noise, and RTE uses different
values of its parameter r to capture the effect of distinguished probability intervals. In
the study of financial markets such as stock or asset returns, tail events usually refer
to relatively large positive or negative returns. If these events are more relevant, Rényi
transfer entropy provides a tool to give more weight to their contribution to the overall
information flow. The TE methods are based on a model-free approach to measuring the
effective-directional information flow without the restriction of linear systems. Therefore,
mutual information (MI) and bi-directional information flow based on transfer entropy
(TE) methods have received considerable attention from researchers. For instance, Baek
et al. investigated the strength and the direction of information transfer in the US stock
market and found energy industries influence the whole market [15]. Kwon and Yang
investigated the directionality of information transfer in US stocks. The results of the study
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uncovered that individual stocks are influenced by the index of the market. Similarly, the
most prominent source of information flow is the USA, while most receivers are in the
Asia/Pacific region [16,17]. Information transmission during overlapping hours of the
USA and European stock markets during the financial crises of 2007–2008 is also a subject
of the study by Dimpf and Peter. The study shows significant bi-directional information
transfer between the US and the European markets with a dominant flow from the US
market [18]. Using transfer entropy, one can quantify the information flow from the market
to the individual stocks to determine the extent of sensitivity to information flow. For
example, bi-directional information flow between exchange rates and stock markets exists
during the financial crisis of 2008 [19]. Similarly, market expectations and investor fear
have been investigated using Renyi entropy and estimated mutual information between
return time series of Bitcoin, S&P500, WTI, Brent, Gas, Gold, Silver, and investor fear index
represented by VIX in [20]. Unlike Shannon’s transfer entropy, where the information flow
between two stochastic processes takes into account the whole underlying empirical price
distribution, the Renyi transfer entropy (RTE) describes the information flow only between
certain pre-decided parts of two price distributions involved. For example, Jizba et al.
show that information also flows from European markets to the US, which is particularly
seen from a careful analysis of Rényi information flow between the DAX and S&P500
indices [21]. In an empirical application, Dimpfl and Peter examine the importance of the
credit default swap market relative to the corporate bond market for the pricing of credit
risk using the Shannon transfer entropy and the effective transfer entropy approaches [22].
Leonidas studied the causal relationships between the 197 largest companies in the world
in terms of market capitalization using the effective transfer entropy method to explore
the structure of a global network of financial companies [23]. Given the results of the
above-discussed studies, the transfer entropy methods have outperformed to quantify the
bi-directional flow of information. See more details on the application of Shannon transfer
entropy, effective transfer entropy, and Rényi transfer entropy in [24].

Transfer entropy measures the directionality of a variable with respect to time. Recently,
some methods have been introduced that do not depend explicitly on time. For example, a
permutation-based measure called inner composition alignment (IOTA) due to Hempel
et al. contributes to the study of coupling between very-short time series and does not
depend explicitly on time [25,26]. Wang et al. proposed to divide the whole series into
several short segments to investigate local coupling for long-time series. The study explores
interactions between stock market indices and found the interaction between Chinese stock
markets is more substantial than that of American ones [27]. Additionally, permutation
entropy (PE) is another information-theoretic measure that uses permutation patterns to
infer the complexity of time series. The PE method finds linear and nonlinear dependence
without imposing any constraints on the theoretical probability distribution of data [28]. Shi
et al. [29] introduced an information-theoretic measure named cross-permutation entropy
(CPE), inspired by the permutation entropy-based processes. The novel approach is used to
detect the cross-correlation between two synchronous time series. The results of the study
show that the transfer entropy (TE) method outperformed figuring out the interaction
direction between stock markets. However, CPE performs perfectly in the analysis of cross-
correlation between stock markets. Bivariate approaches, such as GC and TE, may suffer
from shortcomings, such as omitted variable bias that can lead to erroneous conclusions. In
an empirical study, Papana and Papana-Dagiasis introduced different variants of partial
transfer entropy (PTE) to show the superiority of the suggested variants over TE and
PTE [30]. Additionally, the transfer entropy method relies on past observations of the
processes. Its numerical estimation requires two factors: (i) the embedding technique
and (ii) the entropy estimator. In literature, many entropy estimators exist with different
assumptions, limitations, and advantages. Therefore, the choice of the best method to
estimate TE for each specific application is still an open problem. For instance, Rozo et al.
studied five different estimation methods, and the results suggest the adaptive partitioning
method outperformed [31]. However, the literature emphasizes that for highly nonlinear
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and non-Gaussian data, for example, in our case of cryptocurrency data, it is better to
approach causality using the TE information method instead of the traditional Granger
causality test [32].

1.3. Cryptocurrencies and Transfer Entropy

Since 2009, numerous cryptocurrencies have been developed (CoinMarketCap, 2019).
In the list of cryptocurrencies, Bitcoin is the most popular, representing the highest market
cap with rapid and continuous price fluctuations. The change in Bitcoin (BTC) prices
generally affects other digital currencies. Therefore, investigating the linkage between time
series datasets of BTC and other cryptocurrencies could reveal many fascinating properties
to enquire about the impact of BTC on other selected digital currencies. For example,
Bitcoin sometimes exhibits an increase(decrease) of tens of thousands of dollars in a single
day. Several studies have shown that the Bitcoin price is highly volatile compared to tradi-
tional fiat currencies [33]. Chen et al. studied the statistical properties of Bitcoin and other
cryptocurrencies and investigated those returns are non-normal. However, no single distri-
bution fits well jointly with all the cryptocurrencies analyzed [34]. Cryptocurrency returns
mostly deviate from the normality assumption and follows fat-tailed distributions [35].
Chu et al. studied the volatility modeling of cryptocurrencies using several GARCH models
and found Bitcoin, Ethereum, Litecoin, and many others exhibit extreme volatility [36].
Dyhrberg investigated the financial asset capabilities of bitcoin using GARCH models. The
overall result of the study suggests that bitcoin is somewhere in between a currency and a
commodity due to its decentralized nature and limited market size [37].

