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Abstract: The steam ejector is valuable and efficient in the fire suppression field due to its strong
fluid-carrying capacity and mixing ability. It utilizes pressurized steam droplets generated at the
exit to extinguish the fire quickly and the steam droplet strategy allows for an expressive decrease in
water consumption. In this regard, the fire suppression process is influenced by the steam ejector
efficiency, the performance of the pressurized steam, and the ejector core geometry, which controls
the quality of the extinguishing mechanisms. This study investigated the impact of different mixing
section diameters on the pumping performance of the ejector. The results showed that change in
the diffuser throat diameter was susceptible to the entrainment ratio, which significantly increased,
by 4 mm, by increasing the throat diameter of the diffuser and improved the pumping efficiency.
Still, the critical back pressure of the ejector reduced. In addition, the diameter effect was studied
and analyzed to evaluate the ejector performance under different operating parameters. The results
revealed a rise in the entrainment ratio, then it diminished with increasing primary fluid pressure.
The highest entrainment ratio recorded was 0.5 when the pressure reached 0.36 MPa at the critical
range of back pressure, where the entrainment ratio remained constant until a certain back pressure
value. Exceeding the critical pressure by increasing the back pressure to 7000 Pa permitted the
entrainment ratio to reduce to zero. An optimum constant diameter maximized the ejector pumping
efficiency under certain operating parameters. In actual design and production, it is necessary to
consider both the exhaust efficiency and the ultimate exhaust capacity of the ejector.

Keywords: fire suppression; steam ejector; diameter; CFD simulation; critical back pressure

1. Introduction

As water demonstrates ideal thermal characteristics, it has become the most widely
used fire suppression agent and is suitable for most types of fire [1]. Moreover, the phase
change from liquid water to steam can be applied to sparkling and water mist fire suppres-
sion systems. Concurrently, a steam ejector, as a high-momentum spray generator, allows
rapid fire suppression, which can disperse suppressants and minimize fire damage [2]. The
ejector mainly comprises a primary conversion diversion nozzle, a mixing chamber with
a constant area section, and a diffuser [3]. The geometry and the operating parameters
play the leading role in determining the ejector efficiency. However, the properties of the
working fluid and the flow pattern structure inside the ejector require a more detailed
understanding to improve the ejector pumping efficiency [4]. Most of the available research
in this area was achieved through experimental work and numerical simulations. So far,
with the continuous development of experimental techniques and methods, the related
experiments of the jet refrigeration system have made progress in some aspects [5,6]. It is
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widely used in the hydrogen energy storage cycle, biopharmaceutical, chemical production
and other fields [7]. It can also be used in fire extinguishing and suppression systems to
replace fine water mist, providing greater oxygen displacement by the water droplet evapo-
ration from the fire plume [8]. These days, more and more studies, including experimental
studies, have been conducted on the pressure, spray rate, cone angle, droplet size and
other system characteristics at various working operational modes, based on the nozzle
and water mist [9]. Besides numerical studies, compared with the traditional sprinkler, the
strategy of using the steam greatly supports saving the amount of water used, reducing
the pipe flow quantity and the cost of treatment. Nevertheless, the main significant factor
controlling the performance of high-pressure steam, and influencing the fire extinguishing
mechanism, is the steam injector nozzle efficiency [10–12]. At the same time, improving
its work efficiency has become the focus of current research. The water steam jet cooling
system represents typical equipment for a clean and environmentally protected means
of industrial waste heat and waste heat working medium. The flow process in the water
vapour ejector is very complex and changeable. The Laval nozzle accelerates the working
medium (steam) from stagnation to supersonic speed, and low pressure is generated at the
entrance of the mixing chamber. Under the action of pressure difference, the high-pressure
gas in the evaporator is pumped and passed to the mixing chamber, where the intense
momentum and energy exchange occurs to create high-speed working steam [13]. Finally,
the inlet fluids from both streams are mixed in the mixing chamber and equivalent section
and then put into the condenser after the diffuser slows down and pressurizes [14]. The
flow behaviour of the mixed stream in the ejector is complex at transonic flow, and there are
flow characteristics, such as congestion, shock wave, and boundary layer separation [15–17].
Recently, numerical simulations of water vapour ejectors have attracted more and more
attention and have become the focus of research. It provides an important reference for
improving the efficiency of the ejector and enhancing and optimizing the structure and
performance of the ejector. However, in the aspect of experimental study, the experimental
study of the ejector is insufficient. Han et al. reported the structure of the internal steam
ejector flow [18] and shock wave [19] driven rejected combustion engine heat source. The
research revealed the potential effect of the internal structure flow on the entrainment ratio
(determined as the ratio between the suction and the motive nozzle mass flow rates), mainly
the location of the normal shock and the pseudo-shock region. Therefore, the optimization
of the pumping efficiency was identified by the pressure range of the critical primary fluid.

