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Abstract: This paper considers secure communication in the presence of an eavesdropper and a
malicious jammer. The jammer is assumed to be oblivious of the communication signals emitted by
the legitimate transmitter(s) but can employ any jamming strategy subject to a given power constraint
and shares her jamming signal with the eavesdropper. Four such models are considered: (i) the
Gaussian point-to-point wiretap channel; (ii) the Gaussian multiple-access wiretap channel; (iii) the
Gaussian broadcast wiretap channel; and (iv) the Gaussian symmetric interference wiretap channel.
The use of pre-shared randomness between the legitimate users is not allowed in our models. Inner
and outer bounds are derived for these four models. For (i), the secrecy capacity is obtained. For
(ii) and (iv) under a degraded setup, the optimal secrecy sum-rate is characterized. Finally, for (iii),
ranges of model parameter values for which the inner and outer bounds coincide are identified.

Keywords: Gaussian wiretap channel; Gaussian multiple-access wiretap channel; Gaussian broadcast
wiretap channel; jamming; secure communication

1. Introduction

Consider secure communication over wireless channels between legitimate parties in
the presence of an eavesdropper and a malicious jammer. The jammer is assumed to be
oblivious of the legitimate users’ communication but can employ any jamming strategy
subject to a given power constraint. Consequently, the main channel between the legitimate
users is arbitrarily varying [1]. Unlike most works that consider arbitrarily varying channels,
however, pre-shared randomness is not available to the legitimate users in our scenario.
Additionally, the jammer shares her jamming signal with the eavesdropper who can thus
perfectly cancel the effect of the jamming signal on her channel. In this paper, we study
the fundamental limits of secure communication rates in the presence of such a jammer-
aided eavesdropper over four Gaussian wiretap channel models: the Gaussian wiretap
channel [2], the Gaussian multiple-access wiretap channel [3], the Gaussian broadcast
wiretap channel [4], and the Gaussian symmetric interference wiretap channel.

1.1. Contributions

Our contributions are summarized as follows.

• For secure communication over Gaussian point-to-point, multiple-access, broadcast,
and symmetric interference wiretap channels in the presence of a jammer-aided
eavesdropper as described above, we determine inner and outer bounds on the secrecy
capacity region.

• We show that our bounds are tight for the point-to-point setting, tight for sum-rates
for the multiple-access and interference settings under degraded setups, and tight for
some ranges of model parameter values for the broadcast setting.
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Our main strategy to handle our multiuser settings is to reduce the problem to single-
user coding. Previous known techniques for such a reduction, such as rate-splitting [5] and
successive cancellation decoding [5] [Appendix C], that have been developed for multiple-
access settings without security constraints, do not easily apply to wiretap channel models.
These techniques consist in achieving the corner points of achievability regions that can be
described by polymatroids whose corner points have positive components. However, regions
described by polymatroids whose corner points have negative components, as in our wiretap
channel models, prevent the applications of these techniques. We overcome this roadblock
by proposing novel time-sharing strategies coupled with appropriate secret-key exchanges
between the legitimate users. As seen in the proofs of our results, eavesdropping and
arbitrary jamming are not easy to decouple in the secrecy analysis. In particular, the analysis
of the secrecy in our proposed model does not follow from a standard secrecy analysis in
the absence of jamming, as we need to consider (i) codewords uniformly distributed over
spheres, which we use to handle an arbitrarily varying main channel; and (ii) block-Markov
coding and specific time-sharing strategies (to allow the reduction of multiuser coding
to single-user coding) which create inter-dependencies between coding blocks. Note that
our achievability schemes also rely on point-to-point codes developed in [1]. One of the
benefits of reducing multiuser coding to point-to-point coding techniques is that despite
the fact that our setting involves multiple transmitters and an arbitrarily varying channel
between the legitimate users, pre-shared randomness among the legitimate users will not be
needed in our achievability schemes. Our strategy for the converse consists of reducing the
problem of determining a converse for our model to the problem of determining a converse
for a related model in the absence of a jammer.

1.2. Related Works

Related works that consider simultaneous eavesdropping and oblivious jamming
threats for the point-to-point discrete memoryless wiretap channel include [6–11]. The
proof techniques used in these references to obtain security, such as random binning [12,13],
resolvability/soft covering [10,14,15], or typicality arguments, are challenging to apply to a
Gaussian setting in the absence of shared randomness at the legitimate user. Specifically,
for the Gaussian point-to-point channel in the presence of an adversary that arbitrarily
jams [1], the only known coding mechanism to obtain reliability in the absence of pre-
shared randomness relies on codewords uniformly drawn on a unit sphere [1], which
are challenging to integrate with the above techniques to obtain security because their
components are not independent and identically distributed.

Another line of work [16] considers Gaussian channel models where the eavesdropper
channel can vary arbitrarily, but the main channel is not. The setting considered in the
present paper, where the main channel between the legitimate users is arbitrarily varying,
prevents the use of analyses similar to those in [16] for the same reasons described above.

Several other works have considered continuous channel models, including the Gaus-
sian MIMO wiretap channel [17], the Gaussian multiple-access wiretap channel [18], where
deviating users can be viewed as active adversary, and continuous point-to-point wire-
tap channels [19,20], where the adversary can choose between eavesdropping or jamming.
These references differ from the above-mentioned references on arbitrarily varying channels
as they assume a specific signaling strategy for the jammer.

Finally, note that for point-to-point channels, stronger jamming strategies that depend
on the signals of the legitimate transmitters have been studied in [21–23].

1.3. Organization of the Paper

The remainder of the paper is organized as follows. We describe the models in
Section 2. We present our results for the Gaussian point-to-point wiretap channel, the Gaus-
sian multiple-access wiretap channel, the Gaussian broadcast wiretap channel, and the
Gaussian symmetric interference wiretap channel in Sections 3–6, respectively. We discuss
in Section 4.2 a way to avoid, at least for some channel parameters, time-sharing for the
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multiple-access setting. We also discuss in Section 4.3 an extension of the multiple-access
setting to more than two transmitters. We detail the proofs for the multiple-access setting
in Sections 7 and 8. We end the paper with concluding remarks in Section 9.

2. Problem Statement
2.1. Notation

For a, b ∈ R, define Ja, bK , [bac, dbe] ∩ N, ]a, b[, [a, b]\{a, b}, ]a, b] , [a, b]\{a},
and [a, b[, [a, b]\{b}. The components of a vector, Xn, of size n ∈ N, are denoted by
subscripts, i.e., Xn , (X1, X2, . . . , Xn). For x ∈ R, define [x]+ , max(0, x). The notation
x 7→ y describes a function that associates y to x when the domain and the image of
the function are clear from the context. The power set of a finite set S is denoted by 2S .
The convex hull of a set S is denoted by Conv(S). Unless specified otherwise, capital
letters designate random variables, whereas lowercase letters designate realizations of
associated random variables, e.g., x is a realization of the random variable X. For R ∈ R+,
Bn

0 (R) denotes the ball of radius R centered in 0 in Rn under the Euclidian norm.

2.2. Gaussian Multiuser Wiretap Channel in the Presence of a Jammer-Aided Eavesdropper

Consider the Gaussian memoryless wiretap channel model with two transmitters and
two legitimate receivers

Yn
1 ,
√

g11Xn
1 +
√

g12Xn
2 +
√

g13Sn + Nn
1 , (1a)

Yn
2 ,
√

g21Xn
1 +
√

g22Xn
2 +
√

g23Sn + Nn
2 , (1b)

Zn ,
√

h1Xn
1 +

√
h2Xn

2 + Nn
Z, (1c)

where Yn
1 , Yn

2 are the channel outputs observed by the legitimate receivers, and Zn is the
channel output observed by the eavesdropper. For l ∈ {1, 2}, Xn

l is the signal emitted by
Transmitter l satisfying the power constraint ‖Xn

l ‖
2 , ∑n

i=1(Xl)
2
i ≤ nΓl , Sn is an arbitrary

jamming sequence transmitted by the jammer that is oblivious of the communication of the
legitimate users and satisfies the power constraint ‖Sn‖2 , ∑n

i=1 S2
i ≤ nΛ, and Nn

Y1
, Nn

Y2
, Nn

Z
are sequences of independent and identically distributed Gaussian noise with variances σ2

1 ,
σ2

2 , σ2
Z, respectively. The channel coefficients g11, g12, g13, g21, g22, g23, h1, h2 are fixed

and known to all parties. Note that we assume that the jammer helps the eavesdropper
by sharing her jamming sequence, which allows the eavesdropper to perfectly cancel Sn

from Zn. Coding schemes and achievable rates are defined as follows.

Definition 1. Let n, k ∈ N. A
(
2nR1 , 2nR2 , n, k

)
code Cn consists, for each block j ∈ J1, kK, of

• Two message setsM(j)
l , J1, 2nR(j)

l K, l ∈ {1, 2};
• Two stochastic encoders, e(j)

l :M(j)
l → Bn

0 (
√

nΓl), l ∈ {1, 2};
• Two decoders, g(j)

l : Rn →M(j)
l , l ∈ {1, 2};

where for any l ∈ {1, 2}, Rl =
1
k ∑k

j=1 R(j)
l , and operates as follows. For each block j ∈ J1, kK,

transmitter l ∈ {1, 2} encodes with e(j)
l a uniformly distributed message M(j)

l ∈ M
(j)
l to a codeword

of length n, which is sent to the legitimate receiver over the channel described by Equation (1a),
Equation (1b), Equation (1c) with the power constraint nΛ for the jamming signal Sn

i . Note that
all the power constraints at the transmitters and the jammer hold for a given transmission block of
length n, which is relevant when the power constraints hold within any time window corresponding
to n channel uses. Then, the legitimate receiver l ∈ {1, 2} forms an estimate M̂(j)

l , g(j)
l (Yn

l ) of the

message M(j)
l . We define M̂ ,

(
M̂(j)

1 , M̂(j)
2

)
j∈J1,kK

, M ,
(

M(j)
1 , M(j)

2

)
j∈J1,kK

, S , (Sn
i )i∈J1,kK,

and S , {(Sn
i )i∈J1,kK : ‖Sn

i ‖2≤ nΛ, ∀i ∈ J1, kK}.
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Definition 2. A rate pair (R1, R2) is achievable, if there exists a sequence of
(
2nR1 , 2nR2 , n, k

)

codes such that

lim
n→∞

sup
S∈S

P[M̂ 6= M] = 0 (reliability), (2a)

lim
n→∞

1
nk

H(M|Zkn) ≥ R1 + R2 (equivocation). (2b)

2.3. Special Case 1: The Gaussian Wiretap Channel in the Presence of a Jammer-Aided Eavesdropper

Assume that the two transmitters are colocated and the two receivers are colocated in
Section 2.2. More specifically, as depicted in Figure 1, the channel model of Section 2.2 becomes

Yn , Xn + Sn + Nn
1 , (3a)

Zn ,
√

hXn + Nn
Z, (3b)

where σ2
1 = σ2

Z = 1. We term this model as Gaussian Wiretap channel with Jammer-Aided
eavesdropper (Gaussian WT-JA in short form). Note that this model recovers as a special
case the Gaussian wiretap channel [2].
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Figure 1. The Gaussian wiretap channel in the presence of a jammer-aided eavesdropper.

