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Abstract: We investigate the emergence of localization in a weakly interacting Bose gas confined
in quasicrystalline lattices with three different rotational symmetries: five, eight, and twelve. The
analysis, performed at a mean field level and from which localization is detected, relies on the study
of two observables: the inverse participation ratio (IPR) and the Shannon entropy in the coordinate
space. Those physical quantities were determined from a robust statistical study for the stationary
density profiles of the interacting condensate. Localization was identified for each lattice type as a
function of the potential depth. Our analysis revealed a range of the potential depths for which the
condensate density becomes localized, from partially at random lattice sites to fully in a single site.
We found that localization in the case of five-fold rotational symmetry appears for (6ER, 9ER), while
it occurs in the interval (12ER, 15ER) for octagonal and dodecagonal symmetries.
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1. Introduction

Perfect long-range order with an absence of translational periodicity in unconventional
structures in two dimensions, namely the known quasicrystals existent in matter [1–3],
may be the origin of the well-defined and different physical properties of such materials,
compared to those exhibited by crystalline structures. For instance, large variations in
surface-related properties [4–6] with respect to common metals are found in quasicrystals,
including surface energy, mechanical properties such as hardness and coefficient of friction,
and thermal and electrical conductivities. This is why, since their discovery in 1984 in
aluminum-based alloys, these peculiar solids with quasicrystalline structure represent an
alternative for designing materials with specific properties. Up to now, our understanding
of the transport properties, such as thermal and electrical conductivity, of quasicrystals
has relied mostly on research of a phenomenological character [7,8]. As a matter of fact,
quasicrystals have thermal and electrical conductivities that closely resemble those of an
amorphous solid. The lack of a crystalline periodicity but perfect rotational symmetry
situates quasicrystals in the middle, where well-established theories describing crystals
and amorphous materials do not apply.

The study of the transport properties in real quasicrystals is a complex endeavor in
the sense that isolating the pure effects of the lattice structure from those associated with
electron–electron interactions is an impracticable task. In contrast, ultracold gases are
tunable “apparatuses” that offer the possibility of studying the effects of structure and
interactions in a separate way [9]. Instead of electrons traveling across the ion cores, large
conglomerates of neutral atoms in their lowest energy state move in stationary structures
of light, the so-called optical lattices, that can be experimentally set to form crystalline,
amorphous, or quasicrystalline patterns in one, two, or three dimensions. Atom–atom
interactions in these systems can be modified by means of external fields in such a way
that the effective interactions can be decreased or increased, thus emulating electron–
electron interactions. Thus, ultracold Bose or Fermi gases confined in optical lattices are an
ideal platform where the condensed matter physics can be recreated. As a matter of fact,
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recent literature on ultracold quantum matter has reported the experimental realization
of Bose–Einstein condensates confined in fivefold and eightfold quasicrystalline optical
lattices [10–13]. The relevance of such an experimental success is that it might provide the
opportunity to test, as previously demonstrated in the case of crystalline optical lattices,
the analogous physics of electrons traveling in layered materials. Regarding the theoretical
context, ultracold-gas-confined quasicrystals have been demonstrated to show several
phases, including superfluid [14,15], density wave, localized, and supersolid phases [10]. It
is important to mention that in the case of the supersolid phases, dipolar interactions are
required [16–19].

The purpose of this investigation was to characterize the emergence of localization
in a weakly interacting Bose–Einstein condensate confined in different two-dimensional
quasicrystalline lattices as a function of the potential depth that defines their structure.
The ground state of the Bose gas was determined from the stationary solution of the
Gross–Pitaevskii equation for lattices that have a macroscopic size. For the analysis, we
considered lattices with a number of sites in the interval ∼1.5× 103 < Ω < 2.5× 104.
Similarly to the analysis of the Aubry–André model [20,21], localization in these lattices
was tracked in a robust way by means of a statistical analysis using multiple realizations.
The index participation ratio (IPR) and the Shannon entropy were the physical quantities
used to characterize localization properties. Because of the lattice irregularities, namely the
heterogeneous size of lattice sites, we adopted Voronoi diagrams to identify the sites and
thus record the variations of the superfluid density across the quasicrystalline structures.
The results found in this investigation are in good agreement with the recent observation
for an eightfold quasicrystal, in which extended states are found for shallow lattices, while
localized states emerge from a certain lattice depth [11].

