
Citation: Wu, Q.; Chen, L.; Ge, Y.;

Feng, H. Four-Objective

Optimization of an Irreversible

Magnetohydrodynamic Cycle.

Entropy 2022, 24, 1470. https://

doi.org/10.3390/e24101470

Academic Editor: Michel Feidt

Received: 17 September 2022

Accepted: 11 October 2022

Published: 14 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Four-Objective Optimization of an Irreversible
Magnetohydrodynamic Cycle
Qingkun Wu 1,2,3, Lingen Chen 1,2,3,* , Yanlin Ge 1,2,3 and Huijun Feng 1,2,3

1 Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
2 Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment,

Wuhan 430205, China
3 School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
* Correspondence: lingenchen@hotmail.com

Abstract: Based on the existing model of an irreversible magnetohydrodynamic cycle, this paper uses
finite time thermodynamic theory and multi-objective genetic algorithm (NSGA-II), introduces heat
exchanger thermal conductance distribution and isentropic temperature ratio of working fluid as
optimization variables, and takes power output, efficiency, ecological function, and power density
as objective functions to carry out multi-objective optimization with different objective function
combinations, and contrast optimization results with three decision-making approaches of LINMAP,
TOPSIS, and Shannon Entropy. The results indicate that in the condition of constant gas velocity,
deviation indexes are 0.1764 acquired by LINMAP and TOPSIS approaches when four-objective
optimization is performed, which is less than that (0.1940) of the Shannon Entropy approach and
those (0.3560, 0.7693, 0.2599, 0.1940) for four single-objective optimizations of maximum power
output, efficiency, ecological function, and power density, respectively. In the condition of constant
Mach number, deviation indexes are 0.1767 acquired by LINMAP and TOPSIS when four-objective
optimization is performed, which is less than that (0.1950) of the Shannon Entropy approach and those
(0.3600, 0.7630, 0.2637, 0.1949) for four single-objective optimizations, respectively. This indicates that
the multi-objective optimization result is preferable to any single-objective optimization result.

Keywords: finite time thermodynamics; NSGA-II algorithm; irreversible MHD cycle; multi-objective
optimization; deviation index; performance comparison

1. Introduction

Finite time thermodynamic (FTT) theory has been widely used in various heat en-
gine cycles and has made great progress [1–38]. In addition to analyzing the power
output (P) and efficiency (η) performance of common engines, FTT has also been ap-
plied to heat pumps [39–46], refrigerators [47–55], micro-scale cycles [56–59], chemical
machines [60–66], etc.

Angulo-Brown [67] firstly put forward ecological function (E) and analyzed the opti-
mal performance of the Carnot engine cycle. Yan et al. [68] made amendments on this basis.
Finally, Chen et al. [69] put forward a unified definition of E according to exergy analysis.
Tyagi et al. [70] analyzed the irreversible Brayton cycle based on the E optimization crite-
rion. Moscato et al. [71] researched the P, η and entropy generation rate (σ) characteristics
of irreversible Otto and Diesel cycles after optimization based on E. Fernández [72] studied
the η range of quantum heat engines working under the E. Jin et al. [73] optimized the E of
gas turbine waste heat recovery and recompression S-CO2 cycle.

Sahin et al. [74] first defined power density (Pd) as an objective function (OF) to analyze
the characteristics of the reversible Joule-Brayton cycle and discovered that the engine has
higher η and smaller sizes in the case of maximum Pd. Maheshwari et al. [75] researched
the characteristics of radiant heat engines under the case of maximum Pd. Wang et al. [76]
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compared the characteristics of the Atkinson cycle in the cases of maximum P and maxi-
mum Pd. Gonca [77,78] analyzed the characteristics of the Dual-Atkinson cycle [77] and
Otto cycle gasoline engine [78] in the case of actual P and actual Pd. Karakurt et al. [79]
analyzed and compared the maximum Pd of the supercritical CO2 Brayton cycle. Gonca
and Sahin [80] researched a modified Dual cycle under the condition of maximum Pd.

With the increase of OFs, conflicts may occur when multiple OFs are optimized
simultaneously. Therefore, it is necessary to coordinate multiple OFs. This paper takes P, η,
E, and Pd as OFs. P represents the amount of work done per unit of time; η indicates the
utilization rate of energy; E reflects the tradeoff between P and σ; Pd reflects the tradeoff
between P and thermal engine size. When one of the OFs takes the maximum value, the
other OFs may have poor performance. For example, when the P takes the maximum value,
the σ of the system is also large. When the E is used as the OF, although the P is reduced
to a certain extent, the σ is greatly reduced. The multi-objective optimization (MOO) is
to put the four OFs in an ideal state so that the cycle can achieve better performance.
As an excellent multi-objective algorithm, NSGA-II [81] has been employed to MOO
by many scholars. Li et al. [82] conducted MOO on the maximum P, η, and E of the
solar disk Brayton system based on NSGA II. Li et al. [83] applied RSM and NSGA-II to
conduct MOO on the temperature difference, pressure drop, and maximum temperature
of the small U-shaped channel cold plate containing SiO2 Nanofluidsm and obtained the
corresponding values. Ge et al. [84] studied the organic Rankine cycle under two different
conditions and solved it by NSGA-II with exergy efficiency and heat recovery efficiency
as OFs. Abedinnezhad et al. [85] carried out MOO of irreversible Dual-Miller cycle with
η, ecological coefficient of performance and E as OFs. Yusuf et al. [86] used NSGA-II to
optimize some parameters of the centralized photovoltaic thermoelectric hybrid system.
Based on NSGA II, Xiao et al. [87] proposed a steam power system design and optimization
strategy considering pollutant emission reduction technology to obtain the balance between
environmental and economic objectives. Xu et al. [88] used NSGA-II to conduct MOO on
four objectives for the Stirling heat engine considering various losses. Zang et al. [89] used
the FTT to conduct thermodynamic analysis of the irreversible porous media cycle and
utilized NSGA-II to conduct MOO of four objectives: dimensionless P(P), η, dimensionless
E(E), and dimensionless Pd(Pd).