2.4. Special Case 2: The Gaussian Multiple-Access Wiretap Channel in the Presence of a
Jammer-Aided Eavesdropper

Assume that the two receivers are colocated in Section 2.2. More specifically, as de-
picted in Figure 2, the channel model of Section 2.2 becomes

Yn , Xn
1 + Xn

2 + Sn + Nn
1 , (4a)

Zn ,
√

h1Xn
1 +

√
h2Xn

2 + Nn
Z, (4b)

where σ2
1 = σ2

Z = 1. We term the model as Gaussian Multiple-Access Wiretap channel with
Jammer-Aided eavesdropper (Gaussian MAC-WT-JA in short form) with the parameters
(Γ1, Γ2, h1, h2, Λ, σ2

1 , σ2
Z). This model recovers as special cases the model in [24] in the

absence of the security constraint (2b), and the Gaussian multiple-access wiretap channel [3].
Note that the model in [24] was introduced to study the presence of selfish transmitters
via cooperative game theory, and that, similarly, the Gaussian MAC-WT-JA can be used to
study the presence of selfish transmitters via coalitional game theory [25].
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Figure 2. The Gaussian multiple-access wiretap channel in the presence of a jammer-aided eavesdropper.

2.5. Special Case 3: The Gaussian Broadcast Wiretap Channel in the Presence of a
Jammer-Aided Eavesdropper

Assume that the two transmitters are colocated in Section 2.2. More specifically,
as depicted in Figure 3, the channel model of Section 2.2 becomes
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where σ2
Z = 1. We term the model as Gaussian Broadcast Wiretap channel with Jammer-

Aided eavesdropper (Gaussian BC-WT-JA in short form). Note that this model recovers as
special cases the multi-receiver wiretap channel [26] and the model in [27] in the absence of
the security constraint (2b).
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Figure 3. The Gaussian broadcast wiretap channel in the presence of a jammer-aided eavesdropper.

2.6. Special Case 4: The Gaussian Symmetric Interference Wiretap Channel in the Presence of a
Jammer-Aided Eavesdropper

Consider the following special case of the channel model of Section 2.2
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where σ2
1 = σ2

2 = σ2
Z = 1. We term the model as Gaussian Symmetric Interference Wiretap

channel with Jammer-Aided eavesdropper (Gaussian SI-WT-JA in short form). In the
absence of the security constraint (2b) and the jamming sequence, this model recovers a
special case of the Gaussian interference channel under strong interference [28].

3. The Gaussian Wiretap Channel in the Presence of a Jammer-Aided Eavesdropper

We present a capacity result for the Gaussian WT-JA model described in Section 2.3.

Theorem 1. The secrecy capacity of the Gaussian WT-JA is

C(Λ) ,





[
1
2 log

(
1+(1+Λ)−1Γ

1+hΓ

)]+
if Γ > Λ

0 if Γ ≤ Λ
. (7)

Observe that C(Λ) is non-zero if and only if Γ > Λ and (1 + Λ)−1 > h. When Γ > Λ,
Theorem 1 means that arbitrary oblivious jamming is no more harmful than Gaussian
jamming, i.e., when the jamming sequence is obtained from independent and identical
realizations of a zero-mean Gaussian random variable with variance equal to the power
constraint Λ.

The proof of Theorem 1 follows as a special case of the achievability and converse bounds
derived in the next section in Theorems 2 and 3, respectively, for the Gaussian MAC-WT-JA.

4. The Gaussian Multiple-Access Wiretap Channel in the Presence of a
Jammer-Aided Eavesdropper
4.1. Inner and Outer Bounds for the Gaussian MAC-WT-JA

We derive inner and outer bounds for the Gaussian MAC-WT-JA in Theorems 2 and 3.
Their proofs are provided in Sections 7 and 8, respectively.

Theorem 2 (Achievability). We consider three cases.

1. When Γ1 > Λ and Γ2 ≤ Λ,

RMAC
1 ,

{
(R1, 0) : R1 ≤ max

0≤P2≤Γ2

[
1
2

log
(

1 + Γ1(1 + Λ + P2)
−1

1 + Γ1h1(1 + h2P2)−1

)]+}
(8)

is achievable.
2. When Γ2 > Λ and Γ1 ≤ Λ,

RMAC
2 ,

{
(0, R2) : R2 ≤ max

0≤P1≤Γ1

[
1
2

log
(

1 + Γ2(1 + Λ + P1)
−1

1 + Γ2h2(1 + h1P1)−1

)]+}
(9)

is achievable.
3. When min(Γ1, Γ2) > Λ,

RMAC , Conv


R

MAC
1 ∪RMAC

2 ∪
⋃

Λ<P1≤Γ1
Λ<P2≤Γ2

RMAC
1,2 (P1, P2)


 (10)
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is achievable, where

RMAC
1,2 (P1, P2) ,

{
(R1, R2) : R1 ≤

[
1
2

log
(

1 + P1(1 + Λ)−1

1 + P1h1(1 + h2P2)−1

)]+
,

R2 ≤
[

1
2

log
(

1 + P2(1 + Λ)−1

1 + P2h2(1 + h1P1)−1

)]+
,

R1 + R2≤
[

1
2

log
(

1 + (P1 + P2)(1 + Λ)−1

1 + P1h1 + P2h2

)]+}
. (11)

Theorem 3 (Partial Converse).

1. If max(Γ1, Γ2) ≤ Λ, then no positive rate is achievable.
2. When min(Γ1, Γ2) > Λ and h1 = h2, the sum-rate bound of RMAC

1,2 (Γ1, Γ2) described
in Equation (11) is tight by choosing (P1, P2) = (Γ1, Γ2).

Observe that in the achievability scheme forRMAC
1 , choosing a transmission power

smaller than Γ1 for Transmitter 1 would result in a smaller region, since for a fixed P2,

x 7→ log
(

1+x(1+Λ+P2)
−1

1+xh1(1+h2P2)−1

)
is either negative when (1+Λ+ P2)

−1 ≤ h1(1+ h2P2)
−1, or non-

decreasing when (1 + Λ + P2)
−1 > h1(1 + h2P2)

−1. By exchanging the role of the transmit-
ters, we have the same observation forRMAC

2 .

4.2. Discussion of Rate-Splitting

Rate-splitting [5] can be adapted to the Gaussian MAC-WT-JA to avoid time-sharing,
however, the entire region in Equation (11) cannot be achieved as splitting the power of
one user precludes reliable communication. Assuming that

I(X1X2; Y)− I(X1X2; Z) ≥ max[I(X1; Y|X2)− I(X1; Z), I(X2; Y|X1)− I(X2; Z)], (12)

then one can split the power of Transmitter 1 in (P1− δ) and δ, where δ ∈ [0, P1], and define
the following functions from [0, P1] to R

RU :δ 7→ 1
2

log
1 + (P1 − δ)(1 + Λ + δ + P2)

−1

1 + h1(P1 − δ)
, (13a)

RV :δ 7→ 1
2

log
1 + δ(1 + Λ)−1

1 + h1δ(1 + h1(P1 − δ) + h2P2)−1 , (13b)

R2 :δ 7→ 1
2

log
1 + P2(1 + Λ + δ)−1

1 + h2P2(1 + h1(P1 − δ))−1 . (13c)

Lemma 1. For any δ ∈ [0, P1], we have (RU + RV + R2)(δ) = I(X1X2; Y) − I(X1X2; Z).
Moreover, for any point (x0, y0) in

D(P1, P2)

,

{
(R1, R2) ∈ RMAC

1,2 (P1, P2) : R1 + R2 =

[
1
2

log
(

1 + (P1 + P2)(1 + Λ)−1

1 + P1h1 + P2h2

)]+}
, (14)

there exists δ0 ∈ [0, P1] such that x0 = (RU + RV)(δ0) and y0 = R2(δ0).

Proof. Define

Y , U + V + X2 + NY, (15a)

Z ,
√

h1(U + V) +
√

h2X2 + NZ, (15b)
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where V, U, X2, NY, NZ are independent zero-mean Gaussian random variables with
variances δ ∈ [0, P1], P1 − δ, P2, (1 + Λ), 1, respectively. Additionally, define

RU(δ) , I(U; Y)− I(U; Z|VX2) =
1
2

log
1 + (P1 − δ)(1 + Λ + δ + P2)

−1

1 + h1(P1 − δ)
, (16a)

RV(δ) , I(V; Y|UX2)− I(V; Z) =
1
2

log
1 + δ(1 + Λ)−1

1 + h1δ(1 + h1(P1 − δ) + h2P2)−1 , (16b)

R2(δ) , I(X2; Y|U)− I(X2; Z|V) =
1
2

log
1 + P2(1 + Λ + δ)−1

1 + h2P2(1 + h1(P1 − δ))−1 . (16c)

By the chain rule, we have, for any δ ∈ [0, P1], (RU + RV + R2)(δ) = I(X1X2; Y) −
I(X1X2; Z). Finally, since (RU + RV)(0) = I(X1; Y)− I(X1; Z|X2) and (RU + RV)(P1) =
I(X1; Y|X2)− I(X1; Z), by continuity of δ 7→ (RU + RV)(δ), there exists δ0 ∈ [0, P1] such
that x0 = (RU + RV)(δ0) and y0 = R2(δ0) for any point (x0, y0) in D(P1, P2) .

As remarked in [29], a potential issue is that RU(δ0) or RV(δ0) can be negative in
Lemma 1. We have the following achievability result.