This paper is organized as follows. In Section 2, we describe the lattices considered
in our study, as well as the theoretical approach employed to analyze the influence of
the potential depth in localizing the superfluid density. In Section 3, we concentrate
on characterizing the transition to localization in terms of two observables: the index
participation ratio (IPR) and the Shannon entropy in the coordinate space. These two
observables were studied as a function of the potential depth E0. We emphasize here that,
due to the intrinsic irregularity of the quasicrystalline structures analyzed, we employ the
Voronoi construction to determine the inverse participation ratio across the sites. Finally,
we present our conclusions in Section 5.

2. Model

To investigate the influence of the quasicrystalline symmetry in producing localized
states in a weakly interacting Bose–Einstein condensate, we work within the mean field
scheme considering the time-dependent Gross–Pitaevskii equation (GPE) that describes
the superfluid component ψ(r, t). Through a robust set of numerical calculations for the
stationary states of the wave function amplitude ψ(r, t), we shall identify the appearance
of localization by evaluating certain properties. The time-dependent equation satisfied by
the superfluid component ψ(r, t) is as follows:

ih̄
∂ψ(r, t)

∂t
= − h̄2

2m
∇2
⊥ψ(r, t) +

(
Vε

ρ (r) + g2D|ψ(r, t)|2
)

ψ(r, t), (1)

where ∇2
⊥ = ∂2

∂x2 + ∂2

∂y2 , r = (x, y), Vε
ρ (r) is the potential associated with a particular

quasicrystalline structure, and g2D = g3D√
3πlz

is the effective coupling interaction [22] in

2D [23–28], with g3D = 4πh̄2as
m , and as the s-wave scattering length in 3D. The label ρ in

Vε
ρ (r) serves to identify the quasicrystalline rotation symmetry. The lattices analyzed here

have ρ = 5, 8, and 12 for pentagonal, octagonal, and dodecagonal rotational symmetries,
respectively. In the following lines, we point out the particular expressions of the potential
Vε

ρ (r) associated with each lattice. The superscript ε in the potential amplitude Vε
ρ (r) is a
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label to identify different realizations. Below we shall provide a detailed description of the
meaning of these realizations.

The lattice structure with a pentagonal symmetry can be generated through the fol-
lowing potential [29]:

Vε
ρ=5(r) = Vε

0

∣∣∣∣∣ 4

∑
j=0

ei2Gj ·r
∣∣∣∣∣
2

, (2)

where the vectors Gj are given by Gj = [cos( 2π
5 j), sin( 2π

5 j)], and the value of the potential
was chosen to start at zero.

For a quasicrystalline lattice with eightfold symmetry, we have the following [10,11]:

Vε
ρ=8(r) = Vε

0

4

∑
j=1

cos2
(

3
Gj

2
· r
)

, (3)

with G1 = (1, 0), G2 = (0, 1), G3 = 1√
2
(1, 1), and G4 = 1√

2
(−1, 1).

Finally, the formula associated with the dodecagonal quasicrystalline symmetry is as
follows:

Vε
ρ=12(r) = Vε

0

(
cos(2πx) + cos(

√
3πy) cos(πx) + cos(πy) cos(

√
3πx) + cos(2πy)

)
. (4)

It should be mentioned here that several expressions can be used to describe a dodecagonal
quasicrystal, such as those that appear in [30,31]. Quasicrystalline structures are character-
ized by both the absence of long-range translational symmetry and minima that depend on
the site position. These two features suggest that the potential amplitude in Vε

ρ (r), namely
Vε

0 , is precisely the important quantity to be varied in order to observe localization. As a
matter of fact, the emergence of localization will be identified in terms of the potential depth
E0 that results from the sum of the contributions in each formula of the quasicrystalline
lattices given above.

As is well known, localization in the model introduced by Anderson [32] arises from
disorder in form of a random energy shift at each lattice site. While in 1D and 2D, arbitrarily
low values of disorder produce localization in all states, in 3D, a threshold of disorder is
required to generate localization. The Aubry–André model, which also predicts localization
for quasicrystalline lattices in 1D from a given value of the amplitude, is characterized
by an incommensurate factor that alters the otherwise perfect crystalline order. Different
realizations of quasiperiodicity refer to the election of a phase φ ∈ [0, 2π) [20,21]. In
this work, to detect localization in a robust way, we adopted a method that, on one hand,
allowed us to introduce the element of randomness in the form of a small perturbation of the
quasicrystalline structure, and on the other, provided the possibility of taking the average,
over a number of realizations, of the physical quantities used to identify localization.
Each element of the ensemble was introduced by means of a function ε(x, y), which
adds/subtracts a small random variation to the potential amplitude through a function
ε(x, y) (this is why the symbol ε in the above formulas refers to different realizations given
a fixed value of the potential amplitude Vε

