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Abstract: The clustering algorithms based on deep neural network perform clustering by obtaining
the optimal feature representation. However, in the face of complex natural images, the cluster
accuracy of existing clustering algorithms is still relatively low. This paper presents an image
clustering algorithm based on predefined evenly-distributed class centroids (PEDCC) and composite
cosine distance. Compared with the current popular auto-encoder structure, we design an encoder-
only network structure with normalized latent features, and two effective loss functions in latent
feature space by replacing the Euclidean distance with a composite cosine distance. We find that
(1) contrastive learning plays a key role in the clustering algorithm and greatly improves the quality of
learning latent features; (2) compared with the Euclidean distance, the composite cosine distance can
be more suitable for the normalized latent features and PEDCC-based Maximum Mean Discrepancy
(MMD) loss function; and (3) for complex natural images, a self-supervised pretrained model can
be used to effectively improve clustering performance. Several experiments have been carried out
on six common data sets, MNIST, Fashion-MNIST, COIL20, CIFAR-10, STL-10 and ImageNet-10.
Experimental results show that our method achieves the best clustering effect compared with other
latest clustering algorithms.

Keywords: clustering; composite cosine distance; contrastive learning; predefined evenly-distributed
class centroids (PEDCC)

1. Introduction

Clustering is the process of dividing a collection of physical or abstract objects into
classes composed of similar objects. The clusters generated by clustering algorithms are
some sample sets. The samples in the same cluster are similar to each other, but different
from those in other clusters.

In this paper, an efficient image clustering algorithm based on predefined evenly-
distributed class centroids and composite cosine distanc e(ICBPC) is proposed. In this
algorithm, PEDCC [1] is used as the clustering centers to ensure the maximum inter-class
distance of latent features. PEDCC has been applied to several of our studies, such as
classification [2] and out-of-distribution detection [3]. In [2], our contribution is mainly
focused on classification tasks with supervised learning. In [3], our contribution is mainly
focused on out-of-distribution detection, which is designed to detect test samples with
non-overlapping labels relative to training data. Both algorithms are supervised learning
algorithms that require the labels of the training data. In this paper, PEDCC is applied
to achieve better clustering performance. Clustering is an unsupervised learning method
that does not require labels of training data, while classification and out-of-distribution
detection are both supervised learning methods. The data distribution constraint and
contrastive constraint between samples and augmented samples are applied to improve
the clustering performance. The specific training process is to input the samples and their
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augmented samples into the encoder at the same time to obtain their features. The dis-
tance between the two features are reduced through contrastive loss [4]. Maximum mean
discrepancy (MMD) [5] losses are used to make the distribution of samples close to the
PEDCC distribution (maximizing distribution similarity between latent features and Dirac
distribution within classes). Compared with Euclidean distance, cosine distance can be
more suitable for the PEDCC-based MMD loss and contrastive loss.

The algorithm structure is shown in Figure 1. The main contributions of this paper
include:

(1) An encoder only clustering network structures is proposed, and PEDCC is used as
the clustering center to ensure the maximum inter-class distance in latent feature
space. Data distribution constraint and contrastive constraint between samples and
augmented samples are applied to improve the clustering performance;

(2) The algorithm normalizes the latent features, and composite cosine distance is pro-
posed to replace Euclidean distance to achieve a better clustering effect. Experiments
on several public data sets show that the proposed algorithm achieves the SOTA
results.

(3) For complex natural images such as CIFAR-10 and STL-10, a self-supervised pretrained
model can be used to effectively improve clustering performance.

Figure 1. Image clustering network structure. x stands for samples, and z is encoded latent features
of samples, which are used for clustering. The clustering algorithm includes two loss functions.

In this paper, instead of Euclidean distance, a new composite cosine distance is pro-
posed to better fit the PEDCC clustering model, which has never been proposed before and
can be widely used for various image clustering tasks. At the same time, we applied the
contrastive loss function to the clustering algorithm and achieved good results. Contrastive
learning has previously been used in the field of self-supervised learning. At last, we
found that, for complex natural images, a self-supervised pretrained model can be used to
effectively improve clustering performance.