Proposition 1. Let (x0, y0) ∈ D(P1, P2) and δ0 be as in Lemma 1. Then, (x0, y0) can be achieved
without time-sharing if RU(δ0) ≥ 0 and RV(δ0) ≥ 0 and min(δ0, P1 − δ0) > Λ. (x0, y0) ∈
D(P1, P2) can also be achieved without time-sharing if similar conditions (obtained by exchanging
the role of the two transmitters) are satisfied when splitting the power of Transmitter 2.
Proof idea: Transmitter 1 is split into two virtual users that transmit at rate RU(δ) with
power δ and at rate RV(δ) with power P1− δ. Encoding for User 2 and the two virtual users
is similar to Case 1 in the proof of Theorem 2. The receiver adopts a minimum distance
decoding rule as in Theorem 2 to first decode the message associated with the virtual user
that transmits at rate RV , then to decode the message associated with User 2, and finally,
to decode the message associated with the virtual user that transmits at rate RU . A similar
procedure can be performed if one decides to split the power of Transmitter 2.

An illustration of Proposition 1 is depicted in Figure 4. Note that for some model
parameters, the set of points achievable with Proposition 1 can be empty and, unfortu-
nately, it does not seem easy to obtain a simple analytical characterization of the rate pairs
achievable with Proposition 1.

Figure 4. The shaded area representsRMAC
1,2 (P1, P2), where (P1, P2, Λ, h1, h2) = (4, 3.3, 1.5, 0.12, 0.11).

The solid segments represent the rate pairs achievable with Proposition 1.
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4.3. Extension to More Than Two Transmitters

We extend our result for the MAC-WT-JA to the case of an arbitrary number of
transmitters. The problem is more involved than the case of two transmitters and requires
new time-sharing strategies that leverage extended polymatroid properties.

Consider the model of Section 2.4 with L transmitters instead of two transmitters.
We let L , J1, LK denote the set of transmitters. More specifically, the channel model of
Section 2.4 becomes

Yn , ∑
l∈L

Xn
l + Sn + Nn

1 , (17a)

Zn , ∑
l∈L

√
hlXn

l + Nn
Z, (17b)

where σ2
1 = σ2

Z = 1. We term the model as Gaussian MAC-WT-JA with parameters
((Γl)l∈L, (hl)l∈L, Λ, σ2

1 , σ2
Z). When the channel gains (hl)l∈L are all equal to h ∈ [0, 1[, we

refer to this model as the degraded MAC-WT-JA with parameters ((Γl)l∈L, h, Λ, σ2
1 , σ2

Z).
Given Λ ∈ R+ and (Γl)l∈L, we define hΛ , (1 + Λ)−1, L(Λ) , {l ∈ L : Γl > Λ},
and Lc(Λ) , L\L(Λ). The following achievability result is proven in Appendix B.

Theorem 4. Assume that for all l ∈ L(Λ), hΛ > hl . The following region is achievable for the
Gaussian MAC-WT-JA with parameters ((Γl)l∈L, (hl)l∈L, Λ, 1, 1)

R =
⋃

(Pl)l∈L
:∀l∈L(Λ),Λ<Pl≤Γl

{
(Rl)l∈L : ∀l ∈ Lc(Λ), Rl = 0 and ∀T ⊆ L(Λ),

RT ≤
[

1
2

log
(

1 + hΛPT
1 + (∑l∈T hl Pl)(1 + ∑l∈T c hl Pl)−1

)]+}
, (18)

where for any (Pl)l∈L and T ⊆ L, we use the notation PT , ∑l∈T Pl .

We immediately obtain the following corollary.

Corollary 1. The following region is achievable for the degraded Gaussian MAC-WT-JA with
parameters ((Γl)l∈L, h, Λ, 1, 1)

R =
⋃

(Pl)l∈L
:∀l∈L(Λ),Λ<Pl≤Γl

{
(Rl)l∈L : ∀l ∈ Lc(Λ), Rl = 0 and ∀T ⊆ L(Λ),

RT ≤
[

1
2

log
(

1 + hΛPT
1 + hPT (1 + hPT c)−1

)]+}
. (19)

Note that the achievability strategy used in the proof of Theorem 4 is different than the
achievability strategy used in the proof of Theorem 2. While Theorem 4 gains in generality
by considering an arbitrary number of users, it requires the assumption ∀l ∈ L(Λ), hΛ > hl ,
which is not needed in Theorem 2. We also have the following optimality result, which is
proven in Appendix C.

Theorem 5. The maximal secrecy sum-rate RL , ∑l∈L Rl achievable for the degraded Gaussian
MAC-WT-JA with parameters ((Γl)l∈L, h, Λ, 1, 1) is

[
1
2

log

(
1 + hΛΓL(Λ)

1 + hΓL(Λ)

)]+
. (20)

Note that the optimal secrecy sum-rate is positive if and only if hΛ > h and L(Λ) 6= ∅.
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5. The Gaussian Broadcast Wiretap Channel in the Presence of a
Jammer-Aided Eavesdropper

Theorems 6 and 7 provide inner and outer bounds, respectively, for the Gaussian
BC-WT-JA.

Theorem 6 (Achievability). We have the following inner bounds.

1. When g2Λ ≥ Γ and g1Λ < Γ,

RBC
1 ,



(R1, 0) : R1 ≤


1

2
log




1 + Γ
σ2

1+g1Λ

1 + hΓ





+
 (21)

is achievable.
2. When g1Λ ≥ Γ and g2Λ < Γ,

RBC
2 ,



(0, R2) : R2 ≤


1

2
log




1 + Γ
σ2

2+g2Λ

1 + hΓ





+
 (22)

is achievable.
3. When max(g1Λ, g2Λ) < Γ, and, without loss of generality, σ2

1 + g1Λ ≤ σ2
2 + g2Λ (ex-

change the role of the receivers if σ2
1 + g1Λ > σ2

2 + g2Λ),

Conv


RBC

1 ∪RBC
2 ∪

⋃

α∈]max(g1,g2)ΛΓ−1,1]

RBC(α)


, (23)

is achievable where we have defined for α ∈ [0, 1]

RBC(α) ,




(R1, R2) : R1 ≤


1

2
log




1 + (1−α)Γ
σ2

1+g1Λ

1 + h(1− α)Γ







+

,

R2 ≤


1

2
log




1 + αΓ
(1−α)Γ+σ2

2+g2Λ

1 + hαΓ
h(1−α)Γ+1





+
. (24)

Note that RBC(α = 0) = RBC
1 and RBC(α = 1) = RBC

2 . The achievability scheme of
Theorem 6 is similar to the proof of Theorem 2 and [27] [Theorem 3].

Theorem 7 (Partial converse).

1. If Γ ≤ min(g1Λ, g2Λ), then no positive rate is achievable;
2. When g2Λ ≥ Γ and g1Λ < Γ, the achievability regionRBC

1 in Theorem 6 is tight;
3. When g1Λ ≥ Γ and g2Λ < Γ, the achievability regionRBC

2 in Theorem 6 is tight;
4. When Γ > max(g1Λ, g2Λ), the following region is an outer bound

⋃

α∈[0,1]

RBC(α), (25)

whereRBC(α) has been defined in Theorem 6.

The proof of Theorem 7 is similar to the proof of Theorem 3 using [26] in place
of [30]. Observe that the gap between the inner and outer bounds of Theorems 6 and 7
when Γ > max(g1Λ, g2Λ) comes from the fact that our achievability scheme is limited to
α ∈]max(g1, g2)ΛΓ−1, 1] ∪ {0}.
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6. The Symmetric Interference Wiretap Channel in the Presence of a
Jammer-Aided Eavesdropper

By the symmetry in Equation (6a) and Equation (6b), a code for the Gaussian MAC-
WT-JA allows Receiver i ∈ {1, 2} to securely recover the message of Transmitter i. Hence,
from the achievability result for the Gaussian MAC-WT-JA, we have the following achiev-
ability result for the Gaussian SI-WT-JA.

Theorem 8 (Achievability). We consider three cases.

1. When Γ1 > Λ and Γ2 ≤ Λ,RSI
1 , RMAC

1 is achievable;
2. When Γ2 > Λ and Γ1 ≤ Λ,RSI

2 , RMAC
2 is achievable;

3. When min(Γ1, Γ2) > Λ,RSI , RMAC is achievable;

whereRMAC
1 ,RMAC

2 , andRMAC are defined in Theorem 2.

Next, by the symmetry in Equations (6a) and (6b), we have that any code for the
Gaussian SI-WT-JA allows Receiver i ∈ {1, 2} to securely recover the messages from both
transmitters, meaning that an outer bound for the Gaussian SI-WT-JA can be obtained
by considering an outer bound for a Gaussian MAC-WT-JA. Hence, from the partial
converse for the Gaussian MAC-WT-JA, we obtain the following partial converse for the
Gaussian SI-WT-JA.

Theorem 9 (Partial converse).

1. If max(Γ1, Γ2) ≤ Λ, then no positive rate is achievable.
2. When min(Γ1, Γ2) > Λ and h1 = h2, the sum-rate achieved in RSI is tight by choosing

(P1, P2) = (Γ1, Γ2).

7. Proof of Theorem 2

To prove Theorem 2, it is sufficient to prove the achievability of the dominant face

D(P1, P2)

,

{
(R1, R2) ∈ RMAC

1,2 (P1, P2) : R1 + R2 =

[
1
2

log
(

1 + (P1 + P2)(1 + Λ)−1

1 + P1h1 + P2h2

)]+}
(26)

of RMAC
1,2 (P1, P2) to prove the achievability of RMAC

1,2 (P1, P2) when min(Γ1, Γ2) > Λ and
where (P1, P2) ∈]Λ, Γ1]×]Λ, Γ2]. The achievability of RMAC

i , i ∈ {1, 2}, when Γi > Λ
and Γ3−i ≤ Λ is obtained similarly by having Transmitter ī , 3− i send Gaussian noise.
Observe that the rate constraints inRMAC

1,2 (P1, P2) can be expressed as

R1 ≤ [I(X1; Y|X2)− I(X1; Z)]+, (27a)

R2 ≤ [I(X2; Y|X1)− I(X2; Z)]+, (27b)

R1 + R2 ≤ [I(X1X2; Y)− I(X1X2; Z)]+, (27c)

where

Y , X1 + X2 + NY, (28a)

Z ,
√

h1X1 +
√

h2X2 + NZ, (28b)

and X1, X2, NY, NZ are independent zero-mean Gaussian random variables with variances
P1, P2, (1 + Λ), 1, respectively. As remarked in [29], the set function T 7→ I(XT ; Y|XT c)−
I(XT ; Z) is submodular but not necessarily non-decreasing, where ∀T ⊆ {1, 2}, XT ,
(Xt)t∈T . This is the main reason why achieving the corner points of RMAC

1,2 (P1, P2) by
means of point-to-point codes via the successive decoding method [5] [Appendix C] does
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not easily translate to our setting. Before we provide our solution, we summarize our proof
strategy in the three cases below. Figure 5 illustrates these cases.