As a new type of cycle, the magnetohydrodynamic (MHD) cycle has been widely
concerned because of its high efficiency and low pollution. The MHD generator allows
the high-speed flow of ions to cut the magnetic induction line to generate current, so it
is also called plasma power generation technology. At present, the research on MHD
power generation technology is mainly focused on taking mineral fuel as the working fluid,
while MHD power generation device with liquid metal as the working fluid is studied
as the backup device of space power, and the capacity of the largest MHD generator has
exceeded 32,000 kW. With the development of controlled thermonuclear reaction research,
fusion reactive androgen MHD power generation devices may become the main form of
the new central power station. There are different gas conditions in the MHD generator;
therefore the two conditions of constant gas velocity (CGV) and constant Mach number
(GMN) need to be discussed. FTT has also been applied to study the performances of
MHD cycles. Aydin et al. [90] derived the P and η of the irreversible MHD cycle, but the
loss of the compressor was ignored and only the loss of the generator was considered.
Sahin et al. [91] studied the η of irreversible MHD cycles at maximum Pd. Assad [92,93]
established an irreversible MHD cycle with constant temperature heat sources and studied
the P and η of the cycle. Chen et al. [94] established an irreversible MHD cycle with
variable temperature heat reservoirs and studied the influence of relevant parameters on P
and η. Chen et al. [95] structured a regenerative MHD cycle and studied the influence of
several main irreversibilities on the thermodynamic characteristic of the cycle. Wu et al. [96]
performed MOO for an endoreversible MHD cycle with OFs of P, η, E, and efficient power.

Based on the work of Ref. [96], this paper will conduct MOO for an irreversible MHD
cycle with both heat transfer loss and internal loss by NSGA-II (compared with the results
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of endoreversible MHD cycle [96], the results in this paper have a quantitative change).
Heat exchanger (HEX), thermal conductance distribution (u), and isentropic temperature
ratio (x) of working gas will be selected as optimization variables, and P, η, E, and Pd will
be taken as OFs. Through the decision-making approaches of LINMAP [97], TOPSIS [98,99],
and Shannon Entropy [100], the results of optimization with different OF combinations
will be acquired, the deviation index (D) [101] will be contrasted, and then the optimal
scheme with the minimum D will be acquired. The major advances of this paper are
the introduction of internal loss in the cycle model and the introduction of OF Pd, which
replaces efficient power.

2. Cycle Model

Figure 1 shows an MHD cycle layout and T − s diagrams. In Figure 1b, where
1→ 2 is the irreversible compression process in the compressor, 2→ 3 is the isobaric
heat absorption process at the high-temperature side, 3→ 4 is the irreversible expansion
process in the MHD generator, and 4→ 1 is the isobaric heat release process at the low
temperature side. Processes 1→ 2s and 3→ 4s are isentropic compression and expansion
processes. The circulating working gas is assumed to be an ideal gas and has a constant
thermal capacitance rate Cw f .
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The heat absorption rate (QH) and the heat release rate (QL) of the cycle are:

QH = Cw f EH(TH − T2) = Cw f (T3 − T2) (1)

QL = Cw f EL(T4 − TL) = Cw f (T4 − T1) (2)

where EH and EL are the effectivenesses of the HEXs on t high-temperature and low-
temperature sides, and EH = 1− e−(UH/Cw f ), EL = 1− e−(UL/Cw f ); UH and UL are the
thermal conductance of the HEXs on the high-temperature and low-temperature sides.

When the total thermal conductance of the HEXs is constant, that is, UH + UL = UT ,
the thermal conductance distribution is defined as u = UH/UT , then, there are

UH = uUT (3)

UL = (1− u)UT (4)

The P, η, E, and Pd are expressed as

P = QH −QL (5)

η = 1− QL
QH

(6)

E = P− T0σ (7)

Pd =
P
V4

(8)

where T0 is the surrounding temperature, and σ is the entropy generation rate:

σ =
QL
TL
− QH

TH
(9)

where V4 is the maximum specific volume at the generator outlet. Since the specific volume
V1 and temperature T1 at the compressor inlet are known and the gas is an ideal one, V4
can be expressed as

V4 =
T4

T1
V1 =

T4

T2

T2

T1
V1 (10)

The momentum and energy equations in the MHD generator for one-dimensional
steady-state flow are:

ρv(dv/dZ) + dp/dZ = −JB (11)

ρv[d(0.5v2 + h)/dZ] = −Je (12)

where ρ, v, h, and p are the gas density, velocity, enthalpy, and pressure, Z is the axial
direction of the generator, J is the electric current density, B is the magnetic field, and e is
the electric field.