The paper is arranged as follows: Section 2 summarizes the related work, and our
methods are introduced in detail in Section 3. Then, in Section 4, we give the experimental
settings and results. Finally, Section 5 summarizes the whole paper. The code can be
downloaded at https://github.com/LihengHu/ICBPC (accessed on 29 August 2022).

2. Related Work
2.1. Clustering and Deep Learning Based Clustering Method

Clustering is one of the most important unsupervised learning tasks. The purpose
of clustering is to classify similar data into a cluster based on some similarity measures.
The traditional clustering methods include partition-based method [6] and hierarchical
method [7]. The disadvantage of traditional clustering is that the similarity measurement
method used is inefficient, and the performance of the traditional clustering method is
poor on high-dimensional data, and it has high computational complexity on large-scale
data sets. The solution is to reduce and transform features, which maps the original

https://github.com/LihengHu/ICBPC
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data into a new feature space, making the generated data more easily separated by the
existing classifier.

Hierarchical clustering algorithm starts with many small clusters and then gradually
merges into large clusters. The partition clustering method minimizes the sum of the
squared errors between the data points and their nearest cluster centers. Among them,
the k-means [6] algorithm has attracted the most attention. The k-means algorithm takes
k as the parameter and divides n objects into k clusters, so that the similarity within the
clusters is high, while the similarity between the clusters is low.

In the last few years, deep neural networks have had great success. The success of
deep learning often depends on the support of large amounts of data, and the supervised
learning of large amounts of data is mature, such as [8,9]. However, it takes a lot of time
and resources to mark massive data. Unsupervised learning does not need to rely on data
labels, and can automatically discover the latent structure in the data, saving a lot of time
and hardware resources.

Auto-encoder (AE) [10,11] is one of the most important algorithms in unsupervised
representation learning. Since the dimension of the latent layer is generally smaller than that
of the data layer, it can help extract the most salient features of the data. AE is mainly used
to find better initializations for parameters in supervised learning and can also be combined
with unsupervised clustering. AE can be thought of as consisting of two parts: an encoder
that maps the raw data X to represent H, and a decoder that generates the reconstruction.

Deep embedding for clustering (DEC) [12] uses the auto-encoder as the network
architecture. First, the auto-encoder is trained by rebuilding the loss, and the decoder
part is discarded. The features extracted from the encoder network are used as the input
of the clustering module. After that, clustering allocation is used to strengthen the loss
to fine-tune the network. At the same time, the clustering is iteratively improved by
minimizing the KL divergence between the distribution of soft tags and the distribution
of auxiliary targets. Discriminatively boosted image clustering (DBC) [13] has almost the
same architecture as DEC, with the only improvement being the use of a convolutional
auto-encoder. Its performance on image data sets is superior to DEC due to the use of
convolutional networks.

Pseudo-supervised deep subspace clustering (PSSC) [14] based on auto-encoder uses
pair similarity measure to reconstruct loss to obtain local structural information, while
similarity is a layer of learning through self-expression. Pseudo graphs and pseudo labels
can benefit from the uncertain knowledge gained from online training, and are further used
to monitor similar learning. Image clustering with deep semantic embedding (DSEC) [15]
extracts the total semantic (attribute) features from the data set firstly, and then employs
a deep semantic embedding auto-encoder to refine the lower dimensional multi-features
representation. The final clustering work is implemented by iteratively optimizing a
KL divergence-based clustering objective. Representation learning based on an auto-
encoder and deep adaptive clustering for image clustering(RLBAD) [16] presents a novel
representation learning method and we use it to solve the image clustering problem. It
borrows the deep adaptive image clustering (DAC) [17] algorithm and incorporates it to
train a fully convolutional auto-encoder.

The DAC algorithm combines feature learning and clustering. It transforms the
clustering problem into a binary pairwise classification framework to judge whether image
pairs belong to the same cluster. In DAC, similarity is calculated as the cosine distance
between the image label features generated by deep convolutional networks. Our algorithm
employs compound cosine distances to fit the PEDCC model.