C1
C1

C2

C2

eC2

eC1
eC1

eC2

R2 R2

R2 R2

R1

R1

R1

R1

Case 1 Case 2.a

Case 2.b Case 3

0

0

0

0

C2

C1C1

C2

Figure 5. RegionR1,2(P1, P2).

Case 1: Assume

I(X1X2; Y)− I(X1X2; Z) ≥ max[I(X1; Y|X2)− I(X1; Z), I(X2; Y|X1)− I(X2; Z)]. (29)

The corner points ofRMAC
1,2 are given by

C1 , (I(X1; Y|X2)− I(X1; Z), I(X2; Y)− I(X2; Z|X1)), (30a)

C2 , (I(X1; Y)− I(X1; Z|X2), I(X2; Y|X1)− I(X2; Z)). (30b)

We will achieve each corner point with point-to-point coding techniques and perform
time-sharing to achieve D(P1, P2). Specifically, to achieve Ci, i ∈ {1, 2}, the encoders will
be designed such that the decoder can first estimate the codeword sent by Transmitter
ī , 3− i (by considering the codewords of Transmitter i as noise), which is in turn used
to estimate the codeword sent by Transmitter i. This approach is similar to the successive
decoding method [5] [Appendix C] for a multiple-access channel in the absence of a
security constraint.

Case 2.a: Assume

I(X1X2; Y)− I(X1X2; Z) ≥ I(X1; Y|X2)− I(X1; Z), (31a)

I(X1X2; Y)− I(X1X2; Z) < I(X2; Y|X1)− I(X2; Z). (31b)

Hence,

C̃2 , (I(X1; Y)− I(X1; Z|X2), I(X2; Y|X1)− I(X2; Z)) (32)
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has a negative x-coordinate and the method of Case 1 cannot be directly applied here. Now,
the corner points ofRMAC

1,2 are

C1 , (I(X1; Y|X2)− I(X1; Z), I(X2; Y)− I(X2; Z|X1)), (33a)

C2 , (0, I(X1X2; Y)− I(X1X2; Z))). (33b)

The idea to achieve C1 is, as in Case 1, a successive decoding approach by decomposing the
sum rate I(X1X2; Y)− I(X1X2; Z) as the sum of I(X2; Y)− I(X2; Z|X1), which represents
the secret message rate for Transmitter 2, and I(X1; Y|X2)− I(X1; Z), which represents the
secret message rate for Transmitter 1. However, C2 cannot be decomposed in a similar
manner and thus cannot be achieved with the same method. Instead, to achieve any point
in D(P1, P2), we rely on a strategy over several transmission blocks. First, in an appropriate
number of transmission blocks, the transmitters can send secret messages with rates C1 as
in Case 1. Part of the secret messages of Transmitter 1, with a rate equal to the absolute
value of the x-coordinate of the point C̃2, is dedicated to the exchange of a secret key
between Transmitter 1 and the legitimate receiver. Then, for the remaining transmission
blocks, Transmitter 2 transmits a secret message with rate I(X1X2; Y)− I(X1X2; Z), while
Transmitter 1 uses the previously generated secret key to produce a jamming signal, which
can be canceled out by the legitimate receiver but not by the eavesdropper who does not
know the secret key.

Case 2.b: Assume

I(X1X2; Y)− I(X1X2; Z) ≥ I(X2; Y|X1)− I(X2; Z), (34a)

I(X1X2; Y)− I(X1X2; Z) < I(X1; Y|X2)− I(X1; Z). (34b)

This case is handled as Case 2.a by exchanging the role of the two transmitters.
Case 3: Assume

I(X1X2; Y)− I(X1X2; Z) < min[I(X1; Y|X2)− I(X1; Z), I(X2; Y|X1)− I(X2; Z)]. (35)

Hence,

C̃1 , (I(X1; Y|X2)− I(X1; Z), I(X2; Y)− I(X2; Z|X1)), (36a)

C̃2 , (I(X1; Y)− I(X1; Z|X2), I(X2; Y|X1)− I(X2; Z)), (36b)

have a negative y-component and a negative x-component, respectively, and the strategy
of Case 1 or Case 2 cannot be directly applied here. The corner points of the region are

C1 , (I(X1X2; Y)− I(X1X2; Z), 0), (37a)

C2 , (0, I(X1X2; Y)− I(X1X2; Z)). (37b)

These corner points do not seem to be easily achievable using the method for Case 1. We
will first show that it is possible to achieve a point R ∈ D(P1, P2), where R has strictly
positive components. All the other points in D(P1, P2) will then be achieved as in Case 2 by
doing the substitutions C1 ← R and C2 ← R in Case 2.a and Case 2.b, respectively.

Note that it is sufficient to consider the case

min[I(X1; Y|X2)− I(X1; Z), I(X2; Y|X1)− I(X2; Z)] ≥ 0. (38)

Indeed, for i ∈ {1, 2} and ī , 3− i, when I(Xi; Y|Xī)− I(Xi; Z) > 0 and I(Xī; Y|Xi)−
I(Xī; Z) ≤ 0, we have Rī = 0 and Ri ≤ I(X1X2; Y) − I(X1X2; Z) ≤ I(Xi; Y|Xī) −
I(Xi; Z|Xī) =

1
2 log

(
1+Pi(1+Λ)−1

1+Pihi

)
. These cases correspond to Theorem 1 and can be treated

as in Case 1.
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7.1. Case 1

We show the achievability of C2. The achievability of C1 is obtained by exchanging
the role of the transmitters.

Codebook construction: For Transmitter i ∈ {1, 2}, construct a codebook C(i)
n with

d2nRied2nR̃ie codewords drawn independently and uniformly on the sphere of radius
√

nPi

in Rn. The codewords are labeled xn
i (mi, m̃i), where mi ∈ J1, 2nRiK, m̃i ∈ J1, 2nR̃iK. We define

Cn , (C(1)
n , C(2)

n ) and choose for δ > 0

R1 , I(X1; Y)− I(X1; Z|X2)− δ, (39a)

R̃1 , I(X1; Z|X2)− δ, (39b)

R2 , I(X2; Y|X1)− I(X2; Z)− δ, (39c)

R̃2 , I(X2; Z)− δ. (39d)

Encoding at Transmitter i ∈ {1, 2}: Given (mi, m̃i), transmit xn
i (mi, m̃i). In the remain-

der of the paper, we use the term randomization sequence for m̃i.
Decoding: The receiver performs minimum distance decoding to first estimate (m1, m̃1)

and then to estimate (m2, m̃2), i.e., given yn, it determines (m̂1, ˆ̃m1) , φ1(yn, 0), and
(m̂2, ˆ̃m2) , φ2(yn, xn

1 (m̂1, ˆ̃m1)) where for i ∈ {1, 2}

φi(yn, x) ,





(mi, m̃i) if ‖yn − x− xn
i (mi, m̃i)‖2 < ‖yn − x− xn

i (m
′
i, m̃′i)‖2

for (m′i, m̃′i) 6= (mi, m̃i)

0 if no such (mi, m̃i) ∈ J1, 2nRiK× J1, 2nR̃iK exists

. (40)

Define e(Cn, sn) , P
[
(M̂1, M̂2) 6= (M1, M2)|Cn

]
. We now prove thatECn [supsn e(Cn, sn)]

+ 1
n I(M1M2; Zn|Cn)

n→∞−−−→ 0. We will thus conclude by Markov’s inequality that there
exists a sequence of realizations (Cn)n≥1 of (Cn)n≥1 such that both supsn e(Cn, sn) and
1
n I(M1M2; Zn|Cn) can be made arbitrarily close to zero as n→ ∞.

Average probability of error: We have

e(Cn, sn) ≤ P
[
(M̂1, M̂2) 6= (M1, M2) or ( ̂̃M1, ̂̃M2) 6= (M̃1, M̃2)|Cn

]
(41a)

≤ e1(Cn, sn, xn
2 (M2, M̃2)) + e2(Cn, sn, 0), (41b)

where for i ∈ {1, 2}

ei(Cn, sn, x) ,
1

d2nRied2nR̃ie∑
mi

∑
m̃i

P
[
‖xn

i (mi, m̃i) + sn + x + Nn
Y − xn

i (m
′
i, m̃′i)‖2

≤ ‖sn + x + Nn
Y‖2 for some (m′i, m̃′i) 6= (mi, m̃i)

]
. (42)

Next, we have

ECn [e1(Cn, sn, xn
2 (M2, M̃2))] ≤ ECn [e1(Cn, sn, xn

2 (M2, M̃2))|C
(1)
n ∈ C∗1 ] + P[C(1)

n /∈ C∗1 ] (43a)
n→∞−−−→ 0, (43b)

where, in Equation (43a), C∗1 represents all the sets of unit norm vectors scaled by
√

nP1 that
satisfy the two conditions of Lemma A1 (in Appendix A), Equation (43b) holds because
P[C(1)

n ∈ C∗1 ]
n→∞−−−→ 1 by Lemma A1, and ECn [e1(Cn, sn, xn

2 (M2, M̃2))|C
(1)
n ∈ C∗1 ]

n→∞−−−→ 0 by

Theorem A1 (in Appendix A) using that R1 + R̃1 < I(X1; Y) = 1
2 log

(
1 + P1

1+Λ+P2

)
and by

interpreting the signal of Transmitter 2 as noise. Then,
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ECn [e2(Cn, sn, 0)] ≤ ECn [e2(Cn, sn, 0)|C(2)
n ∈ C∗2 ] + P[C(2)

n /∈ C∗2 ] (44a)
n→∞−−−→ 0, (44b)

where, in Equation (44a), C∗2 represents all the sets of unit norm vectors scaled by
√

nP2 that

satisfy the two conditions of Lemma A1, Equation (44b) holds because P[C(2)
n ∈ C∗2 ]

n→∞−−−→
1 by Lemma A1, and ECn [e2(Cn, sn, 0)|C(2)

n ∈ C∗2 ]
n→∞−−−→ 0 by Theorem A1 using that

R2 + R̃2 < I(X2; Y|X1) = 1
2 log

(
1 + P2

1+Λ

)
. Hence, by Equations (41b), (43b) and (44b),

we have

ECn [e(Cn, sn)]
n→∞−−−→ 0. (45)