The MHD generator efficiency and compressor efficiency are expressed as

ηe = Je/(JvB) = e/(vB) (13)

ηc = (T2S − T1)/(T2 − T1) (14)

2.1. Constant Gas Velocity

For the condition of CGV, it can be obtained from Equations (11)–(13):

(ηe/k)(k− 1) dp/p = dT/T (15)

where k is the specific heat ratio of the working gas.
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The x of the compressor is defined as

x =
T2S
T1

= (
p2

p1
)
(k−1)/k

(16)

Integrating Equations (15) and (16) yields:

T3

T4
= (

p2

p1
)

ηe(k−1)/k
= xηe (17)

From the Equations (14) and (16) yields

T1

T2
=

ηc

x− 1 + ηc
(18)

According to Equations (1), (2), (17), and (18), there are

T2 =
xηe ELTL(x− 1 + ηc)− (EL − 1)EHTH(x− 1 + ηc)

ηcxηe + (EH + EL − EHEL − 1)(x− 1 + ηc)
(19)

T4 =
ηcEHTH + (1− EH)ELTL(x− 1 + ηc)

ηcxηe + (EH + EL − EHEL − 1)(x− 1 + ηc)
(20)

Integrating Equations (10), (18), (19), and (20), the V4 can be obtained as

V4 =
ηcEHTH + (x− 1 + ηc)(ELTL − EHELTL)

ηcxηe ELTL − ηc(EHELTH − EHTH)
V1 (21)

Integrating Equations (1), (2), (19), and (20), the P and η can be obtained as

Pv =
P

Cw f TL
=

ηcxηe EHτ + (x− 1 + ηc)(EHELτ − EHτ − EL + EHEL)
−xηe(x− 1 + ηc)EHEL − ηcEHELτ + ηcxηe EL

ηcxηe + (x− 1 + ηc)(EH + EL − EHEL − 1)
(22)

ηv =

xηe ηcEHτ + (x− 1 + ηc)(EHELτ + EHEL − EHτ − EL)
−(x− 1 + ηc)xηe EHEL − ηcEHELτ + xηe ηcEL

xηe ηcEHτ + EHτ(x− 1 + ηc)(EL − 1)− (x− 1 + ηc)xηe EHEL
(23)

where τ = TH/TL is the temperature ratio of the cycle heat reservoirs.
According to Equations (1), (2), (7), and (9), the E = E/(Cw f TL) can be obtained as

Ev =

ηcxηe(EHτ + EL) + (x− 1 + ηc)(EHELτ + EHEL − EHτ − EL − xηe EHEL)− ηcEHELτ

− T0
TL
[ηcEHELτ − ηcxηe(EH + EL) + (x− 1 + ηc)(xηe EHELτ−1 + 2EHEL − EH − EL)]

ηcxηe + (x− 1 + ηc)(1− EH)(EL − 1)
(24)

From Equations (1), (2), (8), and (21), the Pd = Pd/(Cw f TL/V1) of the cycle can be
obtained as

Pdv =

[ηcxηe EHτ + ηcxηe EL + (x− 1 + ηc)(EHELτ − EHτ − EL + EHEL)
−xηe(x− 1 + ηc)EHEL − ηcEHELτ][ηcxηe EL − ηc(EHEL − EH)τ]

[ηcxηe + (x− 1 + ηc)(EH + EL − EHEL − 1)][ηcEHτ + (x− 1 + ηc)(EL − EHEL)]
(25)

2.2. Constant Mach Number

For the condition of CGV, it can be obtained from Equations (11)–(13):

(ηe/k)(k− 1)dp/p = [0.5(1− ηe)(k− 1)M2 + 1]dT/T (26)
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Integrating Equations (16) and (26) yields

T3

T4
= xα (27)

where α = ηe/[0.5(1− ηe)(k− 1)M2 + 1].
The P, η, E, and Pd can be obtained by comparing Equations (17) and (27)

PM =

ηcxαEHτ + (x− 1 + ηc)(EHELτ + EHEL − EHτ − EL)
−(x− 1 + ηc)xαEHEL − ηcEHELτ + ηcxαEL

ηcxα + (x− 1 + ηc)(1− EH)(EL − 1)
(28)

ηM =

ηcxαEHτ + (x− 1 + ηc)(EHELτ + EHEL − EHτ − EL)
−(x− 1 + ηc)xαEHEL − ηcEHELτ + ηcxαEL

ηcxαEHτ + (x− 1 + ηc)(EHELτ − EHτ)− (x− 1 + ηc)xαEHEL
(29)