Associative Deep Clustering [18] is a direct clustering algorithm for deep neural
networks. The central idea is to jointly train centroid variables with the network’s weights
by using a clustering cost function. Predefined evenly-distributed class centroids are used
as the clustering centers to ensure the maximum inter-class distance of latent features
in our algorithm. DeepCluster [19] is a clustering method that jointly learns the cluster
assignments of neural network parameters and resulting features. DeepCluster uses k-
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means to iteratively group features and uses subsequent assignments as supervision to
update the weights of the network.

An image clustering auto-encoder (ICAE) [20] combines predefined clustering centers
with auto-encoders to obtain better results. ICAE differs from our algorithm mainly in
the structure, the design of the loss function and the distance measure. Although an auto-
encoder can achieve good results, it is complex in structure and requires long training time.
The algorithm that we proposed simplifies the structure by using only the encoder and
discarding the decoder. At the same time, the performance of our algorithm exceeds that of
the algorithm using an auto-encoder.

We compare the experimental results of these algorithms in Section 4.6.

2.2. PEDCC

Zhu and Zhang proposed the classification supervised auto-encoder (CSAE) [1] to
implement the classification function with a unified auto-encoder network structure using
the predefined evenly-distribution class centers, and to generate samples of different
classes according to the class label. PEDCCs are class center points evenly distributed on
the unit hypersphere of the latent feature space, which are used as the training target of
the classification network to maximize the inter-class distance. Figure 2 shows PEDCC
visual instances. As mentioned above, PEDCCs are some evenly-distributed points on the
hypersphere, whose distribution can be regarded as the sum of a set of Dirac functions.

Figure 2. PEDCC points visualization in three-dimensional feature space, where n is the number of
predefined class centroids.

In CSAE, the samples were labeled. In contrast, we use PEDCC for clustering. We
learn the mapping function and map the different classes of samples to these predefined
class centers, so that different classes can be distinguished by the strong fitting ability and
effectiveness of deep learning.

3. Methods

In this section, we will introduce the implementation process of the ICBPC algo-
rithm and loss function. Section 3.1 introduces the algorithm process and Sections 3.2–3.4
introduce the design of the loss function.

3.1. ICBPC

The implementation process of ICBPC algorithm is shown as Algorithm 1. First, we
perform data augmentation on each unlabeled image X to obtain X̂. Then, both the original
image and the augmented image are input into the encoder to obtain its latent features Z
and Ẑ. Then, the distance between the two features are reduced by contrastive loss (loss2).
MMD [5] (loss1) is used to make the distribution close to PEDCC distribution (maximizing
distribution similarity between latent features and Dirac distribution within classes). In two
loss functions, we replace the Euclidean distance with a composite cosine distance to fit
the model.
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Algorithm 1 ICBPC algorithm

Input: X = unlabeled images;

Output: K classes of clustering images;

1: Initialize PEDCC cluster centers;

2: repeat

3: X̂ = Augumentation(X);

4: Ẑ = Encoder(X̂); Z = Encoder(X);

5: loss1 = MMD(Z� Ẑ, PEDCC); loss2 = Contrastive loss(Z, Ẑ);

6: until Stopping criterion meet

3.2. Composite Cosine Distance for Normalized Features and PEDCC

Euclidean distance is generally used to measure the distance in different loss functions.
To better fit our PEDCC-based clustering model, we normalized the latent features and
then replaced Euclidean distance with composite cosine distance. For Euclidean distance
d2, we have:

d2 = (x1 − x2)
T(x1 − x2) = 2(1− xT

1 x2) = 2(1− cosθ) (1)

where θ is the angle between x1,x2. In this paper, we use dθ = 1− cosθ as a new distance
metric for all loss functions, that is the original Euclidean distance d2 is 2 * dθ .

The cosine distance does not meet the triangle inequality criterion of the conventional
distance metric, that is, the sum of the side lengths of the two short sides will be less than
the side length of the long side. However, in the training process of our loss function, this
property may be a good thing. In the process of gradual iteration between the initial value
and the training target, the sum of the cosine distances in each step will be shorter than the
cosine distance in one step, which can speed up the convergence, and also be proved by
later experiments.