Several approaches have been employed to examine the interrelationship between
Bitcoin and other cryptocurrencies. Yi et al. used the spillover index approach and its
variants to investigate static and dynamic volatility connectedness among eight typical
cryptocurrencies. The results reveal that their connectedness fluctuates cyclically [38].
Ciaian et al. empirically examined interdependencies between Bitcoin and altcoin markets
for the short and long-run periods using the time series analytical mechanisms. The results
of the study show that the Bitcoin-altcoin price relationship is stronger in the short-run
than in the long-run [39]. Katsiampa studied the co-movement of volatility between Bitcoin
and Ether using a Diagonal BEKK model and found the two cryptocurrencies’ volatility
and correlation are responsive to the big news [40]. Recently, Assaf et al. employed transfer
entropy and Rényi’s transfer entropy to quantify the information flow between Bitcoin,
Ripple, and Ethereum and revealed that Bitcoin and Ripple share a bidirectional informa-
tion transmission. However, no nonlinear information transmission exists according to
Rényi’s measure [41]. Assaf et al. also used the mutual information approach to investi-
gate the information sharing between cryptocurrencies during the COVID-19 crisis. [42].
García-Medina and González Farías García-Medina and González Farías, employed transfer
entropy as a variable selection methodology for cryptocurrencies using a high-dimensional
predictive model framework. In this study, Symbolic estimation of Transfer Entropy (STE)
for simulated studies shows better performance when compared to the Granger causal-
ity approach when considering a nonlinear and a linear system with many drivers [43].
Overall, these studies support interdependencies between Bitcoin and other cryptocurren-
cies. The results are dependent on the size of the dataset and methodologies. However,
methods based on information-theoretic measures, such as quantification of bi-directional
mutual information in the cryptocurrency market, are relatively at an early stage. Previous
studies mostly used parametric methods with some assumptions for measuring financial
dependency among financial assets. Compared with other methods, transfer entropy has
many advantages, such as: (i) it is suitable for both linear and nonlinear dependence, (ii) it
does not make any assumption on the underlying relationship of the variables, and (iii) it
is completely data-driven.
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1.4. Hypothesis Development

Cryptocurrency markets are highly volatile, and a significant number of drawdowns
are continuously expected in a short period. Therefore, at this point, it is vital to explore the
dynamics of volatilities in Bitcoin and other related cryptocurrencies. For this purpose, we
use datasets of five cryptocurrencies: Bitcoin (BTC), Ethereum (ETH), Binance coin (BNB),
Ripple (XRP), and Litecoin (LTC). All these cryptocurrencies experience high fluctuations in
their valuation. The existence of the causal relationship between estimated volatilities of the
underlying cryptocurrency datasets can guide investors, risk managers, and policymakers
to investigate the dominance of a particular digital currency. Therefore, we quantify the
nonlinear dynamics and bi-directional information flow between the five cryptocurrencies.
We use (i) the Hurst exponent to study the nonlinear dynamics and existence of long-
memory; (ii) investigation of mutual information gained due to the dependencies exposed
by log returns, computed realized volatilities for several time windows, and OHLC volatil-
ity estimates; and finally, (iii) we aim to examine the directional flow of closing returns and
estimated Open-High-Low-Close (OHLC) volatilities of underlying data series. The rich
investigation based on Close-to-Close, Garman and Klass [44], Parkinson’s [45], Rogers and
Satchell [46], and Garman–Klass and Yang–Zhang [47] OHLC volatilities estimates have not
been conducted on highly volatile cryptocurrency data. We investigate the bi-directional
flow of information between OHLC volatilities of five cryptocurrencies using the Shannon
transfer entropy (STE) and effective transfer entropy (ETE), and Rényi’s transfer entropy
(RTE) and establish the linkage between estimated OHLC volatilities.

We notice that significant literature exists to examine the flow of information between
financial asset prices based on the transfer entropy method. However, no studies have
been conducted to uncover the information flow between the estimated volatilities series
of highly volatile datasets based on OHLC estimators. We aim to fill the existing research
gap using cryptocurrency datasets. To the best of our knowledge, this is the first study to
compute the mutual information of realized volatilities and transfer entropies of OHLC
volatility estimators for correlated cryptocurrency datasets. For this purpose, we closely un-
derstand the volatility dynamics of underlying datasets using different volatility estimators
based on methods of non-linear complexity measures. Therefore, we have focused on the
evaluation of the nonlinear statistics such as the Hurst exponent [48], mutual information
(MI) [49], transfer entropy (TE) [13], and effective transfer entropy (ETE) [14] methods to
detect the directional information flow. Given the preceding discussion and arguments, we
set the following hypothesis.

Hypothesis 1 (H1). Bitcoin (BTC), Ethereum (ETH), Binance coin (BNB), Ripple (XRP), and
Litecoin (LTC) log returns and estimated OHLC volatilities exhibit long memory.

Hypothesis 2 (H2). BTC, LTC ETH, BNB, and XRP log returns, estimated realized volatilities
and estimated OHLC volatilities share mutual information flow.

Hypothesis 3 (H3). Bitcoin and other cryptocurrencies can act as an influencer of price and
volatility changes in other cryptocurrencies based on bi-directional information flow.

The rest of the paper is organized as follows. Section 2 presents methodologies of
measuring the statistical complexity and information flows. In Section 3, we analyzed our
datasets. In Section 4, empirical results are discussed. Finally, conclusions are summarized
in Section 5.

2. Methods
2.1. Returns, Volatility and Correlation

Let Rt denote the returns of the cryptocurrency financial time series process at time t
given by

Rt = ln
xt

xt−1
(1)



Entropy 2022, 24, 1410 6 of 28

where {Xt}t ∈T represents the underlying price process. Statistically, volatility is often
computed as the sample standard deviation given by

S =

√√√√ 1
T − 1

T

∑
t−1

(Rt − µ)2 (2)

where µ is the average return over the period T. The historical volatility of the annual
logarithmic returns is customarily denoted by σ and computed by the following equation:

σ = S
√

∆t (3)

where t denotes annual trading days, usually. The estimated historical volatility σ captures
only linear relationships and assumes all events are equally weighted. In financial markets,
volatility estimates based on a small dataset might lead to noisy measurement of the
estimator due to sampling error. On the other hand, a large dataset uses information that
is no longer relevant to the present state of the market. A historical volatility estimate
is an exact number that may not represent the actual value. To address the problem of
large-sampling error, alternative volatility estimators that use all data points other than
closing prices, such as Close-to-Close, Garman and Klass (GK), Parkinson’s, Rogers and
Satchell (RS), and Garman and Klass–Yang and Zhang (GK-YZ), are given by the following
equations, respectively.