EM =

ηcxα(EHτ + EL) + (x− 1 + ηc)(EHELτ + EHEL − EHτ − EL − xαEHEL)− ηcEHELτ

− T0
TL
[ηcEHELτ − ηcxα(EH + EL) + (x− 1 + ηc)(EH + EL − 2EHEL + xαEHELτ−1)]

ηcxα + (x− 1 + ηc)(1− EH)(EL − 1)
(30)

PdM =

[ηcxαEHτ + ηcxαEL + (x− 1 + ηc)(EHELτ − EHτ − EL + EHEL)
−xα(x− 1 + ηc)EHEL − ηcEHELτ][ηcxαEL − ηc(EHEL − EH)τ]

[ηcxα + (x− 1 + ηc)(EH + EL − EHEL − 1)][ηcEHτ + (x− 1 + ηc)(EL − EHEL)]
(31)

3. Multi-Objective Optimizations

MOO does not mean that each OF reaches the maximum value. Its essence is to
balance the advantages and disadvantages of each OFs through NSGA-II to achieve the
best compromise of different OFs and obtain a series of feasible solutions. It is also called
the Pareto frontier. Figure 2 is an algorithm flowchart of NSGA-II. The NSGA-II algorithm
has the advantages of fast running speed and good convergence of solution sets. It not
only reduces the computational complexity but also retains all the best individuals, thus
improving the accuracy of the optimization results. Its procedure is as follows: first, initial-
ize the population and set the evolution algebra as one; second, non-dominated sorting
and selection, Gaussian crossing, and mutation are carried out on the initial population to
generate the first-generation sub-population and add one to the evolution algebra, and then
the parent population and the child population are merged; third, calculate the objective
function of individuals in the new population, and generate a new parent population by
performing fast non-dominated sorting, computing crowding, elite strategy, and other
operations at the same time, and then perform selection, crossover, and mutation operations
on the generated parent population to generate a child population; finally, judge whether
the evolution algebra is equal to the maximum evolution algebra. If not, the evolution
algebra will be added and returned to the third step. Otherwise, the algorithm will end.
After the results of different OF combinations are acquired, the D are compared through
three approaches.
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There is no good or bad between the three decision-making approaches. They have
their own priorities. In actual operation, the decision approach can be selected according to
these needs. For the LINMAP approach, the point with the shortest space distance from
the positive ideal point is taken as the required optimal point. By definition, the Euclidean
distance is

EDi+ =

√√√√ m

∑
j=1

( fij − f j
positive)

2 (32)

EDi− =

√√√√ m

∑
j=1

( fij − f j
negative)

2 (33)

where i ∈ [1, n] is the i-th point (the i-th optimal solution) in the Pareto frontier, j ∈ [1, m] is
the j-th objective function, fij is the value of the j-th objective function of the i-th optimal
solution, f j

positive is the value of the j-th objective function of the positive ideal point, and
f j

negative is the value of the j-th objective function of the negative ideal point. Then the best
feasible solution iopt obtained by LINMAP approach is

iopt = i ∈ min(EDi+) (34)

For the TOPSIS approach, the point with the largest space distance from negative ideal
points and the shortest space distance from positive ideal points is taken as the optimal
point. According to Equations (32) and (33), the best feasible solution iopt obtained by the
TOPSIS approach is

iopt = i ∈ max(
EDi−

EDi+ + EDi−
) (35)
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For the Shannon Entropy approach, the point is taken as the required optimal point
when the last OF is optimal. The best feasible solution iopt obtained by the Shannon Entropy
approach is

iopt = i ∈ max(Pij ×Wj) (36)

where

Pij =
fij

n
∑

i=1
fij

(37)

SEj = − 1
ln n

n

∑
i=1

Pij ln Pij (38)

Wj =
(1− SEj)

m
∑

j=1
(1− SEj)

(39)

Based on the above results, the D is

D =

√
∑m

j=1 (Gj − Gpositive
j )

2

√
∑m

j=1 (Gj − Gpositive
j )

2
+

√
∑m

j=1 (Gj − Gnegative
j )

2
(40)

where Gj is the j-th optimization objective, Gpositive
j is the j-th optimization objective of

the positive ideal point, and Gnegative
j is the j-th optimization objective of the negative

ideal point.
For the Shannon Entropy approach, this paper settles the D obtained by solving each

OF as the last optimization objective, and then selects the scheme with the smallest D.
The parameter values in the calculations are as follows: ηc = ηe = 0.95, M = 0.5,

τ = 5, k = 1.4, Cw f = 1 kW/W, UT = 5 kW/W, T0 = 300 K, TL = 300 K.

3.1. Constant Gas Velocity

Table 1 is the numerical results of optimizations. The results show that the D are 0.1764
acquired by LINMAP and TOPSIS when the MOO is performed on P− η − E− Pd, while
D are 0.3560, 0.7693, 0.2599, and 0.1940, respectively, for four single-objective optimizations
of maximum P, η, E, and Pd. It shows that the results of MOO are preferable to those of
any single objective optimizations, and MOO can better consider different optimization
objectives by selecting appropriate decision-making approaches. For MOO of P− η, the
D acquired by the TOPSIS is 0.1600, which is smaller than those acquired by the single
objective optimizations and the combination optimizations of other OFs, and the scheme is
the most reasonable.