The change of derivative values of d2 and d2
θ within the range of 0 to 180◦ are shown in

the Figure 3. It can be seen from the figure that when θ is greater than 90◦ , d2
θ has a larger

gradient and the training is easier to converge.
To improve the derivative of cosine distance at small angles, we could use

√
dθ . It can

enhance the ability of network parameter updating in the later training period.
The change of derivative values of

√
dθ within the range of 0 to 180◦ are shown in

the Figure 3. It can be seen that with the decrease of the θ angle, the gradient gradually
increases, which is conducive to the network update in the later stage of training, and avoids
the problem that the gradient of d2

θ gradually tends towards zero.
In our two loss functions, d2 is necessary in this paper, replaced by composite cosine

distance d2
c = d2

θ + α
√

dθ . α is set to 0.25 and the value of α comes from the experiment.
The change of derivative values of d2

θ + α
√

dθ within the range of 0 to 180◦ are shown in the
Figure 4. It can be seen from the figure that when θ is greater than 90◦, the new distance has
a larger gradient and the training is easier to converge, and when θ is small, the gradient is
still greater than zero to strengthen the training of the small angle. Experiments show that
this distance can obtain a better clustering effect compared with Euclidean distance.
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Figure 3. Derivative of d2, d2
θ and

√
dθ within the range of 0 to 180◦. The x-axis is the angle between

the features, and the y-axis is the gradient value.

Figure 4. Derivative of composite cosine distance d2
θ + 0.25

√
dθ and Euclidean distance d2 within the

range of 0 to 180◦. The x-axis is the angle between the features, and the y-axis is the gradient value.

3.3. Clustering Loss Function

The loss function based on PEDCC utilizes the concept of PEDCC in CSAE network
to set PEDCCs as the clustering centers of classes, and these clustering centers are evenly-
distributed on the hypersphere of feature space, maximizing the inter-class distance and
obeying Dirac distribution within the class. Our algorithm uses MMD to measure the
distance between the samples’ distribution and PEDCC distribution. The basic principle of
the MMD is to find a function that assumes that two different distributions have different
expectations. If the function is evaluated with empirical samples from the distribution,
the function will indicate whether they are from different distributions. Our loss1 aims to
utilize the distribution difference between the samples’ distribution and PEDCC distribu-
tion in latent features, so that the features extracted from the encoder meet the distribution
of PEDCC.
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The MMD algorithm is used as loss1 to train the network, and the formula is as follows:

loss1 = MMD([Z, Ẑ], PEDDC)

=
1

M(M− 1)

M

∑
i 6=j

k
(
li, lj

)
+

1
c(c− 1)

C

∑
i 6=j

k
(
ui, uj

)

− 2
MC

M,C

∑
i,j=1

k
(
li, uj

)
. (2)

where Z is the intermediate latent features, Ẑ means the latent features of the augmented
data, M means its dimension, li = [Z, Ẑ] is the latent features of the image and its aug-
mented latent features; ui represents the PEDCC class centers, C is its number, and k(x, y)
is the kernel function.

By iteratively minimizing loss1, the probability distribution of latent features can be
closer to that of PEDCC. The underlying features are also going to be close to these points
on the hypersphere.

The kernel function k(x1, x2) is usually expressed in the form of radial basis function,
and its value is inversely proportional to the square of the distance between x1 and x2.
The formula of the kernel function is as follows:

k(x1, x2) = e
−d2

c
2σ2 . (3)

where composite cosine distance replaces Euclidean distance d2.
Loss1 uses the MMD algorithm based on a radial basis to make the latent feature

distribution the same as the predefined PEDCC, achieving the best clustering. In loss1,
cosine distance is used to better measure the distance between two features, which makes
the radial basis-based MMD algorithm easier to converge.

3.4. Data Augmentation Loss Function

The main purpose of data augmentation is to reduce the overfitting of the network
and help the network extract more discriminative features. By transforming the training
images, a network with a stronger generalization ability can be obtained, which can better
adapt to the application scenarios.

We use some common data augmentation. One type of augmentation involves spatial
and geometric transformation of data, such as cropping, resizing (with horizontal flipping)
and rotation [21]. The other type of augmentation involves appearance transformation,
such as color distortion (including color dropping, brightness, contrast, saturation) [22],
Gaussian blur, and Sobel filtering.