0 ). The function ε(x, y), defined over the 2D
space where the quasicrystalline lattice lies, generates a non-correlated distribution of
random numbers varying in the interval [−0.1, 0.1] at each point (x, y) in the grid. Thus,
the potential amplitude Vε

0 transforms into Vε
0 = V0(1 + ε(x, y)). It should be noted here

that this small perturbation, which changes the potential amplitude by at most 10 percent
with respect to its original value at point (x, y), does not interfere with the well-defined
quasicrystalline symmetry of each lattice.

Energy Scale and Length Units

To perform our numerical simulations, we considered as a reference the standard
parameters of an ultracold gas of 87Rb atoms confined in an optical lattice in 2D. The
potential amplitude V0 was measured in terms of the recoil energy ER = h2/(8ma2), with
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a = 532 nm as the lattice constant in a square lattice. Note that although in the case of
quasicrystalline structures the lattice constant is not defined, a represents an experimental
reference to properly set the recoil energy. Typical potential depths are in the interval
E0 ∼ [4ER, 16ER], with E0 being the sum of the contributions in each expression for the
quasicrystalline lattices (Equations 2–4). As we argue below, the largest potential amplitude
used in our numerical experiments, as well as the values of the effective interaction strength
considered (U2D ∝ g2D ∼ 0.01ER, ∼ 0.10ER, ∼ 1.1ER) [19], are such that it guarantees that
the mean field Gross–Pitaevskii description is reliable and away from insulating states in
the equivalent lattice (tight-binding) model [33]. In other words, there is no competition
with Mott states. Moreover, we neglected quantum depletion effects as we are in the T = 0
regime. Therefore, as we are deep in the superfluid regime in 2D, the GP theory is an
appropriate description to characterize localization of the superfluid component in the
quasicrystalline structures.

For the analysis, we considered an ensemble of realizations for the functions ε(x, y),
for a given lattice composed of Ω sites. Ω represents the number of local minima and
absolute minima of the potentials defined by Equations (2)–(4). We should mention here
that our investigation contemplates a finite size analysis, considering lattices with size Ω,
similar to those prepared in current experiments with ultracold atomic gases confined in
optical lattices [10]. In this work, we considered 103 < Ω < 2.5× 104.

To describe the ground state of the system, we numerically solved Equation 1 using
imaginary time evolution (t −→ iτ), which is equivalent to finding the lowest energy
solution or steady-state ψ → ψ0, using the split-step Crank–Nicholson method. This so-
lution represents the amplitude of the macroscopic wave function of the system at T = 0
in the lowest energy state. We analyzed the density profiles ρ(x, y) =| ψ(x, y) |2, for each
quasicrystalline potential. Our approach is limited in the sense that it does not account
for depletion of the condensate or non-Poissonian density distributions, and it is a zero
temperature model. However, it allows us to study the influence of the quasicrystalline
geometry in producing localized states, which is the main purpose of this work. The identi-
fication of localization is made from the stationary state by first quantifying the density
across the lattice sites as a function of the potential depth E0 for each lattice geometry. Then,
as described above, to further comprehend the emergence of localization, we investigated
the behavior of two properties that are customarily used to identify localization.

3. Localization in Quasicrystalline Lattices

In this section, we characterize the transition to localization for the quasicrystalline
lattices described in Equations (2)–(4). For this purpose, we studied the stationary states of
the GPE as a function of the potential depth E0, and investigated two observables: the IPR
and the Shannon entropy [34]. As is well known, these observables provide signatures of
localization in lattices in arbitrary dimensions. In recent literature, the inverse participation
ratio of the single particle in momentum space has been calculated to study the localization
transition in the ground state of weakly interacting bosons [11]. As written above, our
study focuses on a statistical analysis for the observables, in which a number of realizations
for given values of the amplitude Vε

0 and size Ω of the lattice were considered. At this
point, it is important to mention that, for lattices with a large number of sites, it was
not necessary to have a large number of realizations since fluctuations with respect to
the average of a given physical quantity decrease as the system size increases. For our
analysis, we computed sets of ∼40 realizations for a given potential amplitude, and for
each quasicrystalline structure for lattices with a size 103 < Ω < 6× 103. For lattices
with a size Ω ∼ 2.5× 104, we considered just five realizations of ε(x, y). The physical
quantity collected from raw data, namely the superfluid density at each point, allowed us to
select the non-negligible contributions to perform the statistical analysis. To identify those
non-negligible contributions, we proceeded as follows. For a given amplitude Vε

0 , only sites
with densities larger than 5 percent of the highest density per site were considered for the
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statistical analysis. Smaller amplitudes were not considered since they are not associated
with sites of the quasicrystalline lattice.