Based on a literature survey of material published in recent decades, the research
and experimental data about ejector experiments are still very limited. As a result, the
applicability of the theoretical model and the correctness of the numerical method is
not verified and supported by experimental data, which limits the generalization and
application of the numerical simulation results to a certain extent. From our previous
research work, the exhaust performance of steam ejectors is not only affected by the
operating parameters: working steam parameters, pumped gas parameters and fluid
outlet parameters [20,21]. Its geometric parameters are also core features monitoring the
performance of ejectors [22–24]. For the ejector, the direction and distance of the equal
straight section directly affect the injector’s performance because it is not only working
steam and pumped gas mixed through the passage. At the same time, under the condition
of congestion, its size is a decisive factor affecting the pumping efficiency [25–27]. Based on
the establishment of a small ejector refrigeration system for laboratory use, the variation
of the ejection entrainment ratio of steam ejectors under different diffuser diameters and
different operating parameters was studied. It provides a valuable reference for improving
the performance of steam ejectors and optimizing the ejector and provides data support for
verifying the numerical simulation model.

By reviewing previous research work, the findings and novelty of this work are
summarized as follows:
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a) Comprehensive numerical simulations using various mixing section diameters were
performed to examine the link between geometry and the steam ejector pumping
efficiency.

b) The simulation was validated with experimental results to approve the accuracy of
the research. In addition, different turbulent models with supported wall functions
were considered for optimization prediction certainty.

c) The fluid flow characteristics under different mixing section diameters were analyzed
and discussed in detail.

d) The influence of ejector back pressure on ejector efficiency under different mixing
section diameters was analyzed, and the critical back pressure under certain conditions
was analysed and discussed.

e) The influence of diameter on flow characteristics was simulated to study the optimiza-
tion of steam ejector performance under certain operating conditions.

2. Numerical Algorithms
2.1. Governing Equations

In this study, the flow in the ejector is described as an asymmetric compressible steady
state restrained by the conservation equation. In contrast, as in the case of variable-density
flow, the Navier–Stokes equation is adopted to solve the flow behaviour [28].

Moreover, the viscous dissipation rate could be defined, together with the ideal gas
law, through the total energy equation [29]. It should be recognized that steam has unique
transport and thermodynamic properties, which remain unchanged within the remit of
the analysis and their significant effects were not found during validation. However, the
continuity, momentum and energy equations are described in the simulation and stated
as follows:

Continuity equation:
∂ρ

∂t
+

∂

∂xi
(ρui) = 0 (1)

Momentum equation:

∂

∂t
(ρui) +

∂

∂xj

(
ρuiuj

)
= − ∂P

∂xi
+

∂τij

∂xj
(2)

Energy equation:

∂
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∂
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where

τij = µeff

(
∂ui
∂xj

+
∂uj

∂xi

)
− 2

3
µeff

∂uk
∂xk

δij (4)

with
ρ =

P
RT

(5)

where E represents the total energy, µeff is the effective molecular dynamic viscosity, τij
describes the stress tensor, and αeff denotes the effective thermal conductivity.

2.2. Ejector Geometry and Mesh Sensitive Analysis

The ejector geometry used in this study is described in detail in this section. The simu-
lation considered a two-dimensional axisymmetric ejector, which proved its efficiency in
reducing the calculation time and cost. Table 1 illustrates the main geometrical parameters
of the tested ejector.
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Table 1. Steam ejector main geometry parameters.

Parameter Value and Unit

Primary nozzle inlet diameter 12 mm
Primary nozzle outlet diameter 11 mm
Primary nozzle throat diameter 2.5 mm

Nozzle expanded angle 10◦

Nozzle exit position 10 mm
Mixing chamber inlet diameter 70 mm

throat diameter 28 mm
Mixing chamber length 122.2 mm

Throat length 90 mm
Subsonic diffuser length 210 mm

The model started with the mesh structure for the ejector flow domain. Intensive effort
was given to the location predicted with high local speed to generate high-precision results.
Figure 1 emphasizes the adaptive technology to highlight the specific structure of the grid.
In this analysis, the grid was created with high quality and with a maximum aspect ratio of
0.9 and 5:1, respectively. These settings ensured an accurate result besides the converging of
the solution. Figure 2 illustrates the distribution curve comparison of the Mach number at
the centerline using various grid densities. The result revealed a similar trend by applying
both the fine and medium grids in the simulations. Therefore, the medium grid model was
selected for this study with 47,562 elements because it was independently verified, which
contributes to improving computational efficiency.
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Figure 2. Verification of mesh independence.