For different datasets, we should adopt different data augmentation methods to get
better clustering effect for datasets. For example, for the color image datasets, we mostly
adopt color conversion, brightness adjustment and other methods, as shown in Figure 5.
However, geometric processing are used such as cutting and rotation, as shown in Figure 6,
to achieve better clustering effect for MNIST.
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Figure 6. Data augmentation of MNIST.

The samples X̂ augmented by unlabeled data X are input into the encoder to obtain
the features Ẑ and Z, which can be used to achieve better clustering.

Contrastive loss function is used to constrain the features of the augmented samples
and the features of the original samples.

Contrastive loss is mainly used for dimensionality reduction, that is, after dimension-
ality reduction (feature extraction) of the originally similar samples, the two samples are
still similar in the feature space. However, after dimensionality reduction for the originally
dissimilar samples, the two samples are still dissimilar in the feature space. Similarly,
the loss function can well express the matching degree of the samples.

The contrastive loss function has the following expression:

loss2(x1, x2, y) =
1

2N

N

∑
i=0

[yd2 + (1− y)max(margin− d, 0)2] (4)

where d represents the distance of the features of the two samples, x1 represents the original
sample, x2 represents the augmented sample or random negative sample. y represents the
label of whether the two samples match or not, y = 1 represents the similarity or match of
the two samples, y = 0 represents the mismatch, and margin is the set threshold. N is the
number of sample pairs. Margin is usually set to 0.3.

As mentioned above, d2 is also replaced by d2
c in Equation (4). Formula is as follows:

loss2(x1, x2, y) =
1

2N

N

∑
i=0

[yd2
c + (1− y)max(margin− dc, 0)2] (5)

When x2 is the augmented sample, y = 1 (that is, the samples are similar). If the
distance in the feature space is large, it indicates that the current model is not good, so the
loss is increased.

When x2 is the random negative sample, y = 0 (the samples are not similar). If the
samples are not similar and the distance is small, the loss value will increase.

Loss2 expects that the cosine distance of the augmented samples in the latent feature
space is the minimum to achieve correct clustering. In loss2, the cosine distance also
replaces Euclidean distance, so that the original and augmented samples have the same
direction, rather than the same value.

3.5. Loss Function

The loss function of the whole algorithm is combined with the above two loss functions,
as follows:

loss = loss1 + λ× loss2. (6)

where λ is the weight of loss2. For different data sets, the weights of the two loss functions
will be adjusted, and different weights will lead to different results. The weights are shown
in Table 1. For the kernel function of MMD loss, is set to 2.0 and kernel number is set to 5.0
in our experiments.
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Table 1. Hyper-parameters setting of our algorithm. The value of the setting is obtained by experiment.

Datasets λ α

MNIST 8.00 0.25
COIL20 9.00 0.25

Fashion MNIST 8.00 0.25
CIFAR-10 9.00 0.25

STL-10 8.00 0.25
ImageNet-10 8.00 0.25

3.6. Using Self-Supervised Pretrained Model

Self-supervised pretrained model is a network that is trained on a large amount of
data by self-supervised learning. Since the pretraining model can bring up more effective
image features, further implementation of clustering algorithm on the pretraining model
can make the algorithm obtain more discriminative features, and achieve better cluster-
ing performance, especially for complex natural images, such as CIFAR-10, STL-10 and
ImageNet-10. In the experiments, we use the typical Barlow Twins [23] self-supervised
learning algorithm to pretrain the ResNet model on the Imagenet.

4. Experiments and Discussions
4.1. Experiments Settings
4.1.1. Datasets

We used six datasets to verify the performance of our algorithm. The six datasets
are MNIST, COIL20, FASHION-MNIST, CIFAR-10, STL-10, and ImageNet-10 as Table 2.
We randomly choose 10 subjects from the ImageNet dataset to construct the ImageNet-10
dataset for our experiments. All datasets before inputting the network are normalized to
[−1, 1].

Table 2. Datasets.