σClose−to−Close =

√√√√ N
n− 2

n−1

∑
k=1

(
Rk − R

)2 (4)

where Rk = log
(

Ck
Ck−1

)
, R =

R1+R2+. .+Rk−1
k−1 and Ck denotes the kth closed price, n is the

number of periods for the volatility estimate, N is number of periods per year. Close-to-
Close volatility estimator only requires us to look at closing prices and use long historical
data for a better estimate. In such a long data series, the earlier part of the data may be less
relevant to measuring today’s volatility. Therefore, the usage of alternative estimators of
volatility can be more efficient than Close-to-Close.

The Parkinson volatility estimator is based on high and low prices given by:

σParkinson =

√√√√ 1
4n ln 2

n

∑
k=1

(
log

Hk
Lk

)2
(5)

The Parkinson estimator is about five times more efficient than the Close-to-Close
estimator. The Parkinson estimate of variance is unbiased for continuous prices. However,
prices are only sampled discretely. Another well-known volatility estimator introduced by
Garman and Klass (GK) is given by:

σGK =

√√√√N
n ∑

[
1
2

(
log

Hk
Lk

)2
− (2 log 2− 1 )

(
log

Ck
Ok

)2
]

(6)

where Ok , Hk, and Lk denote kth Open, High, and Low prices. The Garman and Klass
volatility estimator assumes Brownian motion with zero drift and no opening jumps.
The GK estimator is 7.4 times more efficient than the Close-to-Close estimator, but it
is biased due to discrete sampling. Rogers et al. (RS) improved the efficiency of the
volatility estimator by introducing a drift term that outperformed. The volatility estimator
is given by:
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σRS =

√
N
n ∑

[
log

Hk
Ck
× log

Hk
Ok

+ log
Lk
Ck
× log

Lk
Ok

]
(7)

Recently, Yang and Zhang (YZ-GK) developed a modified version of the Garman and
Klass estimator that allows opening jumps. It is a weighted average of the RS estimator,
Close-to-Open volatility, and Open-to-Close volatility. The estimator is given by:

σGK−YZ =

√√√√N
n ∑

[ (
log

Ok
Ck−1

)2
+

1
2

(
log

Hk
Lk

)2
− (2 log 2− 1)

(
log

Ck
Ok

)2
]

(8)

All these volatility estimators on simulated discretely sampled with drift and jumps
show a high correlation between estimators. Pearson’s correlation is one of the simple
dissimilarity measures which can be used to measure the correlation. For time series
observation, the measure is given by:

Corr(XT , YT) =
∑T

t=1
(
Xt − XT

)(
Yt −YT

)√
∑T

t=1
(
Xt − XT

)2
√

∑T
t=1
(
Yt −YT

)2
(9)

where {Xt}t ∈T and {Yt}t ∈T represent the underlying price processes.

2.2. Hurst Exponent

The Hurst exponent is a tool for studying several properties of a time series. The
method was first introduced by Hurst (1951) and is known as Rescaled Range Analysis
(R/S analysis) [48]. In financial statistics, it is used for the analysis of stochasticity, fractality,
volatility shifts, and long-run memory of a time series. The Hurst model is based on
the work of Albert Einstein on the Brownian motion of random particles. The essence
of the model follows a series of observations (samples) and calculates a distance R that
increases in proportion to the square root of the time T. Let a series of observation of prices
X1, X2, . . . , XN of a fixed length N. The Hurst exponent is given by:

R
S

= k.NH (10)

• where R denotes the rescaled range of variation, S—standard deviation, k—constant,
N—number of sample elements, H—the Hurst exponent;

• The hurst exponent ranges from zero to one;
• For random (Wiener) processes in particular, the Hurst index turns out equal to 0.5;
• A value larger than 0.5 may indicate a fractal model or long-run dependence and

positively correlated;
• A value less than 0.5 indicates rough anti-correlated series.

The rescaled range (R/S) analysis is the range of partial sums of deviations from their
means, which is rescaled by their standard derivations. The computation Algorithm 1 of
the Hurst exponent using R/S analysis comply as:
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Algorithm 1. Hurst Exponent Computations

1. Suppose the given time series has length N. In the first step, convert the original time series
to a log return series;

2. Divide the entire data series into “A”, several contiguous sub-periods Ia , with
a = 1, 2, . . . , A. Each element in Ia is labeled as Nk, a, where k = 1, 2, . . . , n. For each Ia,
compute the average ea;

3. Create a series of accumulated departures Dk, a from the mean value for each sub-period by
defining Dk, a = ∑k

i=1
(

Ni, a − ea
)
;

4. Define the range as maximum minus the minimum value of accumulated departures within
each sub-period by RIa = max

(
Dk, a

)
−min

(
Dk, a

)
;

5. Calculate the sample standard deviation SIa of each sub-period Ia;
6. Normalize each range by dividing by the sample standard deviation. Therefore, the rescaled

range for each Ia is equal to RIa /SIa ;

7. Compute the average of
(

RIa
SIa

)
n
= (1/A)∑A

a=1

(
RIa
SIa

)
;

8. Following the [48] Hurst exponent can be obtained using Equation (10). Estimate the Hurst
exponent by running OLS regression, taking logarithm values of the series.

