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Abstract: In the last seven years, Kaniadakis statistics, or κ-statistics, have been applied in reactor
physics to obtain generalized nuclear data, which can encompass, for instance, situations that lie
outside thermal equilibrium. In this sense, numerical and analytical solutions were developed for
the Doppler broadening function using the κ-statistics. However, the accuracy and robustness of the
developed solutions contemplating the κ distribution can only be appropriately verified if applied
inside an official nuclear data processing code to calculate neutron cross-sections. Hence, the present
work inserts an analytical solution for the deformed Doppler broadening cross-section inside the
nuclear data processing code FRENDY, developed by the Japan Atomic Energy Agency. To do
that, we applied a new computational method called the Faddeeva package, developed by MIT, to
calculate error functions present in the analytical function. With this deformed solution inserted in
the code, we were able to calculate, for the first time, deformed radiative capture cross-section data
for four different nuclides. The usage of the Faddeeva package brought more accurate results when
compared to other standard packages, reducing the percentage errors in the tail zone in relation to the
numerical solution. The deformed cross-section data agreed with the expected behavior compared to
the Maxwell–Boltzmann.

Keywords: Kaniadakis; κ-statistics; neutron cross-section; Doppler broadening function; Faddeeva
function

1. Introduction

Over the last 20 years, the Kaniadakis entropy [1] and its power-law tailed statistical
distributions have been applied in many different fields, such as finance [2], astrophysics [3–6],
game theoretical equilibrium [7], gravitational physics [8,9], dusty plasma [10] and so
many others.

In nuclear reactor physics, 2015 marked the first idealization of applying the κ-
deformed statistics, intending to describe situations in non-thermal equilibrium inside a
nuclear reactor, with the first article on this being published in 2017 [11]. The Doppler
broadening function is utilized to represent the thermal nuclear movement. This function
is commonly considered with a medium in thermal equilibrium with a temperature of
T and using the Maxwell–Boltzmann distribution to describe the random velocities of
the nuclei. However, to comprehend situations that lie outside the thermal equilibrium,
Guedes et al. [11] proposed a very new expression for a deformed Doppler broadening
function considering the Kaniadakis statistics:

ψκ(ξ, x) =
ξ

2
√

π
B(κ)

∫ +∞

−∞

1
1 + y2 i expκ

[
−ξ2(x− y)2

4

]
dy, (1)
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where,

x ≡ 2
Γ
(E− E0); (2)

ξ ≡ Γ(
4E0KBT

A

) 1
2

; (3)

κ is a deviation parameter that measures the deviation concerning the Maxwell–Boltzmann
distribution [1,12], kB is the Boltzmann constant, E0 is the resonant energy, E is the energy
of the incident neutron, A is the mass number, and Γ is the total width of the resonance as
measured in the laboratory coordinates. Furthermore,

y ≡ 2
Γ
(ECM − E0); (4)

B(κ) = (2|κ|)
3
2

(
1 +

1
2

3|κ|
)Γ
(

1
2|κ| +

3
4

)
Γ
(

1
2|κ| −

3
4

) . (5)

i expκ(z) ≡
(√

1 + κ2z2 − κ2z
1− κ2

)
expκ(z); (6)

z =
−ξ2(x− y)2

4
(7)

and expκ is the deformed exponential function, first introduced by Kaniadakis [1]:

expκ(x) ≡
(√

1 + κ2x2 + κx
) 1

κ . (8)

However, the numerical calculation of Equation (1) can represent a considerable ad-
ditional amount of computer processing time, especially when inserted in nuclear data
processing codes. In order to surpass this issue, Abreu et al. [13] proposed an analytical
solution based on obtaining a differential equation and its solution to represent the de-
formed Doppler broadening function using the Kaniadakis distribution [14]. This analytical
solution proved to be up to five times faster than the numerical one [14]. Analytical so-
lutions were also successfully applied in order to obtain faster methods for the Doppler
broadening function considering the standard Maxwell-Boltzmann statistics [15] and Tsallis
statistics [16].

The validation of the applicability of the Kaniadakis statistic can be performed in
other areas through observational data, e.g., cosmic ray flux [12], stellar-residual-radial-
velocities [6] and Stellar rotational velocities [4]. However, this kind of approach is not
directly applicable to nuclear reactor physics, given the impossibility of observing and
measuring the distribution of relative velocities between neutrons and nuclei in a nuclear
reactor. Therefore, one of the possible ways to validate the use of κ-statistics is through
numerical simulations, similar to in other scientific topics, e.g., relativistic plasmas under
the effect of wave-particle interactions [3], non-extensive random matrix theories [17] and
Jeans instability of self-gravitating systems [18].