Datasets Samples Categories Image Size

MNIST 70,000 10 28 × 28
COIL20 1440 20 128 × 128

Fashion-MNIST 70,000 10 28 × 28
CIFAR-10 60,000 10 32 × 32 × 3

STL-10 5000 10 96 × 96 × 3
ImageNet-10 13,000 10 224 × 224 × 3

4.1.2. Experimental Setup

Before starting the experiment, we set the number of classes of classification and the
dimension of middle layer features. Set the initial learning rate to 0.001 and use the Adam
optimizer. The batch-size is set to 100 and the training epoch is 400. The network structure
keeps unchanged during the training. The settings of hyper-parameters are shown in
Table 1. The values in Table 1 are set when the clustering results are the best. The value of
λ is set differently for the six different datasets. Setting the value of λ to 8 achieves the best
clustering results for MNIST, Fashion MNIST, STL-10 and ImageNet-10. When the value of
λ is set to 9, the best clustering results can be obtained for COIL20 and CIFAR-10. All our
experimental results are averaged after 4 times of training.

4.1.3. Evaluation Metrics

We use the following two indicators to validate our algorithm: Cluster Accuracy
(ACC) [24] and Normalized Mutual Information (NMI) [24].
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4.1.4. Encoder Architecture

ResNet [25] can solve the problem of deep neural network degradation. So, our
algorithm uses the residual network structure ResNet-18 as the encoder, and the specific
network structure of the encoder is shown in Table 3.

Table 3. Network structure of the encoder.

Layer Output Size Remarks

Conv1 32 × 32 32 channels
maxpool 32 × 32 3 × 3, stride = 2

BasicBlock1 16 × 16 64 channels
BasicBlock2 8 × 8 128 channels
BasicBlock3 4 × 4 256 channels
BasicBlock4 2 × 2 512 channels, Encoder output

Fully connected layer 1 dimension of latent features latent features

For CIFAR-10, STL-10, and ImageNet-10, we adopt a self-supervised pretrained ResNet
model trained on the ImageNet dataset. The network only trains the last two blocks, and the
parameters of the other parts are frozen.

The dimension of the latent feature of the middle layer is the dimension of the pre-
defined class center. The dimension of the middle layer is different for different datasets
and can be determined according to the experiment. Taking MNIST as an example, the per-
formance of the models in different dimensions is shown in Table 4. Other datasets also
obtain the best latent features dimension through experiments.

Table 4. Model performances in different dimensions. The significance of bold represents the best result.

Data Sets Dimension of Latent
Features ACC NMI

MNIST 40 0.986 0.979
MNIST 60 0.994 0.985
MNIST 80 0.989 0.980
MNIST 100 0.982 0.976

The best dimensions of the latent features used for each dataset are shown in Table 5. It
can obtain the best model performance. Through training, the distribution of latent feature
Z can be close to the PEDCC distribution.

Table 5. Dimension of latent features. The value of the setting is obtained by the experiment.

Datasets Dimension of Latent Features

MNIST 60
COIL20 160

Fashion MNIST 100
CIFAR-10 60

STL-10 100
ImageNet-10 100

4.2. Analysis on Computational Time and Clustering

We used the PyTorch deep learning framework to do all the training on an Inter(R)
I7-6700K CPU, 32GB RAM, and a Nvidia GTX 1080 TI GPU. There are two loss functions
in total, and the convergence time is fast. Taking the COIL20 dataset as an example, only
14 s are needed for each epoch, achieving the highest accuracy within 400 epochs. It only
requires 4 s to obtain ACC and NMI for network testing. The proposed composite cosine
distance can significantly improve the convergence speed. The change of loss value with
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epoch is shown in Figure 7, which shows that our algorithm converges faster than the
ICAE algorithm.
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To demonstrate the clustering effectiveness of our model, we select four classes of the
MNIST and set the feature dimension to 3 for training. As shown in Figure 8, we visualize
the resulting features in 3D coordinates. It can be seen from the figure that the distance
between each category is far enough.
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4.3. Ablation Experiment

We tested the effectiveness of each loss function with some ablation experiment.
Experimental results are shown in Table 6, which shows that the best clustering effect can
be obtained by using the two loss functions and composite cosine distance.

Table 6. Ablation experiment results. The significance of bold represents the best result.