It is important to stress here that in order to avoid misinterpretation caused by large
potential amplitudes Vε

0 and wrong use of the GPE approach (that is, values of Vε
0 resulting

in total depths E0 for which mean field treatment is not appropriate), we evaluated the
correlation function g1 = 1

z2 ∑m∈n.n.
∣∣∫ dxdy ψ∗(x, y)ψ(x + xm, y + ym)

∣∣2 [35,36], as a func-
tion of the potential amplitude, where z in this function is the coordination number and
m is a label that identifies the nearest neighboring sites with respect to a site located in
(x, y) position. In addition, g1 is a measure of the correlation function between nearest
neighbors, and it allows us to establish the range where the potential amplitude can be
varied before the system enters into the phase in which the density of the condensate
becomes discontinuous across the lattice. For values of the potential depth in the intervals
3ER < E0 < 10ER for the pentagonal quasicrystal, and 3ER < E0 < 16ER for octagonal and
dodecagonal geometries, the correlation function remained above zero, thus supporting
the GP approach.

The information obtained directly from each realization can be summarized as follows.
(1) At potential depths of E0 = 3ER, the condensate density fills the entire space, with the
superfluid density distributed across the whole lattice sites in the form of Gaussian peaks.
Certainly, the amount of superfluid density depends on the potential depth at each lattice
site. At the edges, the density becomes zero as a consequence of the boundary condition
(end of the lattice). (2) As the amplitude of the potential increases, Gaussian peaks are
not distributed uniformly in the whole lattice; instead, several sites in the lattice show a
diminished density, exhibiting peaks with lower amplitudes. As stated above, we fixed an
arbitrary criterion to account for the non-negligible peaks contributing to the superfluid
density (for a given disorder strength, only peaks with amplitudes larger than 5 percent
of the highest amplitude were considered for the statistics). (3) As expected, different
realizations labeled by ε associated to a given value of the potential amplitude resulted in
different distributions of peaks across the lattice. It is worth noting that different realizations
have, on average, the same distribution of the superfluid density, but concentrated in
different lattice sites. (4) As the potential depth increases, the spatially distributed random
peaks become sparse; therefore, in accordance with the condition of constant density, the
heights of the peaks become taller. (5) We found a certain range of potential depth for which
the scenario of superfluid density distributed across the lattice is replaced by a fragmented
density.

Inverse Participation Ratio

One of the quantities that characterize the structure of an extended state is the participa-

tion ratio [37] p =
(

Ld ∫ |ψ(r)|4dr
)−1

, where L is the length of the system in d dimensions,

and p ∼ (l/L)d is equal to the fraction of the volume occupied by the wave function with
the linear dimension of l. However, the inverse participation ratio (IPR) is the quantity
most widely used to measure the spatial extent of a localized state, which is given by the
absolute value of the fourth power of the wave function [38], IPR =

∫
S |ψ(r)|

4dr, where the
integration region S refers to the whole space where the wave function is defined. Origi-
nally, the idea behind the definition of the IPR for discrete lattices is that in the opposite
extreme situations of extended and localized states, the IPR reaches the values of zero
and one, respectively. For macroscopic lattices, an extended state has almost negligible
contributions to the probability at each site across, while a localized state has a probability
equal to one in a given site and zero in the rest of the lattice. Since our investigation deals
with lattices defined in a continuos space, the superfluid fraction also lies in the continuum.
As we describe in the next paragraph, a Voronoi diagram is used to properly consider the
inherent lattice irregularities of quasicrystalline structures.

To identify the occurrence of localization in the weakly interacting Bose condensate
confined in the quasicrystalline lattices, we must consider two factors: first, the non-discrete
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aspect of the GPE, and second, the fact that the potential that defines the quasicrystalline
structures is composed of minima with different depths, and therefore identification of sites
requires one to assess in an appropriate way the potential. To properly detect the emergence
of localization as a function of the potential depth E0, we shall adopt the method of Voronoi
diagrams. As we describe below, this method allows us to perform the integration of the
fourth power of the wave function in well-defined regions or cells, identified from the
potential that generates the quasicrystalline structure. Such regions, which serve to define
the boundaries of the integral in the IPR, will be described in the next paragraph.