Nevertheless, the accuracy and robustness of the developed solutions contemplating
the κ distribution can only be appropriately verified if it is applied in a nuclear data
processing code, e.g., FRENDY [19,20], NJOY [21], PREPRO [22] and NECP-Atlas [23].
These systems can process official evaluated nuclear data libraries such as ENDF [24],
CENDL [25], JEFF [26] or JENDL [27]. Until the present work, the only results that have
been presented for neutron cross-sections considering the Kaniadakis distribution were
calculated without doing this [28,29].
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Thus, this study’s purpose is to calculate deformed neutron cross-sections of radioac-
tive capture—in the resolved region—for the first time using the Kaniadakis distribution
through an analytical solution inside a nuclear data processing code: the FRENDY.

Additionally, this work aims to apply an alternative numerical methodology to cal-
culate the challenging error functions (with complex arguments) present in the analytical
solution of the deformed Doppler broadening function.

2. Methodology

The Japan Atomic Energy Agency (JAEA) developed the nuclear data processing code
FRENDY (From Evaluated Nuclear Data Library to any application) to treat the most recent
nuclear data format, such as the evaluated nuclear library JENDL [27], also developed
by JAEA. It was built using the object-oriented language C++ because of its modularity,
maintainability, flexibility and portability [30].

Moreover, the FRENDY also intends to work in the future with the recent nuclear data
format Generalized Nuclear Data Structure (GNDS), which the current processing codes
cannot treat without a considerable amount of format revision [30].

To calculate neutron cross-sections in reactor physics, one can use different formalisms
such as single-level Breit-Wigner (SLBW), Multi-level Breit-Wigner (MLBW), Adler–Adler
and Reich-Moore [30]. To develop the integral formulation for the deformed Doppler
broadening function, Equation (1), Guedes et al. [11] used the Single-level one, even though
it is not the most recent method. According to the authors, that choice was made because it
is easy to implement, it can use published resonance parameters, and it can be Doppler-
broadened analytically. It also can be used in reactor physics calculations [11]. Furthermore,
the SLBW is the only representation available, for instance, for the ENDF-6 format in the
unresolved region [30,31].

2.1. Calculating Standard Neutron Cross-Sections with FRENDY

The FRENDY code, by default, uses the Kernel broadening method to more accurately
calculate the Doppler-broadened cross-sections in the resolved resonance considering the
standard Maxwell-Boltzmann distribution [30]. However, this method demands high
computational effort, increasing computational time [30]. Considering this and the fact that
the deformed Doppler broadening function using the Kaniadakis statistics adds an extra
level of complexity and, consequently, higher computational times, the present work aims
to use the single-level Breit-Wigner to calculate the deformed neutron cross-sections in the
resolved region.

One of the advantages of the SLBW method is the possibility of using the ψ − χ
method. Through this method, one can represent the standard radiative neutron cross-
sections by [30]:

σγ(E, T) =
4π

k2 ∑j gJ ∑r Γnr
Γγr

Γr2 ψ(ξ, x), (9)

σγ is the radiative capture cross-section, Γr the total width, Γγr the radiative capture width,
Γnr the neutron widths, k the neutron wave number, gJ a spin statistical factor and E an
incident neutron energy.

To calculate the standard Doppler broadening function, ψ(ξ, x), inside the FRENDY,
Tada, Kunieda and Nagaya [30] adopted the four-pole Padé approximation to reduce the
calculation time. By using this method, the expression for the standard Doppler broadening
function is represented by:

ψ(s, x) ∼=
ξ
√

π

2
Re[w(z)], (10)

where,

s =
ξ

2
(x− y). (11)
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w(z) represents a scaled complex complementary error function, commonly known as the
Fadeeva or Krump function [32]. It is defined by [33]:

w(z) = e−z2
[1− er f (−iz)] (12)

er f (z) ≡ 2√
π

∫ z

0
e−t2

dt, (13)

z = u + ih (14)

u = (ξ/2)·x (15)

h = ξ/2 (16)