2.3. Shannon Entropy

Shannon (1948) defined a measure of information contained by an experiment in
the context of the mathematical theory of communication [50]. The entropy measure has
applications in physics, biology, economics, sociology, and other fields. For example, in
financial studies, Shannon entropy measures the randomness and diversity of the price’s
series. Mathematically, Shannon’s entropy gives the measure of information as a function
of probabilities of occurrence of different random events. The Shannon entropy of the
random variable having the discrete probability distribution is defined by:

H(X) = −
m

∑
i=1

pi ln pi (11)

• where X = {x1,x2,, . . . , xm,} the convention 0 ln 0 = 0 holds, and p = (p1, p2, . . . , pm),
pi represents the probability of xi, for i = 1, 2, . . . , m. therefore, pi > 0 ∀ i and
∑m

i=1 pi = 1;
• The entropy will be equal to its maximum value if all events follow the equally

likely assumption;
• An event for which probability is less than one, the entropy has a positive sign;
• Shannon entropy is utilized for quantifying the variability in an individual ran-

dom variable.

The Shannon entropy can be used in particular manners to evaluate the entropy
corresponding to a probability density distribution around some points. Alternatively,
sometimes specific events of interest are significantly important. For example, the devi-
ation from the mean, a piece of sudden news, affecting the market. At this point, the
generalization of the classical concept of entropy is vital.

2.4. Rényi Entropy

Rényi’s information measure was introduced by Rényi in his seminal 1961 paper [51].
Rényi measure depends on the power of the probability law, and it is a one-parameter
generalization of Shannon’s entropy. For a discrete random variable X, the Rényi entropy
of a probability distribution function P is given by:

Hr(X) =
1

1− r
log2 ∑

x∈X
pr(x) (12)
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• The Rényi’s entropy is a non-negative, monotonically decreasing function of r and for
r = 1, Rényi’s entropy converges to Shannon’s entropy;

• For r closer to 0, Rényi entropy becomes uniform to all possible events and independent
of the density function of the random variables;

• The different values of r can be used to express the influence of the different probability
intervals on the results;

• For r > 1, the Rényi entropy depends more on the values with large probabilities and
less on those of the rare ones.

2.5. Mutual Information

The Shannon entropy combined with the concept of Kullback–Leibler divergence
allows to measure the information flow between two processes. The mutual information
measures the deviation from the independence of the two random variables. Mutual
information (MI) is one of the fundamental information-theoretic measures to quantify the
information flow between the two data sets X and Y. The MI is given by:

MI(X, Y) = ∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(13)

The MI represents the divergence between the joint distribution p(x, y) of variables x
and y and the product p(x)p(y) of the two marginal distributions. The MI is a symmetric
quantity and can be rewritten as a sum and difference of Shannon entropies given by:

MI(X, Y) = H(X) + H(Y)− H(X, Y) (14)

where H(X, Y) denotes the joint Shannon entropy. The MI is a special case of a mea-
sure called the Kullback–Leibler divergence. We can summarize the characteristics of MI
as follows.

• Mutual information measures mutual dependence. In other words, it determines how
much information is communicated between two random variables;

• We can use MI to infer about one random time series by observing another random one;
• MI measures linear and nonlinear dependencies between two time series. The measure

can be used as a nonlinear equivalent of the correlation function;
• It is a symmetric measure, therefore the direction of information cannot be distin-

guished;
• Higher values indicate stronger dependency, and low values, a weaker dependence.

For two independent variables, the MI value is zero.

More details on mutual information can be found in [49].

2.6. Shannon and Rényi Transfer Entropies

The concept of transfer entropy (TE) was introduced by Schreiber [13], and indepen-
dently under the name conditional mutual information by Paluš et al. [12]. TE computes a
directional information flow defined by means of Kullback–Leibler divergence on condi-
tional transition probabilities of two times series. Suppose X and Y denote two Markov
processes. The following two equations define the TE from X to Y and Y to X, respectively.

TEX→Y = T(Yi+1|Yu
i , Xv

i ) = ∑
yi+1,yu

i ,xv
i

p(yi+1, yu
i , xv

i ) log2
p
(
yi+1

∣∣yu
i , xv

i
)

p
(
yi+1

∣∣yu
i
) (15)

TEY→X = T(Xi+1|Xu
i , Yv

i ) = ∑
xi+1,xu

i ,yv
i

p(xi+1, xu
i , yv

i ) log2
p
(
xi+1

∣∣xu
i , yv

i
)

p
(
xi+1

∣∣xu
i
) (16)



Entropy 2022, 24, 1410 10 of 28

where u and v are Markov orders, and xv
i = {xi, . . . , xi−v+1} and yu

i = {yi, . . . , yi−u+1}
are past states. In simple manners, TE can be described as the mutual information (MI)
between the future of Y and the present of X once conditioned to the past of Y.

TE(X → Y) = MI(Y+; X−
∣∣Y−) (17)

where the superscripts + and − denote adequate future and past state reconstructions of
the respective random variables. Equation (17) enables transfer entropy (i) to consider
the transition between states and thus incorporates the dynamics of the processes, and (ii)
transfer entropy is inherently asymmetric with respect to the exchange of X and Y and thus
can distinguish the two possible directions of interaction [52]. Therefore, Equation (17) can
be rewritten as:

TE(X → Y) = MI
(
Y+;

(
X−, Y−

))
−MI

(
Y+; Y−

)
(18)

We summarize the TE and its fundamental properties as follows.

• The TE is defined as the ratio of the conditional distribution of one variable depending
on the past samples of both processes versus the conditional distribution of that
variable depending only on its own past values;

• The asymmetry of TE results in a differentiation of the two directions of informa-
tion flow;

• We may note that for independent processes, the TE is zero and it is not a symmet-
ric measure;

• The TE quantifies the information flow from process X to process Y by measuring the
deviation from the generalized Markov property;

• The difference between TEX→Y and TEY→X allows to discover the dominant direction
of the information flow;

• The common choices of the order of the Markov process are conducted by u = v = 1;
• Transfer entropy (TE) is closely related to conditional entropy, but it extends to

two processes.

2.7. Effective Transfer Entropy

The actual data from financial time series often contained noise, which may bring
uncertainty. Therefore, to solve this problem, Marschinski and Kantz modified the transfer
entropy known as effective transfer entropy (ETE) [14]. The effective transfer entropy can
be formulated as follows.