2.3. Numerical Simulation Settings

The commercial Computational Fluid Dynamics (CFD) using ANSYS Fluent was
employed as a platform for simulation. The research work by Pianthong et al. reported
relatively identical results obtained from both the 3-D and 2-D axisymmetric models [30].
Hence, the 2D axisymmetric model was used in this study to save computational time and
gain consistent solutions. In practice, there is spontaneous condensation of steam inside the
ejector. Therefore, the ideal gas model was used in this paper to probe for physical insights
through simulation analysis.

The flow inside the ejector is described as a compressible steady state governed by
energy, mass, and momentum equations. The density-based solver was used because it
proved excessive stability in the literature. Since high compressible flow and shock waves
would exist, the SST k-ω turbulence model was selected. The boundary conditions were
chosen to be pressure-inlet for the steam inlet, pressure-outlet for the exit, and adiabatic no-
slip wall boundary conditions supported with Enhanced Wall Treatment. The second-order
upwind discretization was applied for all the convective terms over the simulation.

3. CFD Model Verification

The geometric parameters of the steam ejector were gained from our previous experi-
mental study, shown in Table 1.

For the validation of the simulation result, the distribution of the static pressure along
the ejector wall was used. The pressure values used in the comparison at the primary and
the secondary flow streams were set at 0.34 MPa and 1.71 kPa, respectively, via different
back pressure ranges.

It is observable from Figure 3 that the experimental and the simulated distribution of
the static pressure results were similar. The CFD result represented a maximum deviation
of 8% compared with the experimental data, which supported the analysis of the current
research, based on the allowable error in the engineering sector of the study. There was
a particular gap between the experimental and the simulated values, and the former
was slightly higher than the latter. However, a particular difference takes place in the
ejector mixing chamber. The reason could be explained by two points. First of all, the
use of the ideal gas model. The other reason refers to the experimental sealing property
of the test rig, including the manufacturing error. However, the result obtained from the
simulation supported the analysis of this paper in an acceptable range. The region of
the divergent and the throat section represented good agreement for the wall pressure
distribution with a relatively consistent trend which verified the accuracy of the CFD
technique. Generally, the main reasons for the error obtained in the simulation could
be explained from the experimental data side; for instance, the installation error, the
instrument error, the measurement error, and the error of the steam source. Throughout
the test, the temperature of the steam in the evaporator was measured with thermocouples.
It should be clarified that the steam temperature changed dynamically close to the set
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temperature location affected by the ambient and the inlet temperatures measured by the
thermocouples.
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4. Results and Discussion
4.1. The Effect on the Boundary Layer Separation

Figure 4 shows the local Mach number contour of the steam ejector under different
mixing section diameters. The boundary conditions for these simulations included the
following: (a) the pressure and temperature at the primary inlet were 360 kPa and 135 ◦C,
(b) the pressure and temperature at the secondary inlet were 1710 Pa and 10 ◦C, and (c) the
back pressure at the outlet was 3500 Pa. It can be seen that no boundary layer separation
condition occurred in the mixing chamber of the ejector when the diameter varied from
36 mm to 48 mm. The limited flow area of the secondary fluid did not change. It also
showed the interaction between the fluid in the ejector and the wall was small in the
range of diameter variation. The gradient of the velocity and pressure was small, and the
motion between them was relatively stable. When the diameter was less than 36 mm, the
diameter size decreased. The mixing chamber was the only location where the boundary
layer separation occurred, and the separation degree increased gradually with the diameter
decrease. The main reason was that as the diameter decreased, the friction between the
ejector wall and the mixed fluid increased, and the velocity difference became larger. The
velocity difference resulted in vortices between the secondary fluid and the wall. With the
continuous expansion of the vortex, the boundary layer separation degree gradually rose.
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Moreover, the boundary layer separation degree witnessed a decrease when the
diameter became larger than 48 mm. It also extended to the mixed section. Figure 5
indicates the magnified trace of boundary layer separation. The result demonstrated that
the growth of the diameter values enhanced the vortex generated by the inverse pressure
gradient, and consequently, the boundary layer separation was aggravated.
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The reason was that with the increase of the diameter, the flow channel of the fluid
became wider. The ejection steam energy near the wall was small, and the force between
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the walls increased. Then, a large pressure gradient was generated between the primary
stream and the wall surface. Accordingly, pressure vortices were generated near the wall
surface, leading to the separation of the boundary layer.