2.2. Calculating Deformed Neutron Cross-Sections with FRENDY

As mentioned earlier, the analytical solution of the Doppler broadening function using
the Kaniadakis statistics, proposed by Abreu et al. [13] is obtained through a differential
equation and its respective resolution [14], given by:

ψk(ξ, x) = Λ(x, ξ)
[
D(ξ, x) + Ωg(ξ, x)

]
, (17)

where,

Λ(ξ, x) = exp
(

ξ2 − ξ2x2

4

)
· ξ
√

πB(κ)
4

; (18)

D(ξ, x) ≡ [∆(ξ)·cos(Θ)]; (19)

Ωg(ξ, x) ≡ Π(x, ξ)·[iΩ1(ξ, x) + Ω2(ξ, x)]; (20)

∆(ξ) =
2− 2er f

(
ξ
2

)
1− κ2 . (21)

Π(ξ, x) =

√
ξ4 − 2ξ2κ2

−ξ2 + 2κ2 · exp
(
−κ2

2

)
; (22)

Ω1(ξ, x) = sin(Θ)·
[
er f (P1)κ

2 − er f (P1) + er f (P2)κ
2 − er f (P2)

]
; (23)

Ω2(ξ, x) = cos(Θ)·
[
2er f (P3)κ

2 − 2er f (P3)− er f (P1)κ
2 + er f (P1) + er f (P2)κ

2 − er f (P2)
]
; (24)

P1(ξ, x) =
−iξ2x +

√
ξ4 − 2ξ2κ2

2ξ
; (25)

P2(ξ, x) =
−iξ2x−

√
ξ4 − 2ξ2κ2

2ξ
; (26)

P3(ξ, x) =

√
ξ4 − 2ξ2κ2

2ξ
; (27)

Θ(ξ, x) =
x
2

√
ξ4 − 2ξ2κ2; (28)

To calculate the deformed cross-sections using the Kaniadakis distribution, one needs
to substitute the real part of the Faddeeva function for the analytical solution, Equation (17),
in the definition of cross-sections in the code, represented by Equation (9), so that:

σγ(E, T) =
4π

k2 ∑j gJ ∑r Γnr
Γγr

Γr2 ψκ(ξ, x), (29)
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One of the main challenges in calculating the deformed analytical solution considering
the Kaniadakis distribution is calculating the error functions with complex arguments
represented in Equations (23) and (24).

The so-called Gaussian error function, er f (x), is defined as follows [33]:

er f (x) =
2√
π

∫ x

0
e−t2

dt. (30)

Though these error functions only mean relevance in the tails of the cross-section
curves—far from the resonance peak—it is of great significance to implement suitable
methodologies to elevate this region’s precision. These regions—due to lower absolute
values—usually present the most significant percentual errors.

The previous works that used the analytical solution implemented the default error
functions present in the “special” module of the “scipy” library (Disponible in:
https://docs.scipy.org/doc/scipy/reference/special.html accessed on 7 July 2022). How-
ever, one cannot find until the date of publishing this manuscript a similar module inside
C++; i.e., there is not a unit that directly calculates error functions with complex arguments.

Therefore, the present paper implemented a new methodology to calculate these
complex error functions to overcome this problem. The chosen method was the Faddeeva
method, developed by Steven Johnson [34]. This methodology has the advantage of using
different algorithms to calculate the erf function, Equation (26), according to the value of
z. For sufficiently large values of |z|, the package uses a continued-fraction expansion for
w(z), analogous to those described by Gautschi [35] and Pope and Wijers [36]. Meanwhile,
for smaller values of |z| or for z close to the real axis [34], Johnson used the algorithm 916,
developed by Zaghloul and Ali [34]. According to Johnson, “algorithm 916 is competitive
and faster for smaller values of |z| and also has better relative accuracy in Re[z] for some
regions near the real-z-axis” [34].

In fact, by using the Faddeeva method to calculate the complex error functions inside
the deformed analytical Doppler broadening function, ψκ(ξ, x), presented more accurate
results in the tail region. In the next section, these results will be shown.

After conducting this modification, we used the FRENDY to calculate the deformed
radiative capture neutron cross-section. Initially, we calculated the deformed cross-sections
using the same adopted range of energy in the JENDL-4.0 library [27]. After that, two
different resonance peaks were selected in order to compare with the results considering
the Maxwell–Boltzmann distribution. Four nuclides in JENDL-4.0 are considered. The
major calculation conditions are summarized as follows:

• Method: single-level Breit-Wigner;
• Nuclides: Pu238, Tc99, Gd155 and Gd157;
• Temperatures (K): 1500, 2000 and 2500;
• Maximum number of points (h_max): 10,000;
• Range of energy: 10−2 to 107 eV;
• Deformation in relation to the MB distribution: κ = 0.1.