ETEY→X(u, v) = TEY→X(u, v)− TES→X(u, v) (19)

where TES→X represents the average of TE from the shuffled sequence to responding
sequence. The modified approach negates the statistical dependencies between the two pro-
cesses Y and X and the dependencies of process Y. Indeed, a new time series was generated
by a readjustment of randomly drawing values from process Y. This approach could reduce
the noise caused by random process. As a consequence, TES→X(u, v) converges to zero
when the sample size increases and its values different from zero are due to small sample
effect. In calculating the effective transfer entropy, commonly shuffling the series many
times and using the transfer entropy estimate averaged over the replications have been
used. We assess the statistical significance of the estimated transfer entropies based on n
times bootstrapping of the Markov process. Such an approach preserves the dependencies
within the variables u and v but eliminates the statistical dependencies between them.
Given bootstrapped distribution of the transfer entropy estimates, the dominant direction
of the information flow can be confirmed by deriving standard errors and p-values for the
effective transfer entropy [22].
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Jizba and Kleinert proposed Rényi transfer entropy (RTE) [21] based on Rényi en-
tropy [51] and transfer entropy [13]. The RTE is given by:

RTEY→X =
1

1− r
log2

∑xi+1,xu
i

φr
(
xu

i
)

pr(xi+1
∣∣xu

i
)

∑xi+1,xu
i ,yv

i
φr
(
xu

i
)

pr
(
xi+1

∣∣xu
i , yv

i
) (20)

The trend of the entropy is irregular concerning r. That means some sequence groups
show an upward trend with the increased r, while others show a downward trend. In
general, the method is comprehensive. Therefore, for a clear direction of the information
flow, one may perform many experiments. Effective Rényi transfer entropy (ERTE) can be
obtained by following the same logic as ETE [14]. The ERTE is given by [53]:

ERTEY→X(u, v) = RTEY→X(u, v)− RandomRTES→X(u, v) (21)

where RandomRTES→X represents the average of RTE from the shuffled sequence to re-
sponding sequence. In summary, the following Algorithm 2 is required to compute the
transfer entropies on statistical software such as R.

Algorithm 2. Transfer Entropies Computations

1. Select two vectors of numeric values X and Y ordered by time;
2. Select Markov orders of X and Y. The default value is one;
3. Specify the transfer entropy (TE) measure to be estimated;
4. Choose the number of shuffles used to calculate the effective transfer entropy (ETE). The

default is 100;
5. Specify the type of discretization: “quantiles”, “bins” or “limits”;
6. Specify quantiles of empirical distribution. Default is quantiles = C (5,95) or go to step 7;
7. Specify the number of bins with equal width used for discretization. Default is bins = Null

or go to step 8;
8. Specify the limits on values used for discretization. Default is limit = Null;
9. Select number of bootstrap replications for each direction of the estimated transfer entropy.

Default is 300;
10. Select the number of observations that are dropped from the beginning of the bootstrapped

Markov chain. Default is 50;
11. Select “quiet” if FALSE (default), the function gives feedback.

3. Analyzing Data
3.1. Distributional Properties and Nonlinearity Tests

The daily closing prices of five cryptocurrencies, including BTC, LTC, ETH, XRP, and
BNB financial time series, are investigated for the mutual relationship. The data used
are prices (in US dollars) for all the time series available online at http://finance.yahoo.
com, accessed on (10 March 2022). We consider 2730 observations from 18 September
2014 to 9 March 2022 for BTC and LTC, while for XRP, BNB, and ETH, the closing time
series follows from 9 November 2017 to 10 March 2022. Similarly, for OHLC volatility
estimators, the same cryptocurrencies for the same periods have been used. We compute
the logarithmic returns (Rt) of underlying daily price process {Xt}t∈[0,T] by Rt = log

(
xt

xt−1

)
to obtain the stationarity. Figure 1 shows density plots of the five cryptocurrencies. Table 1
shows the basic statistics of log returns series and nonlinearity test results that include the
Teraesvirta Neural Network Test (TNNT), White Neural Network Test (WNNT), and Tsay
Test (TT). All the p-values except WNNT for LTC are less than equal to 0.05, rejecting the
null hypothesis of linearity existence. All cryptocurrencies are negatively skewed and show
that large negative returns occur more often than large positive ones. The high values of
kurtosis indicate the fat-tailed and peaked returns distribution. Therefore, large and small
returns come about more often than expected. Figure 2 depicts QQ plots of five digital
currencies and shows prominent deviation from the normally distributed returns. Transfer

http://finance.yahoo.com
http://finance.yahoo.com
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entropy estimation requires the data series to be stationary. Therefore, the augmented
Dickey–Fuller test was performed on log returns and OHLC volatility estimates of all
cryptocurrencies. Hence, the test results imply the stationarity at the 1% significance level
for log returns and OHLC volatility estimates.
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3.2. Anomalies in Cryptocurrencies Data

Cryptocurrencies data are usually highly volatile due to rapid changes in prices, and
logarithmic returns might observe the existence of anomalies. For example, Figure 3 shows
the returns series plot of the BTC with a red dot marked as an anomaly. We used the
3-sigma approach for each time point and calculated the moving averages and standard
deviations using the last one, three, six, nine months, and one year’s trading days to detect
the anomalies.
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We can observe for each period, LTC exhibits the highest standard deviation of number
of anomalies, and BTC follows the second position. However, the rest of the cryptocur-
rencies have standard deviations closed to each other. See Figure 4. Additionally, we
investigate the correlation coefficients (ρ) between the return’s series of BTC and LTC and
similarly between XRP, ETH, and BNB that turn out positive for all datasets. BTC and LTC
share the highest value of ρ equals to 0.68. On the other hand, ETH-XRP, XRP-BNB, and
ETH-BNB, we observe the correlation values are 0.64, 0.49, and 0.65, respectively. We have
observed a positive slope of the regression line and a strong positive correlation between
BTC and LTC.
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Figure 4. Number of anomalies in all cryptocurrencies for different periods. The years on x-axis
versus the number of anomalies on y-axis.