Equivocation: We first study the average error probability of decoding (m̃1, m̃2) given
(zn, m1, m2) with the following procedure. Given (zn, m1, m2), determine m̆2 , ψ2(zn, 0),
and m̆1 , ψ1(zn,

√
h2xn

2 (m2, m̆2)) where

ψi(zn, x) ,





m̃i if ‖zn − x−
√

hixn
i (mi, m̃i)‖2 < ‖zn − x−

√
hixn

i (mi, m̃′i)‖2

for m̃′i 6= m̃i

0 if no such m̃i ∈ J1, 2nR̃iK exists

. (46)

We define ẽ(Cn) , P
[
(M̆1, M̆2) 6= (M̃1, M̃2)|Cn

]
and for i ∈ {1, 2},

ẽi(Cn, x) ,
1

d2nR̃ie∑
m̃i

P
[
‖
√

hixn
i (mi, m̃i) + x + Nn

Z −
√

hixn
i (mi, m̃′i)‖2

≤ ‖x + Nn
Z‖2 for some m̃′i 6= m̃i

]
. (47)

Then, with the same notation as in Equations (43) and (44), we have

ECn [ẽ(Cn)] ≤ ECn [ẽ1(Cn, 0)] +ECn [ẽ2(Cn,
√

h1xn
1 (M1, M̃1))] (48a)

≤ ECn [ẽ1(Cn, 0)|C(1)
n ∈ C∗1 ] + P[C(1)

n /∈ C∗1 ]

+ECn [ẽ2(Cn,
√

h1xn
1 (M1, M̃1))|C

(2)
n ∈ C∗2 ] + P[C(2)

n /∈ C∗2 ] (48b)
n→∞−−−→ 0, (48c)

where Equation (48c) holds because P[C(1)
n ∈ C∗1 ]

n→∞−−−→ 1 and P[C(2)
n ∈ C∗2 ]

n→∞−−−→
1 by Lemma A1, ECn [ẽ1(Cn, 0)|C(1)

n ∈ C∗1 ]
n→∞−−−→ 0 by Theorem A1 using that R̃1 <

I(X1; Z|X2) = 1
2 log(1 + h1P1), and ECn [ẽ2(Cn,

√
h1xn

1 (M1, M̃1))|C
(2)
n ∈ C∗2 ]

n→∞−−−→ 0 by

Theorem A1 using that R̃2 < I(X2; Z) = 1
2 log

(
1 + h2P2

1+h1P1

)
and by interpreting the signal

of Transmitter 1 as noise.
Define M , (M1, M2), M̃ , (M̃1, M̃2). Let the superscript T denote the transpose

operation and define X , [
√

h1(Xn
1 )

T √
h2(Xn

2 )
T ]T ∈ R2n×1, such that

Zn = GX + Nn
Z, (49)

with G , [In, In] ∈ Rn×2n and In the identity matrix with dimension n. Let KX denote
the covariance matrix of X. Note that, by independence between Xn

1 and Xn
2 , we have

KX =

( K√h1Xn
1

0n

0n K√h2Xn
2

)
, where 0n , 0× In and K√hiXn

i
is the covariance matrix of

√
hiXn

i ,

i ∈ {1, 2}. Then, for i ∈ {1, 2}, since Xn
i is chosen uniformly at random over a sphere of

radius
√

nPi, the off-diagonal elements of K√hiXn
i

are all equal to 0 by symmetry, and the
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diagonal elements are all equal (also by symmetry) and sum to nhiPi. Hence, K√hiXn
i
=

hiPi In, i ∈ {1, 2}, and

KX =

(
h1P1 In 0n

0n h2P2 In

)
. (50)

Then, we have

I(M; Zn|Cn) = I(MM̃; Zn|Cn)− I(M̃; Zn|MCn) (51a)

= I(MM̃; Zn|Cn)− H(M̃|Cn) + H(M̃|Zn MCn) (51b)

≤ I(X; Zn|Cn)− H(M̃|Cn) + H(M̃|Zn MCn) (51c)

≤ I(X; Zn)− H(M̃|Cn) + H(M̃|Zn MCn) (51d)

= h(Zn)− h(Nn
Z)− H(M̃|Cn) + H(M̃|Zn MCn) (51e)

≤ 1
2

log |GKXGT + In| − H(M̃|Cn) + H(M̃|Zn MCn) (51f)

=
n
2

log(1 + h1P1 + h2P2)− H(M̃|Cn) + H(M̃|Zn MCn) (51g)

= nI(X1X2; Z)− H(M̃|Cn) + H(M̃|Zn MCn) (51h)

≤ nI(X1X2; Z)− n(I(X1X2; Z)− 2δ) + O(nECn [ẽ(Cn)]) (51i)

= 2δn + o(n), (51j)

where Equation (51b) holds by independence between M and M̃; Equation (51c) holds
because (M, M̃) − (X, Cn) − Zn forms a Markov chain; Equation (51d) holds because
Cn − X− Zn forms a Markov chain; Equation (51f) holds because h(Nn

Z) =
1
2 log((2πe)n)

and because h(Zn) ≤ 1
2 log((2πe)n|GKXGT + In|) by Equation (49) and the maximal dif-

ferential entropy lemma (e.g., [31]) [Eq. (2.6)]; Equation (51g) holds by Equation (50);
in Equation (51i), we used the definition of R̃1 + R̃2 and the uniformity of M̃ to obtain
the second term, and Fano’s inequality to obtain the third term; Equation (51j) holds
by Equation (48c).

Note that the idea of considering a fictitious decoder at the eavesdropper to use Fano’s
inequality in Equation (51i) is a standard technique that already appeared in [32].

7.2. Case 2

We only consider Case 2.a; Case 2.b is handled by exchanging the role of the transmit-
ters. Let R , (R1, R2) ∈ D(P1, P2). There exists α ∈ [0, 1[ such that R = (1− α)C1 + αC̃2.
The corner point C1 is achievable by Case 1, however, recall that since the first compo-
nent of C̃2 is negative, it thus cannot be achieved as in Case 1, and one cannot perform
time-sharing between C1 and C̃2 to achieve R. Instead, we achieve R as follows. We define
k, k′ ∈ N such that k′/k = (1− α)−1 − 1 + ε, ε > 0, this is possible by density of Q in R.
We realize a first transmission T1 as in Case 1 of a pair of confidential messages of length
nkC1. Part of these confidential messages is dedicated to exchange a secret key of length
nk′(I(X1; Z|X2)− I(X1; Y)) > 0 between Transmitter 1 and the receiver, which is possible
because (1− α)C1 + αC̃2 = R has positive components. We then realize a second transmis-
sion T2 of a pair of confidential messages of length nk′(0, I(X2; Y|X1)− I(X2; Z)) assisted
with the secret key that is shared between Transmitter 1 and the receiver. Hence, the overall
transmission rate of confidential messages is k

k+k′C1 +
k′

k+k′ C̃2, which is arbitrarily close to
R by choosing a sufficiently small ε. We now explain how transmission T2 is performed.
We repeat k′ times the following coding scheme.

Codebook construction: Perform the same codebook construction as in Case 1 for
Transmitter 2. For Transmitter 1, construct a codebook with d2nR̆1ed2nR̊1e codewords
drawn independently and uniformly on the sphere of radius

√
nP1 in Rn. The codewords
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are labeled xn
1 (m̆1, m̊1), where m̆1 ∈ J1, 2nR̆1K, m̊1 ∈ J1, 2nR̊1K. We define the rates R̆1 ,

I(X1; Y)− δ, R̊1 , I(X1; Z|X2)− I(X1; Y)− δ, and R̃1 , R̆1 + R̊1 = I(X1; Z|X2)− 2δ.
Encoding at Transmitters: Encoding for Transmitter 2 is as in Case 1. Given (m̆1, m̊1),

Transmitter 1 forms xn
1 (m̆1, m̊1), where m̊1 is seen as a secret key known at the receiver and

that has been shared through transmission T1 described above. In the following, we define
m̃1 , (m̆1, m̊1).

Decoding and average probability of error: As in Case 1, using minimum distance
decoding, one can show that on average over the codebooks, the receiver can reconstruct
xn

1 (m̆1, m̊1) with a vanishing average probability of error because m̊1 is known at the
receiver and because R̆1 < I(X1; Y). The receiver can then reconstruct xn

2 as in Case 1.
Equivocation: The equivocation computation for transmission T2 is as in Case 1 by

remarking that it is possible on average over the codebooks to reconstruct with vanishing
average probability of error first xn

2 given (zn, m2) and then xn
1 given (zn, xn

2 ) by using that
R̃1 < I(X1; Z|X2).