Figure 3 shows the results of P− η− E− Pd optimization. In Figure 3a, the coordinate
axis represents P, η, and E respectively, and Pd is expressed by a color gradient. As P raises,
η reduces, E and Pd first raise and then reduce. Figure 3b is the average distance generation
and average spread generation and converges in the 315th generation. According to
Table 1, for single objective optimization, the D is the minimum when Pd is the maximum.
Compared with the single objective optimization result when Pd is maximum, Pd decreases
from 0.5899 to 0.5871, reducing by 0.47%, but P increases from 1.0475 to 1.0587, increasing
by 1.07%, η decreases from 0.5552 to 0.5535, reducing by 0.31%, and E increases from 0.5857
to 0.5873, increasing by 0.27%. The D acquired by the TOPSIS and LINMAP are 0.1764,
which is less than that by the Shannon Entropy, and this scheme is more ideal.
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Table 1. Results of single-, bi-, tri-, and quadru-objective optimizations.

Optimization
Objective

Decision-Making
Approaches

Optimization
Variables Optimization Objectives Deviation

Index

x u Ps ηs E Pd D

Quadru-objective
optimization

(P, η, E and Pd)

LINMAP 2.6234 0.4649 1.0587 0.5535 0.5873 0.5871 0.1764
TOPSIS 2.6234 0.4649 1.0587 0.5535 0.5873 0.5871 0.1764

Shannon Entropy 2.6480 0.5153 1.0476 0.5552 0.5857 0.5899 0.1940

Tri-objective
optimization
(P, η and E)

LINMAP 2.6206 0.4752 1.0600 0.5531 0.5868 0.5880 0.1767
TOPSIS 2.6206 0.4752 1.0600 0.5531 0.5868 0.5880 0.1747

Shannon Entropy 2.7945 0.4682 1.0032 0.5702 0.5990 0.5848 0.2599

Tri-objective
optimization
(P, η and Pd)

LINMAP 2.5823 0.4800 1.0708 0.5487 0.5805 0.5875 0.1647
TOPSIS 2.5696 0.4753 1.0742 0.5473 0.5783 0.5868 0.1624

Shannon Entropy 2.6481 0.5153 1.0475 0.5552 0.5857 0.5899 0.1940

Tri-objective
optimization
(P, E and Pd)

LINMAP 2.5769 0.4715 1.0721 0.5482 0.5797 0.5867 0.1638
TOPSIS 2.5769 0.4715 1.0721 0.5482 0.5797 0.5867 0.1638

Shannon Entropy 2.6477 0.5155 1.0476 0.5552 0.5856 0.5899 0.1940

Tri-objective
optimization
(η, E and Pd)

LINMAP 2.9151 0.4805 0.9572 0.5797 0.5933 0.5775 0.3402
TOPSIS 2.9151 0.4805 0.9572 0.5797 0.5933 0.5775 0.3402

Shannon Entropy 2.6480 0.5153 1.0476 0.5552 0.5857 0.5899 0.1940

Bi-objective
optimization

(P and η)

LINMAP 2.5983 0.4713 1.0662 0.5507 0.5835 0.5872 0.1684
TOPSIS 2.5495 0.4743 1.0794 0.5450 0.5743 0.5859 0.1600

Shannon Entropy 2.1467 0.4827 1.1353 0.4841 0.3945 0.5403 0.3561

Bi-objective
optimization

(P and E)

LINMAP 2.5775 0.4760 1.0721 0.5482 0.5798 0.5871 0.1637
TOPSIS 2.5875 0.4716 1.0692 0.5494 0.5816 0.5870 0.1659

Shannon Entropy 2.7945 0.4683 1.0032 0.5702 0.5990 0.5848 0.2599

Bi-objective
optimization

(P and Pd)

LINMAP 2.3947 0.5002 1.1115 0.5244 0.5272 0.5775 0.1967
TOPSIS 2.3947 0.5002 1.1115 0.5244 0.5272 0.5775 0.1967

Shannon Entropy 0.6481 0.5153 1.0475 0.5552 0.5857 0.5899 0.1940

Bi-objective
optimization

(η and E)

LINMAP 2.9494 0.4638 0.9430 0.5823 0.5904 0.5735 0.3658
TOPSIS 2.9402 0.4637 0.9468 0.5817 0.5914 0.5743 0.3589

Shannon Entropy 2.7944 0.4682 1.0032 0.5702 0.5990 0.5848 0.2598

Bi-objective
optimization

(η and Pd)

LINMAP 2.9257 0.4801 0.9529 0.5804 0.5924 0.5766 0.3479
TOPSIS 2.8976 0.4821 0.9642 0.5783 0.5946 0.5791 0.3278

Shannon Entropy 2.6480 0.5153 1.0475 0.5552 0.5857 0.5899 0.1940

Bi-objective
optimization

(E and Pd)