3.3. Long Memory

We examine the significance of autocorrelation functions for daily closing returns of
five underlying cryptocurrencies. We observe that autocorrelation functions are insignif-
icant for all returns series. Additionally, autocorrelation functions of both squared and
absolute returns are significant for almost all lags and decay slowly. For example, the decay
in the absolute returns is more prominent and similar in the case of BTC and LTC. The
slow decline in autocorrelation functions is named a long memory characteristic. The long
memory of returns suggests volatility clustering and volatility of past returns would affect
future returns for a long time. Figure 5 depicts the autocorrelation functions of BTC, LTC,
ETH, BNB, and XRP.
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4. Results
4.1. Hurst Exponent Analysis

We have observed a strong positive correlation among the five selected cryptocurren-
cies. Following the methodology, we investigated (i) the Hurst Exponent (HE) for closing
returns of BTC, LTC, XRP, BNB, and ETH. The HE analysis requires large samples. For this
reason, we implemented the methodology on daily returns series data of several years. We
can observe all computed values of the Hurst exponent (HE) are higher than 0.5, which
suggests all returns series exhibit long-run dependence, employment of a fractional model,
and positively correlated data. The distribution of the nonlinear complexity measure HE is
shown in Figure 6.

We employed five approaches for the computation of the HE. For this purpose, we
use the simple R/S, corrected R/S, empirical, corrected-empirical, and theoretical method.
We notice that for implemented approaches on returns, the resulted values have a range
between 0.55 and 0.65, which characterizes the cryptocurrency data as significantly corre-
lated with long-run memory. Similarly, using OHLC volatility estimators, we compute the
volatilities of the BTC and LTC and XRP, BNB, and ETH datasets for the given periods. All
estimated values of Hurst exponents are determined by employing five different methods
ranging from a minimum value of 0.53 to a maximum of 0.90. Therefore, the volatility
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dynamics of all cryptocurrencies show long-run dependence and non-linear behavior.
Figures 7–11 depict the variations of the Hurst exponent for OHLC volatility estimators.
A high value of HE closer to 1 indicates an eminent risk of large, exceedingly sudden
and unexpected changes in volatility. For example, in the case of BTC, we observed a
significant number of anomalies with large volatility jumps. A similar behavior in other
cryptocurrencies has been noticed. However, surprisingly, the trend of the Hurst exponent
is higher in the case of XRP and lower for ETH. The range of computed HE values recom-
mends that investors and risk managers can expect abrupt changes in volatilities that occur
today might impact the future in the long-term. The chaotic nature of volatilities would
sensitively depend on initial conditions, and long-memory characteristics might happen
regardless of the time scale. We can observe that the results based on the Hurst exponent are
compatible with our findings of cryptocurrencies returns characteristics. We have shown
that autocorrelation functions of squared and absolute returns of cryptocurrencies have
shown slow decayed. It provides a reasonable ground to ensue the existence of long memory.
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Figure 6. Hurst exponents (HE) of the five selected cryptocurrencies returns series data. The y-axis
shows HE values of the corresponding x-axis cryptocurrency.
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Figure 7. Variations in Hurst exponents (HE) values of estimated OHLC Close-to-Close volatility
estimates of BTC, LTC, XRP, BNB, and ETH. The y-axis shows HE values of the cryptocurrency using
simple, corrected, empirical, corrected empirical and theoretical methods of HE computation.
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Figure 8. Variations in Hurst exponents (HE) values of estimated OHLC Garman–Klass volatility
estimates of BTC, LTC, XRP, BNB, and ETH. The y-axis shows HE values of the cryptocurrency using
simple, corrected, empirical, corrected empirical and theoretical methods of HE computation.
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Figure 9. Variations in Hurst exponents (HE) values of estimated OHLC Parkinson’s volatility
estimates of BTC, LTC, XRP, BNB, and ETH. The y-axis shows HE values of the cryptocurrency using
simple, corrected, empirical, corrected empirical and theoretical methods of HE computation.
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Figure 10. Variations in Hurst exponents (HE) values of estimated OHLC Rogers and Satchell volatil-
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using simple, corrected, empirical, corrected empirical and theoretical methods of HE computation.
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4.2. Mutual Information of Cryptocurrencies Returns and Estimated Volatilities

We have already observed the existence of correlations between cryptocurrency
datasets. Therefore, we compute mutual information gained due to the dependencies
exposed by log returns, realized volatilities, and OHLC volatility estimates. BTC and LTC
log-returns series gained the highest Mutual-Information (MI), whereas realized volatilities
(RV) estimates show an increasing trend of gained MI as the time window jumps from one
month to one year. We report the highest mutual information shared between ETH and
XRP for all OHLC volatility estimates. Similarly, ETH and BNB stand in the second position,
whereas BTC and LTC in third place. However, MI results do not imply a relationship
between the causes and effects of underlying observations. It is incapable of classifying the
information that is interchanged from shared information. Therefore, we examine transfer
entropy estimates to further develop insight into information flow among estimated volatil-
ities. Figure 12 shows a comparison of estimated volatilities and mutual information gain.
Our MI results based on log returns, RV, and OHLC volatility estimates provide a solid
ground to extend the analysis for bi-directional flow among estimated volatilities datasets.
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Figure 12. Mutual information (MI) of OHLC volatilities and realized volatilities (RV) estimates for
the period one, three, six, and nine months and one year of cryptocurrencies datasets. The y-axis
shows computed values of the MI.