Finally, to conclude that R is achievable, we need to show that the secrecy constraint is
satisfied for the joint transmissions T1 and T2. We use the superscript (Ti) to denote random
variables associated with transmission Ti, i ∈ {1, 2}. Define M(T1) ,

(
M(T1)

1 \M̊(T1)
1 , M(T1)

2

)
,

the confidential messages sent during transmission T1 excluding M̊(T1)
1 , defined as all the

confidential messages sent during transmission T1 and used during transmission T2. We
define M(T2) ,

(
∅, M(T2)

2

)
as the confidential messages sent during transmission T2. We

define M̃(Ti) ,
(

M̃(Ti)
1 , M̃(Ti)

2

)
as the randomization sequences used by both transmitters

in Transmission Ti, i ∈ {1, 2}. We also define X(Ti) as all the channel inputs from both
transmitters in Transmission Ti, i ∈ {1, 2}, and Z(Ti) as all the channel outputs observed by
the eavesdropper in Transmission i ∈ {1, 2}. Finally, we define M(T1,T2) ,

(
M(T1), M(T2)

)
,

M̃(T1,T2) ,
(

M̃(T1), M̃(T2)
)

, Z(T1,T2) ,
(

Z(T1), Z(T2)
)

, X(T1,T2) ,
(

X(T1), X(T2)
)

, C(T1,T2)
n ,

(
C(T1)

n , C(T2)
n

)
. We have

I(M(T1,T2); Z(T1,T2)|C(T1,T2)
n )

= I(M(T1,T2)M̃(T1,T2); Z(T1,T2)|C(T1,T2)
n )− I(M̃(T1,T2); Z(T1,T2)|M(T1,T2)C(T1,T2)

n ) (52a)

= I(M(T1,T2)M̃(T1,T2); Z(T1,T2)|C(T1,T2)
n )− H(M̃(T1,T2)|C(T1,T2)

n )

+ H(M̃(T1,T2)|Z(T1,T2)M(T1,T2)C(T1,T2)
n ) (52b)

≤ I(X(T1,T2); Z(T1,T2)|C(T1,T2)
n )− H(M̃(T1,T2)|C(T1,T2)

n )

+ H(M̃(T1,T2)|Z(T1,T2)M(T1,T2)C(T1,T2)
n ) (52c)

≤ I(X(T1,T2); Z(T1,T2))− H(M̃(T1,T2)|C(T1,T2)
n ) + H(M̃(T1,T2)|Z(T1,T2)M(T1,T2)C(T1,T2)

n ) (52d)

≤ n(k + k′)I(X1X2; Z)− H(M̃(T1,T2)|C(T1,T2)
n ) + H(M̃(T1,T2)|Z(T1,T2)M(T1,T2)C(T1,T2)

n )
(52e)

≤ 3nδ(k + k′) + H(M̃(T1,T2)|Z(T1,T2)M(T1,T2)C(T1,T2)
n ) (52f)

≤ 3nδ(k + k′) + O
(

nE
C
(T1,T2)
n

[ẽ(C(T1,T2)
n )]

)
, (52g)

where Equation (52b) holds because we defined M(T1,T2) such that M(T1,T2) is indepen-
dent from M̃(T1,T2), Equation (52c) holds because (M(T1,T2), M̃(T1,T2))−

(
C(T1,T2)

n , X(T1,T2)
)
−

Z(T1,T2) forms a Markov chain, Equation (52d) holds because C(T1,T2)
n − X(T1,T2) − Z(T1,T2)

forms a Markov chain, Equation (52e) holds similar to Equation (51h), Equation (52f)
holds because by definition R̃1 + R̃2 ≥ I(X1X2; Z)− 3δ, Equation (52g) holds by Fano’s
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inequality with ẽ(C(T1,T2)
n ) defined as the probability of error to reconstruct M̃(T1,T2) given(

Z(T1,T2), M(T1,T2)
)

using minimum distance decoding as in Case 1. Then, define

ẽ(1)(C(T1,T2)
n ) as the error probability to reconstruct M̃(T2) from

(
Z(T2), M(T2)

)
using min-

imum distance decoding, and ẽ(2)(C(T1,T2)
n ) as the error probability to reconstruct M̃(T1)

from
(

Z(T1), M(T1), M̃(T2)
)

using minimum distance decoding. As in the analysis of Case 1

and by observing that M̊(T1)
1 is included in M̃(T2), we have

E
C
(T1,T2)
n

[ẽ(C(T1,T2)
n )] ≤ E

C
(T1,T2)
n

[ẽ(1)(C(T1,T2)
n )] +E

C
(T1,T2)
n

[ẽ(2)(C(T1,T2)
n )] (53a)

n→∞−−−→ 0. (53b)

We conclude from Equations (52g) and (53b)

I(M(T1,T2); Z(T1,T2)|C(T1,T2)
n ) = 3nδ(k + k′) + o(n). (54)

7.3. Case 3

We have I(X1; Z|X2)− I(X1; Y) > 0 and I(X2; Z|X1)− I(X2; Y) > 0 as depicted in
Figure 5. Assume I(X1X2; Y)− I(X1X2; Z) > 0, otherwise RMAC

1,2 (P1, P2) = {(0, 0)}. We
will use the following lemma.

Lemma 2. Define hΛ , (1 + Λ)−1. We have

1. I(X1; Z|X2)− I(X1; Y) ≤ I(X1; Y|X2)− I(X1; Z)
or I(X2; Z|X1)− I(X2; Y) ≤ I(X2; Y|X1)− I(X2; Z).

2. h1 < hΛ or h2 < hΛ.
3. Assume I(X1; Z|X2) − I(X1; Y) ≤ I(X1; Y|X2) − I(X1; Z). There exists m, m′ ∈ N∗,

such that

m′(I(X1; Y|X2)− I(X1; Z)) ≥ m(I(X1; Z|X2)− I(X1; Y)), (55a)

m(I(X2; Y|X1)− I(X2; Z)) > m′(I(X2; Z|X1)− I(X2; Y)). (55b)

Proof. (i) Assume that

I(X1; Z|X2)− I(X1; Y) > I(X1; Y|X2)− I(X1; Z), (56a)

I(X2; Z|X1)− I(X2; Y) > I(X2; Y|X1)− I(X2; Z). (56b)

Then,

I(X1; Z|X2)− I(X1; Y) + I(X2; Z|X1)− I(X2; Y)

> I(X1; Y|X2)− I(X1; Z) + I(X2; Y|X1)− I(X2; Z), (57)

which contradicts the fact that I(X1; Z|X2) − I(X1; Y) < I(X2; Y|X1) − I(X2; Z) and
I(X2; Z|X1)− I(X2; Y) < I(X1; Y|X2)− I(X1; Z).

(ii) By contradiction, if h1 ≥ hΛ and h2 ≥ hΛ, then I(X1X2; Y)− I(X1X2; Z) ≤ 0.
(iii) Choose m′ ∈ N∗ such that

I(X1; Z|X2)− I(X1; Y) ≤ m′(I(X1X2; Y)− I(X1X2; Z)). (58)

Then, there exists m ∈ N∗ and r ∈ [0, I(X1; Z|X2)− I(X1; Y)[ such that

m′(I(X1; Y|X2)− I(X1; Z)) = m(I(X1; Z|X2)− I(X1; Y)) + r. (59)
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Then, we have

m(I(X2; Y|X1)− I(X2; Z))

= m(I(X1; Z|X2)− I(X1; Y)) + m(I(X1X2; Y)− I(X1X2; Z)) (60a)

= m′(I(X1; Y|X2)− I(X1; Z)) + m(I(X1X2; Y)− I(X1X2; Z))− r (60b)

= m′(I(X2; Z|X1)− I(X2; Y)) + (m + m′)(I(X1X2; Y)− I(X1X2; Z))− r (60c)

> m′(I(X2; Z|X1)− I(X2; Y)) + m(I(X1X2; Y)− I(X1X2; Z)) (60d)

> m′(I(X2; Z|X1)− I(X2; Y)), (60e)

where Equation (60b) holds by Equation (59), and Equation (60d) holds because r <
I(X1; Z|X2)− I(X1; Y) ≤ m′(I(X1X2; Y)− I(X1X2; Z)).

By (i) in Lemma 2, assume without loss of generality that I(X1; Z|X2)− I(X1; Y) ≤
I(X1; Y|X2)− I(X1; Z) by exchanging the role of the transmitters if necessary. We let m, m′

be as in (iii) of Lemma 2. D(P1, P2) is achieved in four steps.
Step 1. During a first transmission T0, Transmitter 2 transmits a confidential message

of length nm′(I(X2; Z|X1)− I(X2; Y)) to the receiver. This is possible with a point-to-point
wiretap code; as in Case 1, when Transmitter 1 remains silent and when hΛ > h2. If, on the
other hand, hΛ ≤ h2, then by (ii) in Lemma 2, hΛ > h1 and Transmitter 2 can transmit
a confidential message of length nm′(I(X2; Z|X1) − I(X2; Y)) as follows. Transmitter 1
transmits a confidential message of length nk(I(X1; Z|X2)− I(X1; Y)), where k ∈ N∗ is
such that nk(I(X2; Y|X1)− I(X2; Z)) ≥ nm′(I(X2; Z|X1)− I(X2; Y)). Using this secret key
shared by Transmitter 1 and the receiver, Transmitter 2 can transmit a confidential message
of length nk(I(X2; Y|X1)− I(X2; Z)) as in Case 2. Note that Step 1 is operated in a fixed
number of blocks of length n.

Step 2. As in Case 2, the transmitters achieve transmission T1 of confidential messages
of length (nm′(I(X1; Y|X2)− I(X1; Z)), 0) by using the secret key exchanged during T0
between Transmitter 2 and the receiver. Then, as in Case 2 and because m′(I(X1; Y|X2)−
I(X1; Z))−m(I(X1; Z|X2)− I(X1; Y)) ≥ 0 by (iii) in Lemma 2, the transmitters achieve a
transmission T2 of confidential messages of length (0, nm(I(X2; Y|X1)− I(X2; Z))) using
a secret key of length nm(I(X1; Z|X2)− I(X1; Y)) exchanged between Transmitter 1 and
the receiver during T1. Hence, after T1 and T2, the transmitters achieved the transmis-
sion of confidential messages of length (nm′(I(X1; Y|X2)− I(X1; Z))− nm(I(X1; Z|X2)−
I(X1; Y)), nm(I(X2; Y|X1)− I(X2; Z))).

Step 3. The transmitters repeat T1 and T2 t times, where t is arbitrary, since
m(I(X2; Y|X1) − I(X2; Z)) − m′(I(X2; Z|X1) − I(X2; Y)) > 0 by (iii) in Lemma 2. Af-
ter these t repetitions, the rate pair achieved is arbitrarily close to

R =
1

m + m′
(m′(I(X1; Y|X2)− I(X1; Z))−m(I(X1; Z|X2)− I(X1; Y)),

m(I(X2; Y|X1)− I(X2; Z))−m′(I(X2; Z|X1)− I(X2; Y))) (61)

provided that t is large enough since Step 1 only requires a fixed number of transmission
blocks. Observe that R ∈ D(P1, P2).

Step 4. Any point of D(P1, P2) can then be achieved as in Case 2 by doing the substi-
tutions C1 ← R and C2 ← R in Case 2.a and Case 2.b, respectively.

The proof that secrecy holds over the joint transmissions is similar to Case 2 and
thus omitted.