LINMAP 2.7431 0.4844 1.0212 0.5654 0.5974 0.5878 0.2301
TOPSIS 2.7443 0.4833 1.0209 0.5655 0.5975 0.5877 0.2307

Shannon Entropy 2.6481 0.5153 1.0475 0.5552 0.5857 0.5899 0.1940

Maximum P —— 2.1467 0.4827 1.1353 0.4841 0.3945 0.5403 0.3560

Maximum η —— 3.4435 0.4414 0.7043 0.6002 0.4698 0.4840 0.7693

Maximum E —— 2.7945 0.4682 1.0032 0.5702 0.5990 0.5848 0.2599

Maximum Pd —— 2.6481 0.5153 1.0475 0.5552 0.5857 0.5899 0.1940

Positive ideal point —— —— 1.1353 0.6002 0.5990 0.5899 ——

Negative ideal point —— —— 0.7043 0.4840 0.3941 0.4840 ——

Figure 4 shows the results of bi-objective optimizations. According to Figure 4a–f,
as P raises, η, E, and Pd all reduce. As η raises, E and Pd reduce. As E raises, Pd reduces.
According to Table 1, the D acquired by the LINMAP is less than those by the other two
approaches when P and E are applied as the OFs. When P and η are applied as the OFs,
the D acquired by TOPSIS is less than those by the other two approaches. When E and
Pd or η and Pd or P and Pd or η and E are applied as the OFs, the D acquired by Shannon
Entropy is less than those by the other two approaches. Figure 4g is the average distance
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generation and average spread generation and converges in the 325th generation when the
P and η are applied as the OFs, and the D acquired by Shannon Entropy is 0.1600, which is
smaller than other results. Compared with the single objective optimization result when Pd
is maximum, Pd decreases from 0.5899 to 0.5859, reducing by 0.68%, but P increases from
1.0475 to 1.0794, increasing by 3.05%, η decreases from 0.5552 to 0.5450, reducing by 1.84%,
and E decreases from 0.5857 to 0.5743, reducing by 1.95%. This scheme is ideal.
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Figure 3. Results of quadru-objective optimization. (a) Pareto frontier of P− η − E− Pd. (b) Average
spread and generation number of P− η − E− Pd.
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Figure 4. Results of bi-objective optimization. (a) Pareto frontier of P− η. (b) Pareto frontier of P− E.
(c) Pareto frontier of P− Pd. (d) Pareto frontier of η − E. (e) Pareto frontier of η − Pd. (f) Pareto
frontier of E− Pd. (g) Average spread and generation number of P− η.

Figure 5 shows the results of tri-objective optimizations. In term of Figure 5a–d, as
P raises, η reduces, E and Pd raise first and then reduce. As η raises, E and Pd all reduce.
According to Table 1 that when P, E and Pd or P, η and E are applied as OFs, the Ds
acquired by TOPSIS and LINMAP are equal, and less than that by the Shannon Entropy.
When P, η, and Pd are applied as OFs, the D acquired by TOPSIS is less than those by the
other two approaches. When η, E, and Pd are applied as OFs, the D acquired by Shannon
Entropy is less than those by the other two approaches. Figure 5e is the average distance
generation and average spread generation and converges in the 396th generation when P,
η, and Pd are applied as the OFs for tri-objective optimization, and the D acquired by the
TOPSIS approach is 0.1624, which is smaller than other results. Compared with the single
objective optimization result when Pd is maximum, Pd decreases from 0.5899 to 0.5868,
reducing by 0.53%, but P increases from 1.0475 to 1.0742, increasing by 2.55%, η decreases
from 0.5552 to 0.5473, reducing by 1.42%, and E decreases from 0.5857 to 0.5783, reducing
by 1.26%. This scheme is ideal.
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3.2. Constant Mach Number

Table 2 is the numerical results of optimizations. The results show that the Ds are
0.1767 acquired by LINMAP and TOPSIS when the MOO is performed on P− η − E− Pd
optimization, while Ds are 0.3600, 0.7630, 0.2637, and 0.1949, respectively, for four single-
objective optimizations of maximum P, η, E and Pd. It shows that the results of MOO are
preferable. For MOO of P− η, the D acquired by the TOPSIS is 0.1603, which is smaller
than those acquired by single objective optimization and combination optimizations of
other OFs, and the scheme is the most reasonable.

Figure 6 shows the results of P− η − E− Pd optimization. In Figure 6a, as P raises, η
reduces, E and Pd first raise and then reduce. Figure 6b is the average distance generation
and average spread generation and converges in the 315th generation. According to Table 2,
compared with the single objective optimization result when Pd is maximum, Pd decreases
from 0.5859 to 0.5836, reducing by 0.39%, but P increases from 1.0440 to 1.0552, increasing
by 1.07%, η decreases from 0.5524 to 0.5507, reducing by 0.31%, and E increases from 0.5759
to 0.5776, increasing by 0.30%. The Ds acquired by the TOPSIS and LINMAP are 0.1767,
which is less than that by the Shannon Entropy, and this scheme is ideal.