4.3. Transfer Entropies Results of OHLC Volatilities

We examine the TE estimates by dividing the selected cryptocurrencies into two data
sets. We include two equidistant spaced time series prices and estimated volatilities of
BTC and LTC in the first dataset. Similarly, the second dataset has three other individual
cryptocurrencies: XRP, BNB, and ETH. The default value of respective numbers of lags
equals 1 for the two underlying data series. However, the choice of lag value for a time
series generated by a stochastic process is a crucial task [52]. We investigated Shannon
transfer entropy (STE), and effective transfer entropy (ETE) estimates for cryptocurrencies
estimated OHLC volatilities of XRP-ETH, ETH-BNB, BNB-XRP, and BTC-LTC. To calculate
ETE, the default number of shuffles have set to equal 100. The number of bootstrap
replications for each direction of the estimated transfer entropy have set to equal 300. All
transfer entropies are estimated, in both directions, i.e., the first data set to the second
data set, and vice versa. We know from datasets that all cryptocurrencies are highly
volatile. Therefore, we extend our results to further study the behavior of volatilities
by using several estimators based on Open, High, Low, and Close (OHLC) prices. For
example, Table 2 shows basic statistics of estimated Close-to-Close (C-to-C), Garman and
Klass (GK), Parkinson’s, Rogers and Satchell (RS), and Garman–Klass and Yang–Zhang
(GK-YZ) volatilities estimators of BTC and LTC. The values in parenthesis describe LTC
estimates whereas values without parenthesis show BTC results. The TE values for Close-
to-Close, Garman–Klass, and Parkinson’s OHLC volatility estimators from BTC to LTC are
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statistically significant at 0.1%. In the case of LTC to BTC, the significance ranges between
0.1 and 5% for all OHLC estimators. We can observe the changes in estimates of TE by
changing the order of the Markov processes. For example, for OHLC estimators for the flow
of information from BTC to LTC in both directions, if we use the order of Markov processes
from 1 to 5, then statistical significance decreased, respectively, and became not significant
for the chosen orders. The RTE estimates for all OHLC estimates of all cryptocurrencies are
not statistically significant.

Table 2. Basic statistics results of OHLC volatility estimators for BTC and LTC in parentheses.

Estimator C-to-C GK Parkinson RS GK-YZ

No. Obs 2722 2722 2722 2722 2722

Min. 0.034882
(0.047521)

0.056787
(0.089142)

0.058855
(0.081461)

0.052196
(0.089221)

0.056877
(0.091779)

Max. 2.922745
(3.717033)

1.906995
(3.079054)

2.135686
(3.058603)

1.985108
(3.093214)

1.907693
(3.080433)

Q1 0.309654
(0.411025)

0.289040
(0.711020)

0.304833
(0.412632)

0.278607
(0.403002)

0.289474
(0.410253)

Q2 0.677364
(0.959929)

0.623378
(0.613357)

0.645079
(0.900679)

0.622717
(0.858271)

0.624116
(0.869989)

Mean 0.538511
(0.758029)

0.499735
(0.711020)

0.516278
(0.731707)

0.494480
(0.701918)

0.500892
(0.712596)

Median 0.477780
(0.663103)

0.437840
(0.613357)

0.453897
(0.637059)

0.421143
(0.597912)

0.438332
(0.615175)

SD 0.328704
(0.509606)

0.306106
(0.450409)

0.303292
(0.458338)

0.319009
(0.460012)

0.306424
(0.450420)

Skew 1.833196
(0.509606)

1.476352
(1.778702)

1.435663
(1.735067)

0.319009
(1.843520)

1.471404
(1.780488)

Kurtosis 6.790848
(5.644189)

2.748862
(4.488842)

2.987795
(4.408125)

3.082362
(4.589814)

2.727228
(4.489153)

We observe the highest information flow from BTC to LTC and lowest from LTC-BTC
for Rogers and Satchell volatility estimates. Figure 13 shows a comparision of Rogers and
Satchell volatility estimates. We quantify that transfer entropies for Parkinson’s volatility
estimates show significant information in both directions with p-values less than 0.001.

The STE estimates are highest in the case of BNB to XRP for GK, Parkinson’s and
GK-YZ volatility estimators. See, for example, Figure 14. Additionally, all p-values are
statistically significant, varying from 0.001 to 0.05. The trend of STE and ETE estimates
is declining for ETH to XRP. Figure 15 shows a detailed trend analysis of estimates of
transfer and effective transfer entropies of all cryptocurrencies. Figures 16 and 17 depict
the variations in the corresponding p-values of transfer entropy estimates for both datasets,
respectively. In table values of Figure 17, missing p-values represent that transfer entropies
are not statistically significant for the underlying volatility estimates.
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Figure 15. STE and ETE estimates of OHLC volatilities for BTC-LTC (top) and XRP, BNB, and
ETH (bottom) in both directions. The x-axis shows the OHLC estimator, and the y-axis presents
corresponding transfer entropy estimates.
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Figure 16. p-values of ETE for OHLC volatilities of first dataset of BTC-LTC in both directions. The
red dashed line shows trend of the p-values from LTC-BTC. The x-axis shows the OHLC estimator,
and the y-axis presents significance of the p-values.
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Figure 17. p-values of transfer entropy estimates for OHLC volatilities of second dataset (ETH, XRP,
and BNB) of cryptocurrencies in both directions. The missing values in the table show TE results are
not statistically significant for the respective volatility estimates of the cryptocurrency. The x-axis
shows the OHLC estimator, and the y-axis presents significance of the p-values.

5. Discussion and Conclusions

Following the efficient market hypothesis, any hidden information cannot be used
to predict future market dynamics, and market changes can be represented by a normal
distribution [54]. However, we observe cryptocurrency returns dynamics do not follow
normality assumption. The heavy-tailed phenomena fit well with cryptocurrency log
returns that exhibit higher kurtosis than the normal distribution [55–57]. We noticed a
prominent count of anomalies developed in all the datasets that oppose efficient market
characteristics. In this paper, to investigate and support the long-term existence of memory
in cryptocurrency data, in the first step, we performed an analysis based on the computation
of Hurst exponents of log returns and OHLC volatility estimates. We summarize our results
based on Hurst exponent analysis as follows.