Datasets Loss1 Loss2
Composite

Cosine Distance
Euclidean
Distance

Normal Cosine
Distance ACC NMI

MNIST X X 0.398 0.312
MNIST X X X 0.994 0.985
MNIST X X X 0.981 0.961
MNIST X X X 0.982 0.965

Fashion-MNIST X X 0.467 0.354
Fashion-MNIST X X X 0.737 0.714
Fashion-MNIST X X X 0.725 0.699
Fashion-MNIST X X X 0.722 0.693

COIL20 X X 0.410 0.561
COIL20 X X X 0.960 0.982
COIL20 X X X 0.920 0.960
COIL20 X X X 0.920 0.958

CIFAR-10 X X 0.124 0.113
CIFAR-10 X X X 0.298 0.182
CIFAR-10 X X X 0.278 0.172
CIFAR-10 X X X 0.273 0.163

STL-10 X X 0.186 0.157
STL-10 X X X 0.551 0.525
STL-10 X X X 0.535 0.519
STL-10 X X X 0.540 0.522

ImageNet-10 X X 0.152 0.234
ImageNet-10 X X X 0.412 0.375
ImageNet-10 X X X 0.401 0.349
ImageNet-10 X X X 0.405 0.356

4.4. Effectiveness of Self-Supervised Pretrained Model

For CIFAR-10, STL-10, and ImageNet-10, we adopt self-supervised pretrained ResNet
model trained on the ImageNet. We resize STL-10 to 224 × 224 × 3 to fit the pretrained model.
The network only trains the last two blocks, and the parameters of other parts are frozen.
As shown in Table 7, a self-supervised pretrained model can be used to effectively improve
the clustering performance for complex natural images. The clustering performance of
Fashion-Mnist is not improved by the pretrained model. It can be seen that the pretrained
model is more effective for complex natural images.

Table 7. Performances using pretrained models. The significance of bold represents the best result..

Datasets Without
Pretrained Pretrained ACC NMI

Fashion-MNIST X 0.714 0.737
Fashion-MNIST X 0.712 0.732

CIFAR-10 X 0.241 0.125
CIFAR-10 X 0.298 0.182

STL-10 X 0.293 0.205
STL-10 X 0.551 0.525

ImageNet-10 X 0.250 0.193
ImageNet-10 X 0.412 0.375
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4.5. Compared with Auto-Encoder

The algorithm that we proposed simplifies the algorithm structure by using only the
encoder and discarding the decoder. At the same time, the performance of our algorithm
exceeds that of the algorithm using the auto-encoder. We compared the two structures,
and the results are shown in Table 8. The encoder-only model has shorter training time and
higher accuracy.

Table 8. Performances comparison between two structures. The significance of bold represents the
best result.

Datasets Encoder-Only Auto-Encoder Training Time of Each Epoch (s) ACC NMI

MNIST X 58 0.988 0.965
MNIST X 40 0.994 0.985

Fashion-MNIST X 122 0.689 0.731
Fashion-MNIST X 75 0.714 0.737

COIL20 X 29 0.920 0.953
COIL20 X 14 0.960 0.982

CIFAR-10 X 132 0.284 0.163
CIFAR-10 X 98 0.298 0.182

STL-10 X 86 0.532 0.521
STL-10 X 66 0.551 0.525

ImageNet-10 X 205 0.407 0.365
ImageNet-10 X 130 0.412 0.375

4.6. Compared with the Latest Clustering Algorithm

We compared the ICBPC clustering algorithm with the latest clustering algorithm,
and our algorithm achieved excellent results in all four datasets, as shown in Table 9.

In Table 9, all the results are reported by running the code they posted or are taken
from the corresponding paper. The mark “-” means that the result is not available for the
paper or code. The significance of bold in the Table 9 represents the best result.

Compared with deep clustering algorithms using auto-encoders such as DCN and
DEN, our model is simpler in structure, faster in training, and can achieve good clustering
performance by PEDCC. Compared with other algorithms that learn feature representations
for clustering such as JULE, our algorithm uses PEDCC to make the inter-class distances
large enough for better clustering performance.

Table 9. Performances comparison with other clustering algorithms.