The first step to determine the IPR is the construction of the Voronoi diagram. The
Voronoi diagram, defined by of a set of points or sites {p1, p2, . . . , pn}, divides the plane
around each point pi into regions R(pi), such that all points inside each region are closer
(Euclidean distance) to their defining site pi than to any other site pj 6=i [39]. Each R(pi) is
a convex polygon and is called a Voronoi cell. The region edges are the locus of points
equidistant from two sites, and the vertices are points equidistant from three or more
nearest sites. The Voronoi diagram is a polygonal partition or tessellation of the plane
with no overlapping regions or gaps. This definition implies that the outermost sites
of the Voronoi diagram have unbounded Voronoi regions, which can be limited by an
arbitrary boundary (e.g., a rectangle) to avoid having infinite-sized areas. In the case of
the quasicrystalline lattices, the Voronoi partitions depend on the order of diffraction peak
considered. For each quasicrystalline geometry, the Voronoi diagrams were constructed
using the local and absolute minima of the potential V(r) as the Voronoi sites using an
in-house code written in MATLAB, taking advantage of the built-in function voronoin [40].
The number of sites identified was ∼103 < Ω < 2.5× 104 for the pentagonal, octagonal,
and dodecagonal geometries. Variations of about 5 percent in the total number of Voronoi
sites in each lattice, associated with the edge of the lattices, were not considered in the
calculations. It is important to mention that the Voronoi method was validated using a
square lattice—that is, we evaluated the IPR in the square lattice both, through the formula
with the integral over the whole surface S, and using the Voronoi method.

Figure 1 shows a fragment of the potential associated with the pentagonal, octagonal,
and dodecagonal symmetries, as well as its corresponding Voronoi diagrams. The figures
on the top show the magnitude of the lattice potential in a density color scheme, with blue
and yellow colors corresponding to the maxima and minima, respectively. The red dots
indicate the positions of the minima, which served as the sites to define the Voronoi cells.
These regions appear in the bottom of Figure 1. It must be noticed that these fragments
were chosen from lattices with a large number of sites, and correspond to a region centered
in the origin, thus revealing the rotational symmetry of the quasicrystalline structures.
We must point out that, although the number of sites of each lattice varies in Figure 1,
approximately 240, 190, and 550 sites for the pentagonal, octagonal, and dodecagonal,
respectively, are shown at the same size. Interestingly, in the Voronoi diagrams associated
with the pentagonal and octagonal quasicrystals, there are some Voronoi cells with red dots
apparently being bisected by Voronoi boundaries. In reality, this is an effect caused by two
neighboring sites very close to each other, with their corresponding frontier between them.

In our analysis, the IPR was numerically determined for each lattice, as a function of
the potential depth E0, from the density profile. The boundaries of the integral considered
in equation that defines the IPR were those of the Voronoi cells (see fragments of the Voronoi
lattice shown in Figure 2). In Figure 2, we illustrate in a density color scheme the whole
space of the Voronoi regions and the magnitude of the IPR across the cells, associated with a
single realization of ε(x, y). The top, middle, and bottom figures correspond to pentagonal,
octagonal, and dodecagonal quasicrystals respectively. At the top of each figure, the value
of the potential depth associated with each realization is indicated. As one can see from the
color bars on the right in each figure, the size of the IPR strongly depends on the potential
depth. While shallow potential depths, such as E0 = 3ER, produce Voronoi lattices that
have cells with values of the IPR uniformly distributed and very close to zero (∼×10−8),
as the potential depth increases, isolated regions with large values of IPR are found in the
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Voronoi lattices (∼10−4). These results indicate that the opposite extended and localized
states are characterized by having uniform near-zero values of the IPR across the whole
Voronoi lattices, and sharply localized superfluid density in a few lattice sites, respectively.
The sectors included in Figure 2, which are the same for any given quasicrystalline structure,
were intentionally chosen in a different area to those shown in Figure 1 to illustrate that the
superfluid density is distributed across the lattice regardless of the observation region. In
short, the behavior shown in Figure 2 illustrates the emergence of localization as a function
of the potential depth E0. It is important to state that these plots correspond to a particular
realization ε, and as stated above, different realizations of ε have, on average, the same
number of sites with non-negligible superfluid density, but distributed in different sites.