• We conclude that underlying returns and estimated volatilities movements of five
cryptocurrencies are not independent over time;

• All datasets contain positive long-term autocorrelation, which implies persistent time
series with long-term memory and connection with the Hurst exponent;

• We obtained all HE values larger than 0.5 for all returns series data that indicate a
fractal model or long-run dependence. Therefore, these data series might attempt to
express a persistent behavior and a nonlinear variance growth;
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• A choice of fractional Brownian motion model for underlying data series can incorpo-
rate the variance that does not grow linear over time;

• Traditionally, economists investigate and execute analyses under the efficient market
hypothesis following the standard Brownian motion model. Our results recommend
that the volatility series of these cryptocurrencies tend to grow faster over time because
all Hurst exponents are higher than 0.5 for all OHLC estimates;

• The Hurst exponents greater than 0.5 indicates an inefficient market. Therefore,
investors, risk managers, and policymakers could distinguish the underlying returns
or estimates of volatility series based on the value of the Hurst exponent;

• Our study proposes that log returns and estimated volatility series of Bitcoin and
the other four cryptocurrencies deviate from the random walk model and mean
reverting characteristics.

Several studies have shown the existence of long memory in cryptocurrency’s returns
and volatility. For instance, Soylu et al. tested for the long memory in Ripple, Ethereum,
and Bitcoin and uncovered that the squared returns of three cryptocurrencies have a
significant long memory [58]. Recently, Wu and Chen have shown that inefficiency and
long memory exist in Bitcoin returns over different periods [59]. Lahmiri et al. empirically
signify the existence of long-range memory in Bitcoin market volatility by employing the
fractionally integrated GARCH (FIGARCH) framework. The results of the study provide
strong evidence against the efficient market hypothesis [60]. Rambaccussing and Mazibas
examined long memory in cryptocurrencies using other novel tests—the log-periodogram
bias test, the skip-sampling test, standard GPH, and local Whittle procedures. The study
reports that long memory exists only in Ethereum returns. However, these tests fail to reject
the null hypothesis of long memory in most cases across different volatility proxies [61]. In
this study, we address and focus on the existence of long memory in five cryptocurrencies
using OHLC volatility models. Our results also support the conclusions of previous studies
based on different volatility modeling methods. Lastly, for this study, we observed ACF
of both squared and absolute returns of all cryptocurrencies are significant for almost all
lags and decay slowly. The value of the Hurst exponent is sensitive to the number of time
series observations, and its values vary for a shorter and longer data set. We can expect an
increase in the Hurst exponent for a large sample, and shorter intervals or high frequencies
would anticipate more noise in the data [62].

In the second step, after establishing the existence of long-memory in all cryptocurren-
cies, we explained the mutual information developed between the log returns, estimated
realized volatilities, and OHLC volatility estimates of Garman–Klass, Parkinson’s, Roger–
Satchell, and Garman–Klass and Yang–Zhang. Our results show the following facts;

• ETH and BNB, and BTC and LTC shared the highest mutual information;
• For OHLC volatility estimates, ETH and XRP shared the highest mutual information

and BTC and LTC show almost a constant trend of sharing mutual information;
• The overall trend of mutual information for realized volatility estimates of BTC and

LTC and ETH, XRP, and BNB have increased over time, spanning from one month to
one year.

However, mutual information does not provide dynamic and directional information.
Therefore, in a third step, we extend our study and report the analysis of the bi-directional
flow of OHLC estimated volatilities based on transfer entropy methods. We present
empirical results based on OHLC volatilities as follows.

• The Shannon and effective transfer entropies are statistically significant for BTC
and LTC in both directions. Similarly, for the second dataset (ETH, BNB, XRP) of
underlying cryptocurrencies, all p-values for transfer entropies of OHLC estimators
are statistically significant;

• Consequently, in the case of transfer entropy estimates of OHLC volatilities, we report
the highest information flow from BTC to LTC for Rogers and Satchell. Therefore,
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BTC is found to be informationally dominant, and extreme changes in BTC volatility
should be incorporated consequently into the volatility of LTC;

• We can also examine the net information flow from BTC and LTC. We illustrate
from Figure 15 that the net information flow is positive for C-to-C, Parkinson’s
and RS estimates, meaning that BTC informationally dominates LTC in most of the
OHLC estimates;

• We observed the log returns series of all cryptocurrencies deviate from the normal
distribution and exhibit fat-tailed behavior. Consequently, the statistical analysis of
estimated OHLC estimates describes rightly skewed volatility distributions. For exam-
ple, Table 2 shows a case of BTC and LTC following high kurtosis and skewness values
of LTC and supports the fat-tailed characteristics. Thus, the data in the distribution
tails has extreme relevance, and computation of information flow between volatilities
of digital currencies has provided an insight to assess the dominance of underlying
digital currency;

• Similarly, for BNB and XRP, the net information flow is positive for all volatility
estimates, and BNB prevails over the XRP and ETH in the sense of information flow;

• We conclude that the null hypothesis of no information flow between the estimated
volatilities of BTC and LTC and ETH, BNB, and XRP can be rejected at any statistical
significance level. However, the TE results depend on the choice of the number of
bins into which a given dataset is partitioned and, on the block-length chosen for the
transferee and transferor variable.

In this paper, we proposed the employment of different OHLC volatility estimators
for cryptocurrency data to quantify the flow of information. We believe the practicable
addition of open, high, low, and close volatility estimators for quantifying the transfer
entropies between highly correlated datasets will provide an additional choice to compare
the results with other existing volatility estimators such as stochastic volatility models.
We conclude our results that the volatilities of all datasets show a behavior change over
time and fractal and disordered characteristics. The OHLC estimates of volatilities shared
correlated nature. Our results are also coloborating with the previous literature on infor-
mation flow between log returns of cryptocurrencies and other financial time series. For
example, recently, Tong et al. [9] also studied Bitcoin price dynamics and showed fractal
and chaotic characteristics along with long-memory behavior and a positively correlated
nature. Additionally, Assaf et al. [41,42] and Keskin and Aste [63] used information trans-
fer between time series using transfer entropy methods to detect the bi-directional flow
between BTC and other cryptocurrency’s prices. Our results are compatible with the ones
presented in the previous studies and obtained with different econometric methods. See,
for example, [38,39,64,65]. In financial literature, researchers have studied information
systems and the effects of bad news on stock price crashes for early warning to prevent the
risk of bankruptcy [66,67]. Therefore, our results would be practicable for investors, risk
managers, and policymakers to understand the investment strategies based on information
flow dynamics of volatilities.
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