Figure 7 shows the results of bi-objective optimizations. According to Figure 7a–f, as P
raises, η, E, and Pd all reduce. As η raises, E and Pd reduce. As E raises, Pd reduces. Form
Table 2, the D acquired by the LINMAP is less than those by the other two approaches
when P and Pd or P and E are applied as OFs. The D acquired by the TOPSIS is less than
those by the other two approaches when P and η are applied as the OFs. When E and Pd
or η and E or η and Pd are applied as the OF, the D acquired by Shannon Entropy is less
than those by the other two approaches. Figure 7g is the average distance generation and
average spread generation and converges in the 381th generation when the P and η are
applied as the OFs, and the D acquired by TOPSIS is 0.1603, which is smaller than the other
results. Compared with the single objective optimization result when Pd is maximum, Pd
decreases from 0.5859 to 0.5817, reducing by 0.72%, but P increases from 1.0440 to 1.0778,
increasing by 3.24%, η decreases from 0.5524 to 0.5412, reducing by 2.03%, and E decreases
from 0.5759 to 0.5623, reducing by 2.36%. This scheme is ideal.
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Table 2. Results of single-, bi-, tri- and quadru-objective optimizations.

Optimization
Objective

Decision-Making
Approaches

Optimization
Variables Optimization Objectives Deviation

Index

x u Ps ηs E Pd D

Quadru-objective
optimization

(P, η, E and Pd)

LINMAP 2.6197 0.4689 1.0552 0.5507 0.5776 0.5836 0.1767
TOPSIS 2.6197 0.4689 1.0552 0.5507 0.5776 0.5836 0.1767

Shannon Entropy 2.6437 0.5146 1.0439 0.5524 0.5760 0.5859 0.1950

Tri-objective
optimization
(P, η and E)

LINMAP 2.6159 0.4791 1.0565 0.5502 0.5768 0.5843 0.1753
TOPSIS 2.6159 0.4791 1.0565 0.5502 0.5768 0.5843 0.1753

Shannon Entropy 2.7936 0.4673 0.9985 0.5676 0.5897 0.5807 0.2636

Tri-objective
optimization
(P, η and Pd)

LINMAP 2.57759 0.4730 1.0676 0.5458 0.5704 0.5830 0.1649
TOPSIS 2.5591 0.4798 1.0721 0.5438 0.5669 0.5830 0.1623

Shannon Entropy 2.6435 0.5147 1.0440 0.5524 0.5759 0.5859 0.1949

Tri-objective
optimization
(P, E and Pd)

LINMAP 2.5783 0.4775 1.0670 0.5460 0.5707 0.5834 0.1654
TOPSIS 2.5896 0.4719 1.0638 0.5474 0.5729 0.5832 0.1679

Shannon Entropy 2.6436 0.5147 1.0440 0.5524 0.5759 0.5859 0.1949

Tri-objective
optimization
(η, E and Pd)

LINMAP 2.8927 0.4843 0.9610 0.5752 0.5855 0.5752 0.6700
TOPSIS 2.8927 0.4843 0.9610 0.5752 0.5855 0.5752 0.6700

Shannon Entropy 2.6436 0.5147 1.0440 0.5524 0.5759 0.5859 0.1949

Bi-objective
optimization

(P and η)

LINMAP 2.5736 0.4747 1.0682 0.5455 0.5699 0.5830 0.1645
TOPSIS 2.5364 0.4753 1.0778 0.5412 0.5623 0.5817 0.1603

Shannon Entropy 2.1451 0.4823 1.1307 0.4820 0.3848 0.5369 0.3601

Bi-objective
optimization

(P and E)

LINMAP 2.5778 0.4712 1.0670 0.5461 0.5708 0.5829 0.1654
TOPSIS 2.5872 0.4738 1.0645 0.5471 0.5724 0.5833 0.1673

Shannon Entropy 2.7937 0.4672 0.9985 0.5676 0.5897 0.5807 0.2637

Bi-objective
optimization

(P and Pd)

LINMAP 2.3995 0.4939 1.1065 0.5231 0.5207 0.5739 0.1942
TOPSIS 2.4022 0.5005 1.1053 0.5233 0.5209 0.5746 0.1944

Shannon Entropy 2.6436 0.5146 1.0440 0.5524 0.5760 0.5859 0.1949

Bi-objective
optimization

(η and E)

LINMAP 2.9377 0.4643 0.9429 0.5787 0.5823 0.5703 0.3626
TOPSIS 2.9377 0.4643 0.9429 0.5787 0.5823 0.5703 0.3626

Shannon Entropy 2.7934 0.4672 0.9986 0.5676 0.5897 0.5807 0.2635

Bi-objective
optimization

(η and Pd)

LINMAP 2.9256 0.4864 0.9476 0.5775 0.5826 0.5724 0.3543
TOPSIS 2.9102 0.4807 0.9541 0.5766 0.5844 0.5736 0.3422

Shannon Entropy 2.6436 0.5146 1.0440 0.5524 0.5759 0.5859 0.1949

Bi-objective
optimization

(E and Pd)