8. Proof of Theorem 3

We first show that determining a converse for our model reduces to determining a
converse for a similar model when the jammer is inactive, i.e., when Λ = 0.
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Lemma 3. Let O , {(R1, R2) : R1 ≤ B1, R2 ≤ B2, R1 + R2 ≤ B1,2} be an outer bound, i.e., a
set that contains all possibly achievable rate pairs, for the Gaussian MAC-WT-JA with parameters
(Γ1, Γ2, h1, h2, 0, σ2

Y + Λ, σ2
Z). Then,

{
(R1, R2) : R1 ≤

{
B1 if Γ1 > Λ
0 if Γ1 ≤ Λ

, R2 ≤
{

B2 if Γ2 > Λ
0 if Γ2 ≤ Λ

, R1 + R2 ≤ B1,2

}

is an outer bound for the Gaussian MAC-WT-JA with parameters (Γ1, Γ2, h1, h2, Λ, σ2
Y, σ2

Z).

Proof. Consider any encoders and decoder for the Gaussian MAC-WT-JA with the pa-
rameters (Γ1, Γ2, h1, h2, Λ, σ2

Y, σ2
Z) that achieve the rate pair (R1, R2). Note that by [24] [The-

orem 2.3], for any l ∈ {1, 2} such that Γl ≤ Λ, we must have Rl = 0, since an outer
bound for the model in [24] is also an outer bound for the Gaussian MAC-WT-JA, which
has the additional security constraint (2b). Then, to derive an outer bound, it is suf-
ficient to consider a specific jamming strategy and study the best achievable rates for
this jamming strategy, since the boundaries of the capacity region correspond to the
best (from the jammer’s point of view) jamming strategies and any other jamming strat-
egy can only enlarge the set of achievable rates. We assume that in each transmission
block, the jamming sequence is Sn with the components independent and identically dis-
tributed according to a zero-mean Gaussian random variable with the variance Λ′ < Λ.
The average probability of error at the legitimate receiver is thus upper-bounded by
supS∈S P[M̂ 6= M] + kP[‖Sn‖2 > nΛ]

n→∞−−−→ 0 where we used the notation of Defini-
tion 1 and the fact that kP[‖Sn‖2 > nΛ]

n→∞−−−→ 0 since Λ′ < Λ. Hence, since the se-
crecy constraint is independent of Λ′, we obtain the reliability and secrecy constraints
for a Gaussian MAC-WT-JA with parameters (Γ1, Γ2, h1, h2, 0, σ2

Y + Λ′, σ2
Z), meaning that

(R1, R2) ∈ O′, where O′ is an outer bound for the Gaussian MAC-WT-JA with parameters
(Γ1, Γ2, h1, h2, 0, σ2

Y + Λ′, σ2
Z). Finally, we conclude the proof by choosing Λ′ arbitrarily close

to Λ.

We now obtain Theorem 3 as follows. (i) holds from Lemma 3. (ii) holds from Lemma
3 and [33] [Theorem 6] by remarking that x 7→ log

(
1+x(1+Λ)−1

1+xh

)
is non-decreasing when

(1 + Λ)−1 > h and negative when (1 + Λ)−1 ≤ h.

9. Concluding Remarks

In this paper, we defined Gaussian wiretap channels in the presence of an eaves-
dropper aided by a jammer. The jamming signal is power-constrained and assumed to
be oblivious of the legitimate users’ communication but is not restricted to be Gaussian.
We studied several models in this framework, namely point-to-point, multiple-access,
broadcast, and symmetric interference settings. We derived inner and outer bounds for
these settings, and identified conditions for these bounds to coincide. We stress that no
shared randomness among the legitimate users is required in our coding schemes.

Our achievability scheme for the Gaussian MAC-WT-JA relies on novel time-sharing
strategies and an extension of successive decoding for multiple-access channels to multiple-
access wiretap channels via secret-key exchanges. An open problem remains to provide a
scheme that avoids time-sharing. Section 4.2 provides such a scheme for some rate pairs
and channel parameters; however, it might not be possible to achieve the entire region of
Theorem 2 by solely relying on point-to-point codes, in which case the design of multi-
transmitter codes for arbitrarily varying multiple-access channels would be necessary.

Finally, beyond proving the existence of achievability schemes for our models, finding
explicit coding schemes largely remains an open problem. We note that [34] investigates
this problem for short communication blocklengths over point-to-point channels via a
practical approach that relies on deep learning. Another open problem is to achieve the
same regions as that derived in this paper under strong and semantic security guarantees.
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Appendix A. Supporting Results

Lemma A1 ([1]). Let ε > 0, η ∈]8
√

ε, 1[, K > 2ε, R ∈ [2ε, K], and N , enR. Let Xn
1 , . . . , Xn

N be
independent random variables uniformly distributed on the unit sphere. With probability arbitrarily
close to one as n→ ∞, we have

1. |{j : 〈Xn
j , un〉 ≥ α}| ≤ en

(
[R+ 1

2 log(1−α2)]
+
+ε
)

for any unit vector un ∈ Rn, α > 0.

2. 1
N |{i : |〈Xn

j , Xn
i 〉| ≥ α, |〈Xn

j , un〉| ≥ β, for some j 6= i}| ≤ e−nε for any unit vector
un ∈ Rn, α, β ∈ [0, 1] such that α ≥ η , α2 + β2 > 1 + η − e−2R.

Theorem A1 ([1,24]). Consider a channel whose output is defined as Yn = Xn + Vn + sn, where
Xn is the input such that ‖Xn‖2 ≤ n, Vn represents noise (to be defined next), and sn is a state
unknown to the encoder and decoder such that ‖sn‖2 ≤ nΛ, Λ < 1. Let σ, δ > 0. Consider a
codebook Cn made of N , en( 1

2 log(1+(Λ+σ2)−1)−δ) codewords (xn
1 , . . . , xn

N) that satisfy the two
conditions of Lemma A1, and define the average probability of error e(Cn) of a minimum distance
decoder as e(Cn) , 1

N ∑N
i=1 P[‖xn

i + sn + Vn − xn
j ‖2 ≤ ‖sn + Vn‖2, for some j 6= i].

1. (From [1]). If Vn is a vector with i.i.d. zero-mean Gaussian coordinates with variance σ2,
then limn→∞ e(Cn) = 0.

2. (From [24]). If Vn , Wn + U, where Wn is a vector with i.i.d. zero-mean Gaussian
coordinates with variance a2 and U is independently distributed uniformly at random on a
sphere with radius

√
nb2 such that a2 + b2 = σ2, then limn→∞ e(Cn) = 0.

Appendix B. Proof of Theorem 4

We first recall some definitions and results on polymatroids.

Definition A1 ([35]). Let f : 2M → R. P( f ) ,
{
(Ri)i∈M ∈ RM : RS ≤ f (S), ∀S ⊆ M

}

associated with the function f is an extended polymatroid if f is submodular, i.e., ∀S , T ⊆
M, f (S ∪ T ) + f (S ∩ T ) ≤ f (S) + f (T ).

Property A1 ([29] [Property 1]). Define g : 2L(Λ) → R, T 7→ I(XT ; Y|XT c) − I(XT ; Z),
where Y , ∑l∈L(Λ) Xl + NY, Z , ∑l∈L(Λ)

√
hlXl + NZ, with (Xl)l∈L(Λ), NY, NZ independent

zero-mean Gaussian random variables with variances (Pl)l∈L(Λ), (1 + Λ), 1, respectively.

C(Λ) ,
{
(Rl)l∈L(Λ) ∈ R|L(Λ)| : ∀T ⊆ L(Λ), RT ≤ g(T )

}
(A1)

associated with g is an extended polymatroid.

Property A2 ([35]). Define the dominant face D(Λ) of C(Λ) as

D(Λ) ,
{
(Rl)l∈L(Λ) ∈ C(Λ) : RL(Λ) = g(L(Λ))

}
. (A2)

For π ∈ Sym(|L(Λ)|), where Sym(|L(Λ)|) is the symmetric group on L(Λ), for
i, j ∈ L(Λ), define πi:j , (π(k))k∈Ji,jK. D(Λ) is the convex hull of the vertices
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V ,
{
(Cπ(i))i∈J1,|L(Λ)|K : π ∈ Sym(|L(Λ)|)

}
, where for π ∈ Sym(|L(Λ)|), for

i ∈ J1, |L(Λ)|K, Cπ(i) = g
(
{πi:|L(Λ)|}

)
− g
(
{πi+1:|L(Λ)|}

)
.

Define D+(Λ) , D(Λ) ∩ R|L(Λ)|
+ . By Property A2, for any R ∈ D+(Λ), for any

V = (Vl)l∈L(Λ) ∈ V , there exists αV ∈ [0, 1], such that ∑V∈V αV = 1 and R = ∑V∈V αVV.
As remarked in [29], g is, in general, not non-decreasing; hence, some V ∈ V might have
negative components and the successive decoding method [5] [Appendix C] cannot be
applied to the multiple-access wiretap channel. We show in the following how to overcome
this issue. For l ∈ L(Λ), define R∗l , −∑V∈V αV1{Vl < 0}Vl , and R∗ , (R∗l )l∈L(Λ). Our
coding scheme operates in three steps, the idea of which is described below.

Step 1. For l ∈ L(Λ), a secret message of length nR∗l is exchanged between Transmit-
ter l and the receiver.

Step 2. For all V ∈ V , secret messages of length n(αV1{Vl > 0}Vl)l∈L(Λ) are ex-
changed between the transmitters and the receiver, provided that secret sequences of
length nR∗ are shared between the transmitters and the receiver, which is ensured by
Step 1. The overall length of secret communication is n(∑V∈V αV1{Vl > 0}Vl)l∈L(Λ),
i.e., n(R + R∗).

Step 3. Repeat t times Step 2. It is possible to do so because secret sequences of
length at least nR∗ were exchanged between the transmitters and the receiver in Step 2.
The overall rate of secret sequences exchanged between the transmitters and the receiver
is thus R, provided that t is large enough, since Step 1 only requires the transmission of a
finite number of blocks.

The coding schemes and their analyses to realize Steps 1 and 2 are described in
Appendix B.1 and Appendix B.2, respectively. In the remainder of the section, Y and Z
are defined as in Property A1 with (Xl)l∈L(Λ) zero-mean Gaussian random variables with
variances (Pl)l∈L(Λ).

Appendix B.1. Proof of Step 1

The proof of Step 1 directly follows from the point-to-point setting, i.e., Theorem 1,
applied to each l ∈ L(Λ) since we assumed hl < hΛ.