3. Results and Discussion

Calculating the numerical deformed Doppler broadening function using the Kani-
adakis entropy can be very computationally costly. In fact, in a recently published pa-
per [14], the analytical solution provided by Equation (9) was approximately 4.6 times
faster than the numerical one.

However, the analytical solution represented by Equation (9) presents higher values of
percentual errors to the curve’s tail, far from the resonance peak. These higher values are
linked to the small values in these regions and the fact that the error functions, including
those for P1 and P2, Equations (25) and (26), tend to present a more significant influence in
these specific regions, as one can see in Figures 1 and 2.

https://docs.scipy.org/doc/scipy/reference/special.html
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Figure 1. The imaginary part of the error function for P1, P2 and P3 considering two different values
of ξ: (a) = 0.05 and (b) = 0.15. The real part of these error functions is close to zero (∼= 10−18 ) and,
consequently, presents little relevance.
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Figure 2. Deformed Radiative capture cross-section for Plutonium 238 considering 1500 K and k = 0.1.

Consequently, the application of a new, more robust method for the calculation of
these functions could present an improvement to the deformed Doppler broadening func-
tions. In fact, the Faddeeva package results showed better numbers, as seen in Tables 1–3,
representing the percentual error of the analytical solution in relation to the numerical one.

Table 1. The percentual errors of the analytical solution in relation to the numerical one using the
Numpy package (Python) to calculate the included error functions.

ξ x = 0 x = 0.5 x = 1 x = 2 x = 4 x = 6 x = 8 x = 10 x = 20 x = 40

0.05 0.02 0.02 0.00 0.02 0.02 0.02 0.02 0.02 0.06 0.67
0.10 0.04 0.04 0.04 0.04 0.05 0.05 0.06 0.09 0.73 12.55
0.15 0.06 0.06 0.06 0.06 0.07 0.11 0.17 0.32 3.77 10.39
0.20 0.08 0.08 0.08 0.09 0.12 0.21 0.44 0.85 9.60 4.48
0.25 0.10 0.09 0.10 0.11 0.19 0.41 0.90 1.89 10.91 3.08
0.30 0.11 0.11 0.12 0.15 0.29 0.71 1.67 3.50 6.89 3.17
0.35 0.13 0.13 0.15 0.19 0.44 1.16 2.78 5.46 5.00 4.84
0.40 0.15 0.15 0.17 0.23 0.63 1.75 4.09 7.04 4.09 3.23
0.45 0.17 0.18 0.19 0.29 0.87 2.51 5.42 7.64 3.82 3.23
0.50 0.19 0.20 0.22 0.36 1.18 3.37 6.41 7.32 3.49 3.28
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Table 2. The percentual errors of the analytical solution in relation to the numerical one using the
Faddeeva package (C++) to calculate the included error functions.

ξ x = 0 x = 0.5 x = 1 x = 2 x = 4 x = 6 x = 8 x = 10 x = 20 x = 40

0.05 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.06 0.67
0.10 0.04 0.04 0.04 0.04 0.04 0.05 0.06 0.08 0.68 10.61
0.15 0.06 0.06 0.06 0.06 0.07 0.09 0.15 0.26 3.40 8.00
0.20 0.08 0.08 0.08 0.08 0.10 0.17 0.34 0.71 8.17 3.08
0.25 0.10 0.10 0.10 0.10 0.15 0.31 0.73 1.59 8.89 2.55
0.30 0.11 0.11 0.12 0.13 0.22 0.55 1.37 2.96 5.73 2.41
0.35 0.13 0.13 0.14 0.16 0.32 0.89 2.28 4.55 3.72 2.34
0.40 0.15 0.15 0.16 0.19 0.45 1.37 3.36 5.82 2.97 2.30
0.45 0.17 0.17 0.18 0.23 0.63 1.97 4.42 6.28 2.68 2.28
0.50 0.19 0.19 0.20 0.27 0.85 2.63 5.18 5.92 2.54 2.26

Table 3. The percentual difference between Tables 1 and 2.