0

2

4

6

Figure 1. (Color online.) Fragments of the lattice potential for the pentagonal (left), octagonal (center),
and dodecagonal (right) quasicrystalline structures. Top figures show the potential maxima and
minima in a density color scheme, with the red dots indicating the minima. Bottom figures are the
associated Voronoi diagrams of the top figures. Ω ∼ 103. Parameters are: E0 = 6ER, U = 0.01ER. It is
important to point out that the fragments chosen correspond to the center of the lattices.

In order to recognize the emergence of localization as a function of the potential depth,
the information of the IPR associated with each realization ε→ ε(x, y) and a given value
of the potential depth were organized in the form of histograms, which we constructed as
follows. The horizontal axis of each histogram was divided into 40 equally spaced intervals,
being the extrema, the minimum, and maximum values of the IPR. Then, we counted the
number of Voronoi cells with values of IPR ranging in the identified intervals and used
this outcome to construct the histogram. In other words, the bars of each histogram are
the number of Voronoi regions with a value of IPR in a given interval. Then, to obtain
a representative histogram with all of the statistics (that is, a histogram considering the
total number of realizations), we averaged the histograms for a given value of the potential
depth E0. As mentioned above, 40 realizations were performed for Ω ∈ [103, 6× 103] sites,
while 5 realizations were considered for Ω ∼ 2.5× 104. To illustrate the way in which the
information of the IPR is arranged in the histograms, in Figure 3, we show in a logarithmic
scale the histograms associated with the average over the realizations for Ω ≈ 6× 103 sites,
for different values of the potential depth. As in the case of the previous figure, the rows
from top to bottom correspond to pentagonal, octagonal, and dodecagonal quasicrystals.
The colors used in the histograms match those of the Voronoi diagrams of Figure 2 to ease
visual interpretation.
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Figure 2. (Color online.) Fragments of the Voronoi regions for pentagonal (top), octagonal (center),
and dodecagonal (bottom) quasicrystalline structures. The color scheme in the bars on the right of
each figure indicates the value of the IPR at each Voronoi cell, for the potential depth indicated at the
top border of each figure.

As can be seen from Figure 3, for shallow potential depths (3ER), the histograms exhibit
dense distributions, thus implying that most of the sites are occupied and correspondingly
that the superfluid is non-localized. Then, as the potential depth is increased (7ER for
the pentagonal quasicrystal and 12ER for the octagonal and dodecagonal geometries), the
histograms acquire a different aspect. For large values of potential depth (see figures on
the right column), just a few of the sites are occupied, and therefore the histograms are
composed of few bars. Note that in the horizontal axis, the values of the IPR change by
many orders of magnitude as the potential depth grows, while figures in the left column
have IPR values ∼10−8, figures in the central column carry on IPR values ∼10−7, and
finally, for the histograms on the left column, the values of the IPR are ∼10−4.

This behavior indicates that the transition to localization starts at values of ER around
those chosen in the center column. Indeed, we observe from Figure 3 that the histograms
associated with the IPR contributions of Figure 2 show a sparse distribution as the potential
amplitude is increased. To discern localization, we must track how dense histogram
distributions become sparse. From the statistical moment distribution of the IPR, one
can observe that the kurtosis is the moment that better captures the transition. Thus,
we use this quantity to quantify this transition, since it measures the "tailedness" of a
distribution, or how outlier-prone a distribution is. In Figure 4, we plot the kurtosis for the
pentagonal, octagonal, and dodecagonal lattices as a function of the amplitude Vε

0 . Different
symbols in each plot correspond to different numbers of sites Ω, with diamonds, squares,
triangles, and circles labeling Ω = 2× 103, 4× 103, 6× 103, and 2.5× 104, respectively.
As one can see from these figures, there is a starting value of the potential amplitude for
which the kurtosis becomes different from zero, followed by a region in which the kurtosis
increases until a maximum value is reached. As expected, this maximum equals to the limit
value of the kurtosis, which signals that the dense histogram distribution is turned into
a single bar specifically when the superfluid is located in a single site. One can identify a
region of the potential amplitudes for which localization is present. For the pentagonal,
octagonal, and dodecagonal lattices, the intervals in units of ER are [6, 10], [12, 16], and
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[12, 16], respectively. From the behavior of the kurtosis, one can identify a crossover region
of the potential amplitude in which the smooth transition from extended to localized states
occurs. From Figure 4, we observe that for the largest value of Ω considered (that is,
Ω = 2.5× 104), the smooth behavior observed in the kurtosis for Ω = 1.5, 4, and 6 ×103 is
replaced by an almost abrupt change starting from certain values of potential depth (see,
for instance, E0 = 7ER in the case of pentagonal quasicrystal and E0 = 13ER for octagonal
and dodecagonal symmetries). Numerical calculations for larger values of lattice sites
(Ω ∼ 105) are impracticable to compute.
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Figure 3. (Color online.) Histograms of the IPR values for pentagonal (top row), octagonal (center
row), and dodecagonal (bottom row) quasicrystalline lattices. At the top of each figure appears the
value of the potential depth in units of recoil energy ER. The values of the IPR correspond to 40
realizations for lattices with 6× 103 sites.
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Figure 4. (Color online.) Kurtosis as a function of the potential depth for pentagonal (left), octagonal
(center), and dodecagonal (right) quasicrystalline structures. Symbols in each panel identify different
values of the site lattice number Ω, which is common to all panels. The effective coupling interaction
is U = 0.01ER.