The occurrence of boundary layer separation led to the compression of the flow passage
of the secondary fluid. The mass flow rate of the primary fluid remained unchanged under
the condition of fixed inlet primary stream conditions. Therefore, the entrainment ratio was
reduced, and the ejector pumping efficiency decreased. As can be seen from Figure 5, when
the mixing section diameter was less than 36 mm, the boundary layer separation existed in
the “separation zone”. It is described as the area from the separation point in the mixing
section to the reattachment point. However, once the diameter was greater than 48 mm,
the situation was much more complicated than that when the diameter was less than 36
mm. In this diameter range, the “separation zone” of the boundary layer was located in
the mixing chamber. The reattachment point was located in the equal area mixing section,
while the “separation point” was located in the mixing chamber. When the primary fluid
was ejected through the nozzle, the core of the primary fluid jet expanded continuously
and formed a contractile structure in the mixing chamber.

4.2. The Effect on the Choking Flow

The secondary fluid effective area is clearly illustrated due to choking during the fluid
flow, as represented in Figure 6. The result highlighted that the secondary fluid effective
area grew with the increase of the diameter value. Under the same working conditions,
the primary fluid pumped the fluid with the same mass flow rate from the nozzle. When
the diameter of the mixing section rose, the relative flow area occupied by the jet core
of the primary fluid from the nozzle declined. The flow channel of the ejector vapour
enlarged, which led to the extension of its effective area and the increase of the velocity and
pressure gradient between the fluid and the walls. The mixing process of the two fluids
was weak. Meanwhile, a mass of secondary fluid passed through the congestion position.
The boundary layer separated in the mixing section downstream of the mixing chamber.
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Figure 7 shows the Mach cloud diagram of the ejector at different mixing section
diameters. To represent the structure of the primary fluid jet core, the figure only shows the
flow field when the Mach value was greater than 1. When the diameter of the mixing section
was less than, or equal to, 36 mm, the positive shock wave near the entrance of the diffusion
section could avoid flow disturbance. This phenomenon was caused by the variation of
back pressure when propagating upstream of the fluid. The back pressure change would
not influence the flow channel shape in this case. The location of the choking fluid was
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still in the mixing section, holding the position of the secondary fluid effective area. At
this time, the ejector was in critical working mode. Remarkably, the ejector was operating
in double choking fluid mode. This is because the pressure near the wall upstream of the
shock wave was uniform and rather small.
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In addition, a very thin boundary layer was shaped by the interaction between the
mixed fluid and the wall, so no separation occurred between the wall and the fluid. Al-
though the shock wave still existed near the diffusion section entrance, preventing the
disturbance produced by back pressure from spreading upstream. With the reduction of
effective area size and the existence of a reverse pressure gradient, the mixed fluid flowed
in a reverse direction, and the pumping performance decreased rapidly.

The interaction between the secondary and the primary streams was gradually en-
hanced, resulting in the separation of the mixed fluid from the wall boundary layer. As
seen in Figure 7, having a diameter equal to, or greater than, 48 mm, the overall energy
of the mixed fluid was weak, and no positive shock wave was generated. During the
propagation of the back pressure upstream resulting from the disturbance, the presence of
backflow was destroyed, and the ejector was placed in the backflow working mode. As
the backflow rose, the choking area disappeared, which, in turn, caused the mixed fluid to
fail to mix, thus rendering the ejector ineffective. The analysis of the above results reveals
that each ejector has an effective mixing section diameter variation range under the same
operating conditions. It works properly when the ejector operates within this effective
diameter range.

4.3. The Effect on the Entrainment Ratio

This section describes two main features. It delivers a compact and precise explanation
of the experimental results with clarification and experimental conclusions and assessment
of the research. The mixing section diameter is a crucial geometric parameter affecting the
efficiency and performance of the steam ejector. Figure 8 illustrates the variation of the
ejector entrainment ratio under different diameters at a secondary and primary pressure
level of 2330 Pa and 0.34 MPa and back pressure of 3500 Pa. The diameter size varied from
24 mm to 64 mm. The results demonstrated an initial increase in the mass flow rate of the
steam ejector then a decrease through the diameter increase. However, the primary mass
flow rate was relatively stable, with minor changes which could be considered negligible.
The ejector entrainment ratio first increased and then decreased. When the diameter was
48 mm, the mass flow rate and ejector entrainment ratio reached their maximum values.
According to the above analysis, when the diameter value of the mixing section was 48 mm,
the entrainment ratio reached its maximum, and the ejector efficiency reached its highest
under this working condition.