ξ x = 0 x = 0.5 x = 1 x = 2 x = 4 x = 6 x = 8 x = 10 x = 20 x = 40
0.05 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.01
0.10 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.05 1.94
0.15 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.06 0.38 2.39
0.20 0.00 0.00 0.00 0.01 0.02 0.04 0.09 0.14 1.44 1.40
0.25 0.00 0.00 0.00 0.01 0.04 0.09 0.17 0.30 2.01 0.53
0.30 0.00 0.00 0.00 0.02 0.07 0.16 0.30 0.54 1.16 0.77
0.35 0.00 0.00 0.01 0.03 0.12 0.26 0.50 0.90 1.28 2.50
0.40 0.00 0.00 0.01 0.04 0.18 0.38 0.73 1.21 1.12 0.92
0.45 0.00 0.01 0.02 0.06 0.24 0.55 1.01 1.37 1.14 0.95
0.50 0.00 0.01 0.02 0.09 0.33 0.73 1.23 1.40 0.95 1.02

By analyzing Table 3, it is possible to note the lower values of percentual error when
one uses the Faddeeva method to calculate the existing error functions in the deformed
analytical solution of the Doppler broadening function using the Kaniadakis entropy. The
maximum percentual reduction was 2.5%.

Deformed Cross-Sections with FRENDY

After implementing the deformed analytical solution for the Doppler broadening func-
tion inside FRENDY’s test module, we were able to generate data for the deformed radiative
cross-sections for different elements. Considering the adopted method for calculating these
quantities (SLBW), FRENDY’s default package offers the calculation of cross-sections for
two important elements: Plutonium 238 and Technetium 99. The former element (Pu238) is
of crucial importance, for instance, to space exploration [37] and Mars colonization [38,39].
In addition, 80% of the scans performed in nuclear medicine departments are made from
the latter element [40]. Both can be produced in research nuclear reactors, such as the High
Flux Isotope Reactor in the United States [41] and the Moly project of the recent Research
Reactor Jules Horowitz (JHR), still under construction in France [40].

Additionally, the present work generated data for the isotopes 155 and 157 (Figures 2–5)
of gadolinium, which is widely used for medical applications [42], radiation shielding [43],
and also space exploration [44].
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In order to see more closely and compare the standard Maxwell-Boltzmann behavior
with the Kaniadakis, we selected two different resonance peaks—apart from each other—
at three different temperatures (Figures 6–13) to confirm the expected curve attenuation
illustrated in previous works [13,14,29,45]:
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1457 eV peak.

As one can see, the deformed curves presented the expected behavior since there is
an attenuation of the resonance curves, especially on the peaks, compared to the standard
neutron radiative cross-section using the Maxwell–Boltzmann entropy. In fact, the relative
error between the Maxwell–Boltzmann and Kaniadakis peaks is around 1%, which is the
same order of magnitude (~1%) obtained in previous works for the calculations of deformed
Doppler broadening functions using the Kaniadakis entropy.

4. Concluding Remarks

After 20 years of development of the Kaniadakis entropy and seven years of its
application in nuclear reactor physics, this work presents for the first-time results for
deformed neutron cross-sections considering the κ statistics using an official nuclear data
processing code, FRENDY, and, consequently, official nuclear data (JENDL 4.0). This
work was carried out by implementing the analytical solution for the deformed Doppler
function using the Kaniadakis statistics, ψκ , inside the single-level Breit–Wigner module
in the FRENDY. We used MIT’s Faddeeva method to calculate the error functions inside
the analytical solution. This implementation showed a percentual error reduction when
compared to the numerical solution of ψκ .

With the implementation of ψκ inside FRENDY, it was possible to calculate deformed
radiative capture cross-sections for four relevant nuclides: Pu238, Gd 155, Gd 157 and
Tc99. Next, we selected two different resonance peaks of each nuclide to compare the data
with the standard Maxwell-Boltzmann curves generated by the FRENDY code. The results
agreed with previous calculations conducted out of a nuclear data processing code and
without official nuclear data libraries.

Different from other areas, the evaluation of the viability of Kaniadakis entropy in
the area of the nuclear reactor physics cannot be conducted observationally. Therefore,
it is of great relevance to implement this methodology in nuclear data processing codes
where it is possible to deal with accurate data. Thus, the present work can be interpreted as
an essential step in validating the applicability of the Kaniadakis entropy in the nuclear
fission area.
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