Appendix B.2. Proof of Step 2

We fix V ∈ V . The following procedure must be reiterated for each V ∈ V by applying
a permutation π ∈ Sym(|L(Λ)|) on the labeling of the transmitters. For convenience, we
relabel the transmitter from 1 to |L(Λ)| and redefine L(Λ) as J1, |L(Λ)|K. We show how
to exchange secret messages with rate (1{Vl > 0}Vl)l∈L(Λ) between the transmitters and
the receiver, when they have access to pre-shared secrets (obtained from Step 1) with rate
(−1{Vl < 0}Vl)l∈L(Λ). Define I , {l ∈ L(Λ) : Vl ≤ 0} and I c , L(Λ)\I . We also use the
notation XL(Λ) , (Xl)l∈L(Λ), Xn

L(Λ)
, (Xn

l )l∈L(Λ), and for i, j ∈ L(Λ), Xi:j , (Xl)l∈Ji,jK.

Codebook construction: For Transmitter i ∈ I c, construct a codebook C(i)
n with

d2nRied2nR̃ie codewords drawn independently and uniformly on the sphere of radius
√

nPi

in Rn. The codewords are labeled xn
i (mi, m̃i), where mi ∈ J1, 2nRiK, m̃i ∈ J1, 2nR̃iK. We

choose the rates as Ri , I(Xi; Y|X1:i−1)− I(Xi; Z|Xi+1:|L(Λ)|)− δ, R̃i , I(Xi; Z|Xi+1:|L(Λ)|)

− δ. For Transmitter i ∈ I , construct a codebook C(i)
n with d2nR̆ied2nR̊ie codewords

drawn independently and uniformly on the sphere of radius
√

nPi in Rn. The code-
words are labeled xn

i (m̆i, m̊i), where m̆i ∈ J1, 2nR̆iK, m̊i ∈ J1, 2nR̊iK. We define the rates
R̆i , I(Xi; Y|X1:i−1) − δ, R̊i , I(Xi; Z|Xi+1:|L(Λ)|) − I(Xi; Y|X1:i−1) − δ, and R̃i , R̆i +

R̊i = I(Xi; Z|Xi+1:|L(Λ)|)− 2δ. Define Cn , (C(i)
n )i∈L(Λ).

Encoding at the transmitters: For Transmitter i ∈ I c, given (mi, m̃i), transmit xn
i (mi, m̃i).

For Transmitter i ∈ I , given (m̆i, m̊i), transmit xn
i (m̆i, m̊i), where m̊i is assumed to be

known at the receiver by the transmissions in Step 1. In the following, we define for i ∈ I ,
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m̃i , (m̆i, m̊i). By convention, define for i ∈ I , mi , ∅. Also define m , (mi)i∈L(Λ),
m̃ , (m̃i)i∈L(Λ). In the following, we refer to m̃ as randomization sequence.

Decoding: The receiver performs minimum distance decoding, i.e., given yn, deter-
mine starting from i = 1 to i = |L(Λ)|, (m̂i, ˆ̃mi) , φi(yn, ∑i−1

j=1 xn
j (m̂j, ˆ̃mj)) where

φi : (yn, x) 7→





(mi, m̃i) if ‖yn − x− xn
i (mi, m̃i)‖2 < ‖yn − x− xn

i (m
′
i, m̃′i)‖2

for (m′i, m̃′i) 6= (mi, m̃i)

0 if no such (mi, m̃i) ∈ J1, 2nRiK× J1, 2nR̃iK exists

. (A3)

Define m̂ , (m̂i)i∈L(Λ), ˆ̃m , ( ˆ̃mi)i∈L(Λ). Let e(Cn, sn) , P
[

M̂ 6= M|Cn

]
, we now

prove that on average on Cn, we have ECn [supsn e(Cn, sn)] + 1
n I(M; Zn|Cn)

n→∞−−−→ 0. We
will thus conclude that there exists a sequence of realizations (Cn) of (Cn) such that both
supsn e(Cn, sn) and 1

n I(M; Zn|Cn) can be made arbitrarily close to zero as n→ ∞.
Average probability of error: We have

e(Cn, sn) ≤ P
[

M̂ 6= M or ̂̃M 6= M̃
∣∣∣Cn

]
(A4a)

= ∑
i∈L(Λ)

ei

(
Cn, sn,

|L(Λ)|

∑
j=i+1

xn
j (Mj, M̃j)

)
, (A4b)

where for i ∈ L(Λ)

ei(Cn, sn, x) ,
1

d2nRied2nR̃ie∑
mi

∑
m̃i

P
[
‖xn

i (mi, m̃i) + sn + x + Nn
Y − xn

i (m
′
i, m̃′i)‖2

≤ ‖sn + x + Nn
Y‖2 for some (m′i, m̃′i) 6= (mi, m̃i)

]
. (A5)

Assume that the receiver has reconstructed (mj, m̃j)j∈J1,iK, for i ∈ L(Λ). Assume first that
i + 1 ∈ I c. Using minimum distance decoding, on average over the codebooks, we show
that the receiver can reconstruct xn

i+1. We have

ECn

[
ei

(
Cn, sn,

|L(Λ)|

∑
j=i+1

xn
j (Mj, M̃j)

)]

≤ ECn

[
ei

(
Cn, sn,

|L(Λ)|

∑
j=i+1

xn
j (Mj, M̃j)

)∣∣∣∣∣C
(i)
n ∈ C∗i

]
+ P

[
C(i)

n /∈ C∗i
]

(A6a)

n→∞−−−→ 0, (A6b)

where in Equation (A6a) C∗i represents all the sets of unit norm vectors scaled by
√

nPi
that satisfy the two conditions of Lemma A1 (in Appendix A), Equation (A6b) holds because
P[C(i)

n ∈ C∗i ]
n→∞−−−→ 1 by Lemma A1, and

ECn

[
ei

(
Cn, sn, ∑

|L(Λ)|
j=i+1 xn

j (Mj, M̃j)
)
|C(i)

n ∈ C∗i
]

n→∞−−−→ 0 by Theorem A1 (in Appendix A) us-

ing the definition of Ri + R̃i and by interpreting the signal of transmitters in Ji + 1, |L(Λ)|K
as noise.

Similarly, when i + 1 ∈ I , using minimum distance decoding, on average over the
codebooks, the receiver can reconstruct xn

i+1(m̆i+1, m̊i+1) with a vanishing average proba-
bility of error because m̊i+1 is known at the receiver and by definition of R̆i+1, hence,

ECn [e(Cn, sn)]
n→∞−−−→ 0. (A7)
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Equivocation: We first study the average error probability of decoding m̃ given (zn, m)
with the following procedure. From i = |L(Λ)| to i = 1, given (zn, m), determine ˙̃mi ,

ψi

(
zn, ∑

|L(Λ)|
j=i+1

√
hjxn

j (mj, ˙̃mj)
)

, where for i ∈ L(Λ)

ψi : (zn, x) 7→





m̃i if ‖zn − x−
√

hixn
i (mi, m̃i)‖2 < ‖zn − x−

√
hixn

i (mi, m̃′i)‖2

for m̃′i 6= m̃i

0 if no such m̃i ∈ J1, 2nR̃iK exists

. (A8)

We define ẽ(Cn) , P
[

˙̃M 6= M̃
∣∣∣Cn

]
. We have

ẽ(Cn) = ∑
i∈L(Λ)

ẽi

(
Cn,

i−1

∑
j=1

√
hjxn

j (Mj, M̃j)

)
, (A9)

where for i ∈ L(Λ)

ẽi(Cn, x) ,
1

d2nR̃ie∑
m̃i

P
[
‖
√

hixn
i (mi, m̃i) + x + Nn

Z −
√

hixn
i (mi, m̃′i)‖2

≤ ‖x + Nn
Z‖2 for some m̃′i 6= m̃i

]
. (A10)

Similar to the justifications for obtaining Equation (A6b),ECn

[
ẽi(Cn, ∑i−1

j=1

√
hjxn

j (Mj, M̃j))
]

vanishes to zero as n→ ∞ by interpreting the signal of transmitters in J1, i− 1K as noise and by
using the definition of R̃i. We thus obtain

ECn [ẽ(Cn)]
n→∞−−−→ 0. (A11)

Let the superscript T denote the transpose operation and define X , [
√

h1(Xn
1 )

T
√

h2(Xn
2 )

T . . .
√

h|L(Λ)|(Xn
|L(Λ)|)

T ]T ∈ Rn|L(Λ)|×1, such that

Zn = GX + Nn
Z, (A12)

with G , [In, In, . . . , In] ∈ Rn×n|L(Λ)| and In the identity matrix with dimension n. Let KX
denote the covariance matrix of X. Similar to Equation (50), we have

KX = diag(h1P1 In, . . . , h|L(Λ)|P|L(Λ)| In). (A13)

Then, we have

I(M; Zn|Cn) ≤ I(X; Zn)− H(M̃|Cn) + H(M̃|Zn MCn) (A14a)

≤ 1
2

log |GKXGT + In| − H(M̃|Cn) + H(M̃|Zn MCn) (A14b)

=
n
2

log


1 + ∑

l∈L(Λ)

hl Pl


− H(M̃|Cn) + H(M̃|Zn MCn) (A14c)

≤ nI(XL(Λ); Z)− n(I(XL(Λ); Z)− 2|L(Λ)|δ) + O(nECn [ẽ(Cn)]) (A14d)

= 2|L(Λ)|δ + o(n), (A14e)

where Equation (A14a) holds similar to Equation (51d), Equation (A14b) holds similar to
Equation (51f), Equation (A14c) holds by Equation (A13), in Equation (A14d), we used the
definition of ∑i∈L(Λ) R̃i and the uniformity of M̃ to obtain the second term, and Fano’s
inequality to obtain the third term, Equation (A14e) holds by Equation (A11).
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The proof of joint secrecy for Step 1 and the repetitions of Step 2 is similar to the proof
of Theorem 2.

Appendix C. Proof of Theorem 5

The proof that Equation (20) is an upper bound on the secrecy sum-rate is similar to
the case L = 2 in Theorem 3.

Remark that from the statement of Corollary 1, it is unclear whether the sum-rate of
Theorem 5 is achievable. However, by inspecting the proof of Theorem 4, observe that
we achieve a point in D+(Λ) , D(Λ) ∩R|L(Λ)|

+ , where D(Λ) is defined in Equation (A2).
Hence, the sum-rate of Theorem 5 is indeed achievable.
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