LINMAP 2.7410 0.4824 1.0170 0.5627 0.5882 0.5836 0.2325
TOPSIS 2.7425 0.4812 1.0166 0.5629 0.5883 0.5835 0.2333

Shannon Entropy 2.6437 0.5147 1.0440 0.5524 0.5759 0.5859 0.1949

Maximum P —— 2.1453 0.4822 1.1307 0.4821 0.3850 0.5370 0.3600

Maximum η —— 3.4266 0.4406 0.7082 0.5964 0.4664 0.4835 0.7630

Maximum E —— 2.7937 0.4673 0.9985 0.5676 0.5897 0.5807 0.2637

Maximum Pd —— 2.6436 0.5146 1.0440 0.5524 0.5759 0.5859 0.1949

Positive ideal point —— —— 1.1307 0.5964 0.5897 0.5859 ——

Negative ideal point —— —— 0.7082 0.4820 0.3849 0.4835 ——

Figure 8 shows the results of tri-objective optimizations. According to Figure 8a–d, as
P raises, η reduces, E and Pd raise first and then reduce. As η raises, E and Pd all reduce.
According to Table 2 that the Ds acquired by TOPSIS and LINMAP are the equal and less
than that by Shannon Entropy when P, η, and E are applied as OFs. When P, E, and Pd are
applied as OFs, the D acquired by LINMAP is less than those by the other two approaches.
When P, η, and Pd are applied as OFs, the D acquired by TOPSIS is less than those by
the other two approaches. When η, E, and Pd are applied as OFs, the D acquired by the
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Shannon Entropy is less than those by the other two approaches. Figure 8e is the average
distance generation and average spread generation and converges in the 320th generation
when the P, η, and Pd are applied as the OFs, and the D acquired by TOPSIS is 0.1623,
which is smaller than the other results. Compared with the single objective optimization
result when Pd is maximum, Pd decreases from 0.5859 to 0.5830, reducing by 0.49%, but
P increases from 1.0440 to 1.0721, increasing by 2.69%, η decreases from 0.5524 to 0.5438,
reducing by 1.56%, and E decreases from 0.5759 to 0.5669, reducing by 1.56%. This scheme
is ideal.
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4. Conclusions

According to the existing irreversible MHD model with constant-temperature heat
reservoirs, this paper adds internal loss and conducts the MOO of P, η, E, and Pd. Through
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three decision-making approaches, the optimization results under different OF combina-
tions are acquired. The results show that:

1. In the condition of CGV, the D acquired by TOPSIS and LINMAP are 0.1764 for
MOO of P − η − E − Pd, which is less than 0.3560, 0.7693, 0.2599, and 0.1940 for
the four single-objective optimizations with maximum P, η, E, and Pd, respectively.
Four-objective optimization results are better.

2. In the condition of CMN, the D acquired by LINMAP and TOPSIS are 0.1767 for
MOO of P − η − E − Pd, which is less than 0.3600, 0.7630, 0.2637, and 0.1949 for
the four single-objective optimizations with maximum P, η, E, and Pd, respectively.
Four-objective optimization results are better.

3. In the condition of CGV, when MOO is conducted on P − η, the D is the 0.1600
acquired by TOPSIS, which is the most reasonable solution. In the condition of CMN,
when MOO is conducted on P− η, the D is the 0.1603 acquired by TOPSIS, which is
the most reasonable solution. The MHD cycle has better performance in the condition
of CGV.

4. Compared with single-objective optimization, MOO can better take different optimiza-
tion objectives into account by choosing appropriate decision-making approaches. For
the results of different objective combinations, appropriate schemes can be selected
according to the actual design and operation to meet the requirements under different
working conditions.

5. For the follow-up research of the MHD cycle, more variables and OFs, or the heat
regenerative process, can be added so as to provide more research support for the
operation of the actual MHD cycle.
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Nomenclature

B Magnetic field, T
Cw f Mass flow rate times the specific heat, kW/K
D Deviation index
E Ecological function, W
e Electric field, N/C
EH Effectiveness of the heat exchanger on the high-temperature side
EL Effectiveness of the heat exchanger on the low-temperature side
h Gas enthalpy, J/kg
J Electric current density, A/m2

k Specific heat ratio
M Mach number
P Power output, W
p Pressure, Pa
Pd Power density, W/m3
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QH Heat release rate, W
QL Heat absorption rate, W
T Temperature, K
UT Total heat exchanger, kW/K
UH High temperature side heat exchanger, kW/K
UL Low temperature side heat exchanger, kW/K
u Heat exchanger thermal conductance distribution
V Specific volume, m3/kg
v Gas velocity, m/s
x Isentropic temperature ratio
Z Axial direction of the generator
Greek symbols
η Thermal efficiency
ηc Compression efficiency
ηe Generator efficiency
ρ Gas density, kg/m3

σ Entropy generation rate, W/K
τ Temperature ratio of the circulating heat reservoirs
Subscripts
H High temperature heat source
L Low temperature heat sink
opt Optimal
0 Environment
1− 4 State points
Superscripts
− Dimensionless

Abbreviations

CGV Constant gas velocity
CMN Constant Mach number
FTT Finite time thermodynamics
HEX Heat exchanger
MHD Magnetohydrodynamic
MOO Multi-objective optimization
OF Objective function
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