We should stress that the existence of localization in the weakly interacting condensate
confined in the two-dimensional lattices does not arise from the random fluctuations
enclosed in ε, but from the quasicrystalline structures as the potential amplitude surpasses
certain depth.

4. Shannon Entropy of BEC Matter Waves

Another suitable physical property to study the localization phenomena in a theoretical
context is the Shannon entropy [34]. This observable has been used to investigate the
localization transition of matter waves in Bose–Einstein condensates within the framework
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of the Gross–Pitaevskii equation. Among other systems, quasiperiodic lattice potentials
in one dimension [41,42] and dipolar condensates in three dimensions in the presence of
anisotropic harmonic confinement [43] have corroborated the influence of the interplay
of kinetic energy, interatomic interactions, and disordered potentials. For lattice models,
the analysis inside the tight binding approximation [42,44] includes both periodic and
antiperiodic boundary conditions.

The purpose of this section is to characterize the localization of Bose–Einstein con-
densates lying in quasicrystalline structures by tracking the Shannon entropy. Here, we
should point out that other thermodynamic properties have been investigated in the
past [45]. From the information provided by the stationary density profiles as a func-
tion of the potential depth for each quasicrystalline lattice, we present here the analysis
of the Shannon entropy for the coordinate space. For a continuous probability distri-
bution ρ(x, y) =| ψ(x, y) |2, the Shannon information entropy in coordinate space is
defined by [42,43,46,47] as Sρ = −

∫
ρ(x, y) ln ρ(x, y)dxdy, with

∫
ρ(x, y)dxdy = 1. We

notice from this last equation that Sρ is an extensive quantity, which depends on the
lattice size. Now, let ψ(kx, ky) be the Fourier transform of ψ(x, y); then, the Shannon en-
tropy associated with γ(kx, ky) =| ψ(kx, ky) |2 in the momenta space is given by Sγ =
−
∫

γ(kx, ky)
(
ln γ(kx, ky)

)
dkxdky, with γ(kx, ky) = |ψ(kx, ky)|2, and

∫
γ(kx, ky)dkxdky = 1.

The physical meaning of Sρ and Sγ is as follows. The Shannon entropy in the space of
positions corresponds to the measurement of the uncertainty of the location of the particles
in space, in such a way that the lower this entropy is, the more concentrated the wave
function becomes. In other words, when the position uncertainty is smaller, the accuracy
in predicting the localization of the system grows. On the other hand, the meaning of
the Shannon entropy in the space of momenta corresponds to measuring the uncertainty
of predicting the momentum of the particles, and this entropy provides information on
propagation (high entropy values) and regeneration (low entropy values) of well-localized
wave packets [46]. An important fact that must be taken into account is that if one entropy
value decreases, the other increases, and vice versa. Since Sρ and Sγ are complementary
quantities, we concentrate here on analysis of the former as a function of the potential
depth.

In Figure 5, we show the results obtained for Shannon entropy in coordinate space
for the analyzed lattices. Different curves in each panel correspond to several values of Ω.
This size was determined, as in the previous section, by means of the Voronoi diagrams
associated with the minima of the potential that define a given structure. As expected, each
panel in Figure 5 reveals the extensive character of Sρ, since the maximum value of the
entropy is proportional to the size of the lattice. In addition, we observe that the behavior
of Sρ shows the characteristic behavior that allows one to detect localization as a function
of the potential depth. Note that Sρ is approximately constant for a certain interval of the
potential depth, and then it starts to decline in a continuous way with increasing potential
depth. As can be appreciated from Figure 5, depending on the particular quasicrystalline
geometry, Sρ starts to diminish at different values of E0, but qualitatively, its behavior in
each case is the same. Looking back at Figure 4, the values of the potential depth for which
kurtosis registers the change correspond to those of Figure 5, in which Sρ also exhibits a
transition. Therefore, the behavior of the IPR kurtosis and the entropy reflect the occurrence
of the transition to localization in quasicrystalline lattices as a function of the potential
depth.