Entropy 2022, 24, 1625 10 of 12

Entropy 2022, 24, x FOR PEER REVIEW 10 of 13 

 

and assessment of the research. The mixing section diameter is a crucial geometric 
parameter affecting the efficiency and performance of the steam ejector. Figure 8 
illustrates the variation of the ejector entrainment ratio under different diameters at a 
secondary and primary pressure level of 2330 Pa and 0.34 MPa and back pressure of 3500 
Pa. The diameter size varied from 24 mm to 64 mm. The results demonstrated an initial 
increase in the mass flow rate of the steam ejector then a decrease through the diameter 
increase. However, the primary mass flow rate was relatively stable, with minor changes 
which could be considered negligible. The ejector entrainment ratio first increased and 
then decreased. When the diameter was 48 mm, the mass flow rate and ejector 
entrainment ratio reached their maximum values. According to the above analysis, when 
the diameter value of the mixing section was 48 mm, the entrainment ratio reached its 
maximum, and the ejector efficiency reached its highest under this working condition. 

 
Figure 8. The impact of different mixer diameters on the ejector entrainment ratio. 

4.4. The Effect on the Critical Back Pressure 
Figure 9 represents the influence of changing the back pressure on the entrainment 

ratio at primary and secondary pressure levels of 1710 Pa and 0.36 MPa via a mixing 
section diameter of 48 mm. The result revealed a high ejector entrainment ratio with a 
maximum value of 0.53 reached at a back pressure of 5300 Pa. However, at lower back 
pressure, the change in entrainment ratio was slight, and the value remained close to 0.53. 
On the other hand, having higher back pressure led the entrainment ratio value to drop 
sharply until the back pressure reached 7000 Pa. This indicated that the back pressure of 
5300 Pa represented the ejector critical back pressure value under this operating condition. 
Once the back pressure was below 5300 Pa, the ejector was in a normal working state. 

Figure 8. The impact of different mixer diameters on the ejector entrainment ratio.

4.4. The Effect on the Critical Back Pressure

Figure 9 represents the influence of changing the back pressure on the entrainment
ratio at primary and secondary pressure levels of 1710 Pa and 0.36 MPa via a mixing section
diameter of 48 mm. The result revealed a high ejector entrainment ratio with a maximum
value of 0.53 reached at a back pressure of 5300 Pa. However, at lower back pressure,
the change in entrainment ratio was slight, and the value remained close to 0.53. On the
other hand, having higher back pressure led the entrainment ratio value to drop sharply
until the back pressure reached 7000 Pa. This indicated that the back pressure of 5300 Pa
represented the ejector critical back pressure value under this operating condition. Once
the back pressure was below 5300 Pa, the ejector was in a normal working state.
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When the ejector back pressure exceeded 5300 Pa, the ejector’s pumping performance
decreased until it failed (i.e., when the entrainment ratio was 0). Therefore, in the actual de-
sign process of the ejector, not only the stability of the exhaust efficiency but also the limited
exhaust capacity should be taken into account. The front pump of the experimental system
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provides a low enough front pressure, which provides conditions for the improvement of
the exhaust efficiency of the steam ejector.

5. Conclusions

In this study, CFD simulation was performed to investigate the influence of the mixing
section diameter on the ejector performance. In addition, the fluid characteristics and the
ejector pumping performance were examined at different mixing diameters. The reasons
for ejector failure were evaluated, and a criterion for judging the critical back pressure was
recommended. The key conclusions of this research can be stated as follows:

1) The research results show that the high primary pressure of the ejector reduces the
secondary fluid flow area. The entrainment ratio of the ejector decreases accordingly.

2) Under certain operating conditions, expanding the diameter of the mixing section,
such as the diffuser, can improve the pumping performance of the ejector and reduce
its ultimate exhaust capacity. When the diameter increases from 24 mm to 28 mm,
the entrainment ratio of the steam ejector improves by 89.29%, but the critical back
pressure of the steam ejector drops by 21.43%.

3) When the diameter of the mixing section is less than 48 mm, the entrainment ratio
increases gradually with the diameter increase. When the diameter of the mixing
section is larger than 48 mm, the ejector entrainment ratio decreases with the growth
of the diameter. When the diameter is 48 mm, the entrainment ratio reaches the
maximum value of 0.81.

4) Under certain working conditions and diameters, the entrainment ratio remains un-
changed. Currently, the back pressure value is the critical back pressure value. Beyond
this value, the entrainment ratio plummets until the ejector becomes a failure entirely.

5) For a specific steam ejector fire extinguishing system, the optimal structure with
the highest exhaust efficiency can be found by optimizing the crucial geometric
parameters of the ejector on the premise of considering the exhaust efficiency and the
limited exhaust capacity.
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