- ARCH NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC

- - mnist mnist coil20 coil20 fashion fashion cifar-10 cifar-10 stl-10 stl-10 image-
net-10

image-
net-10

k-means [6] - 0.500 0.532 - - 0.512 0.474 0.064 0.199 0.125 0.192 - -
SC-NCUT [26] - 0.731 0.656 - - 0.575 0.508 - - - - - -

SC-LS [27] - 0.706 0.714 - - 0.497 0.496 - - - - - -
NMF-LP [28] - 0.452 0.471 - - 0.425 0.434 0.051 0.180 - - - -
AC-Zell [29] - 0.017 0.113 - - 0.100 0.010 - - - - - -
AC-GDL [30] - 0.017 0.113 - - 0.010 0.112 - - - - - -

RCC [31] - 0.893 - - - - - - - - -
DCN [32] MLP 0.810 0.830 - - 0.558 0.501 - - - -
DEC [12] MLP 0.834 0.863 - - 0.546 0.518 0.057 0.208 0.276 0.359
IDEC [33] - 0.867 0.881 - - 0.557 0.529 - - - - - -
CSC [34] - 0.755 0.872 - - - - - - - - - -

VADE [35] VAE 0.876 0.945 - - 0.630 0.578 - - - - - -
JULE [36] CNN 0.913 0.964 - - 0.608 0.563 - - 0.182 0.277 - -
DBC [13] CNN 0.917 0.964 - - - - - - - - - -

DEPICT [37] CNN 0.917 0.965 - - 0.392 0.392 - - - - - -
CCNN [38] CNN 0.876 - - - - - - - - - - -
DEN [39] MLP - - 0.870 0.724 - - - - - - - -
NC [40] MLP - 0.966 - - - - - - - - - -

UMMC [41] DBN 0.864 - 0.891 - - - - - - - - -
TAGNET [42] - 0.651 0.692 0.927 0.899 - - - - - - - -

IMSAT [43] MLP - 0.983 - - - - - - - - - -
PSSC [14] AE 0.768 0.843 0.978 0.972 - - - - - - - -
DAC [17] - 0.935 0.978 - - - - 0.396 0.522 0.366 0.469 - -
ADC [18] - - 0.987 - - - - - 0.293 - - - -
ICAE [20] AE 0.967 0.988 0.953 0.920 0.689 0.731 0.080 0.215 - - - -

ICBPC(ours) - 0.985 0.994 0.982 0.960 0.714 0.737 0.182 0.298 0.525 0.551 0.412 0.375
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4.7. Statistical Analysis of Experimental Data

All our experimental results are averaged after 4 times of training. We calculate
the standard deviation of the experimental data to verify the stability of the algorithm.
As shown in Table 10, the standard deviation values of the experimental results are low,
which can prove the stability of our algorithm.

Table 10. Statistical analysis of experimental results.

Datasets Average of ACC Average of NMI Standard Deviation
of ACC

Standard Deviation
of NMI

MNIST 0.994 0.985 0.0048 0.0034
COIL20 0.960 0.982 0.0005 0.0013

Fashion MNIST 0.737 0.714 0.0036 0.0041
CIFAR-10 0.298 0.182 0.0045 0.0032

STL-10 0.551 0.525 0.0062 0.0053
ImageNet-10 0.412 0.375 0.0064 0.0055

5. Conclusions

This paper presents an image clustering algorithm based on predefined evenly-
distributed class centroids and composite cosine distance. In this algorithm, an encoder
only network structure is adopted and PEDCC is used as the clustering center to ensure
the maximum distance between classes of latent features. Data distribution constraints
and contrastive constraints between samples and augmented samples are applied to im-
prove the clustering performance. We use composite cosine distance instead of Euclidean
distance to better fit the PEDCC model. This algorithm achieves better performance than
the existing clustering algorithms on MNIST, COIL20, Fashion-MNIST, CIFAR-10, STL-10
and ImageNet-10. For complex natural images, a self-supervised pretrained model is
used to achieve better clustering performance. In the future, we will continue to use the
characteristics of PEDCC for feature representation learning, to obtain better clustering and
recognition results.
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