Besides the analysis for different values of the lattice size, we also performed an
investigation of the Shannon entropy as a function of the interaction strength. As stated
above, the values of the effective interaction were chosen away from insulating states in the
equivalent lattice [48]. In Figure 6, we plot the Shannon entropy for Ω = 6× 103 and three
different values of the interaction amplitude. As can be seen from this figure, the Shannon
entropy is qualitatively similar, disregarding the size of the interaction. The most evident
quantitative effects arise in the case of the dodecagonal lattice.
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Figure 5. (Color online.) From left to right, we plot the Shannon entropy in coordinate space Sρ as
a function of potential depth for pentagonal, octagonal, and dodecagonal quasicrystalline lattices.
Symbols in each panel identify different values of the site lattice number Ω, which is common to all
panels. The effective coupling interaction is U = 0.01ER.

Sections 3 and 4 allow us to identify how localization in the analyzed quasicrystalline
lattices occurs as the potential depth exceed a certain size. These results are in accord with
a similar study conducted recently by M. Sbroscia and collaborators [11] for an eightfold
quasicrystal.

0.01 ER

0.10 ER

1.10 ER

Figure 6. (Color online.) From left to right, we plot the Shannon entropy in coordinate space Sρ as
a function of potential depth for pentagonal, octagonal, and dodecagonal quasicrystalline lattices.
Symbols in each panel identify different values of the effective mean field interaction. The symbols
correspond to U = 0.01ER, 0.1ER, and 1.1ER, respectively.

5. Conclusions

In this work, we have studied the localization phenomenon of a weakly interacting
Bose–Einstein condensate lying in optical lattices with quasicrystalline structure. We
considered lattices with pentagonal, octagonal, and dodecagonal rotation symmetries, with
a number of sites in the interval 1.5× 103 < Ω < 2.5× 104. For the analysis, we quantified
the behavior of two observables, the index participation ratio (IPR), and the Shannon
entropy in coordinate space Sρ as a function of the potential depth E0. These observables
were investigated from a statistical analysis considering an ensemble of realizations for
a fixed amplitude E0. To properly quantify the superfluid density across the lattice sites,
besides considering an ensemble of realizations, a Voronoi diagram was constructed to track
the variation of the superfluid density site by site. The observables analyzed confirmed a
smooth crossover from extended to localized states as a function of the lattice depth. While
localization in the case of fivefold rotational symmetry appears for (6ER, 9ER), it occurs
in the interval (12ER, 15ER) for octagonal and dodecagonal symmetries. The analysis for
different values of the effective mean field interaction, performed for Ω = 6× 103 sites,
showed the same qualitative behavior for the Shannon entropy. In fact, the quasicrystalline
structure dominates over the effective mean field interactions to generate localization as
the potential depth is increased.

Our results, relevant within the context of condensed matter, could also be tested in
samples of degenerate gases confined in optical lattices with a quasicrystalline structure as
revealed in [11] for an eightfold symmetry. In this case, an important aspect to consider
is that the potential depth created from the interfering lasers arrays must be such that
the fraction of the superfluid density exists in the quasicrystalline structures constituted
of minima with different amplitudes. In our numerical calculations, we used values of
the potential depth for which a Mott phase does not compete with the emergence of
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localization [33]. Even more, to ensure that the superfluid is far from the interaction-
driven insulating states, effective values of the interaction strength must not exceed certain
values of the potential depth (∼10ER for pentagonal quasicrystal symmetry, and 16ER for
octagonal and dodecagonal geometries). An additional fact that must be pointed out is
that the two-dimensional quasicrystals here analyzed are the counterpart of the study of
Anderson localization in lattices with random disorder. In both cases, localization emerges
as the “disorder amplitude” grows. However, the main difference between our results
and those within the Anderson picture is that localization appears from a certain potential
depth of the quasicrystalline structures, as in the case of the Aubry–André model, and
not for an arbitrarily small disorder strength, as in the case of random disorder. Density
wave and supersolid phases are beyond the scope of the present work since long-range
interactions are absent in our approach.
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