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Abstract: By numerical simulations and experiments of fully chaotic billiard lasers, we show that
single-mode lasing states are stable, whereas multi-mode lasing states are unstable when the size of
the billiard is much larger than the wavelength and the external pumping power is sufficiently large.
On the other hand, for integrable billiard lasers, it is shown that multi-mode lasing states are stable,
whereas single-mode lasing states are unstable. These phenomena arise from the combination of two
different nonlinear effects of mode-interaction due to the active lasing medium and deformation of
the billiard shape. Investigations of billiard lasers with various shapes revealed that single-mode
lasing is a universal phenomenon for fully chaotic billiard lasers.

Keywords: quantum chaos; billiard lasers; microcavity lasers

1. Introduction

Two-dimensional (2D) billiard lasers have been widely investigated over the past
decades with various billiard shapes [1–39]. From the viewpoint of the property of ray
dynamics which is equivalent to the motion of a point particle on a billiard table, 2D
billiard lasers can be classified into three categories: integrable, partially chaotic, and fully
chaotic billiard lasers [40]. On the basis of this classification of dynamical systems, the uni-
versality of energy level statistics was discovered by Casati et al. for the first time for
a quantum billiard, which is a quantum particle on a billiard table where the motion of
the corresponding classical point particle is fully chaotic [41]. This discovery led to the
Bohigas–Gianonni–Schmidt (BGS) conjecture [42], and made significant contributions to
the establishment of the research field of quantum chaos [43,44].

Although optical billiards can be viewed as a realization of quantum billiards, there is
a noticeable difference between them. The light field inside an optical billiard is confined
by the refractive index difference between inside and outside the optical billiard, and the
corresponding rays obey Fresnel’s law at the billiard boundary. Meanwhile, quantum parti-
cles are completely confined inside the billiard table by the 2D rigid wall potential, and the
corresponding classical point particles obey full reflection at the billiard boundary. As a
result, eigenstates of a quantum billiard are bound states with real eigenenergies, whereas
those of an optical billiard are quasibound states, or resonances, with complex eigenfrequen-
cies because of non-Hermitian boundary conditions [1,2], where their real parts represent
oscillation frequencies and their imaginary parts decay or loss rates of modes. In spite of the
difference mentioned above, low-loss (i.e., well-confined) resonance wave functions in an
optical billiard have properties similar to those of the eigenfunctions of the corresponding
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quantum billiard. Hence, these phenomena which were found for chaotic quantum billiards
have been also observed in chaotic billiard lasers [3,4,7,10–12,17,20,21,26]. In this sense,
chaotic billiard lasers have provided a valuable platform where the phenomena theoretically
predicted in the research field of quantum chaos can be experimentally investigated.

When optical billiards are used as laser cavities (billiard lasers, in short), they exhibit
essentially different properties from those of quantum billiards. That is, the resonance
modes interact with each other through the active lasing medium in billiard lasers, which
causes nonlinear dynamics of the light field [1,6,8,9,14,16]. In the spirit of the quantum chaos
theory pioneered by Casati, it is important to turn our attention to universal properties
of chaotic billiard lasers that resulted from the synergistic effect of the deformation of the
billiard shape and nonlinear dynamics of resonance modes such as mode competition.

As an example of such a universal phenomenon for fully chaotic billiard lasers, it has
been reported for the experiments of semiconductor billiard lasers with high pumping
conditions that only single-mode lasing was observed for fully chaotic billiard lasers with
stadium shapes with various aspect ratios, whereas only multi-mode lasing for integrable
billiard lasers with elliptic shapes of different aspect ratios [28,32]. In addition, by assuming
the similarity of wave functions for fully chaotic billiard lasers, it has been theoretically
shown that single-mode lasing states are stable, whereas multi-mode lasing states are
unstable when the billiard size is much larger than the wavelength and the external
pumping power is sufficiently large [33]. Accordingly, in analogy with the universality
that Casati found for quantum billiards [41], it can be expected that single-mode lasing is a
universal phenomenon for fully chaotic billiard lasers which does not depend on the details
of the billiard lasers. Although lasing characteristics of 2D billiard lasers with various
2D shapes have been intensively studied, universality has not been much pursued so far.
Therefore, it is important to verify this universality by numerically studying fully chaotic
billiard lasers with different shapes in the same way as the BGS conjecture was numerically
examined for various systems [42].

In this paper, we numerically investigate the laser dynamics of three different shapes
of fully chaotic billiard lasers; cardioid, D-shaped, and stadium billiard lasers shown in
Figure 1, whose ray-dynamical trajectories have been exactly proven to be fully chaotic [45,46].
These billiards have already been studied in the research fields of quantum chaos and
chaotic billiard lasers [8,9,13,15,17,19,28,30,32,37,41,42]. It is numerically shown that the
single-mode lasing states are stable in all these three billiards in high pumping regimes,
which verifies the universal single-mode lasing in fully chaotic billiard lasers [28,33]. We
explain the detailed transition mechanism from multi to single-mode lasing, revealing the
mode-pulling and the mode-pushing interaction among lasing modes. We also experimen-
tally show that the numbers of lasing modes of the semiconductor cardioid, D-shaped,
and stadium lasers are clearly different from those of semiconductor microdisk lasers,
which also experimentally verifies the universality of single-mode lasing in fully chaotic
billiard lasers.

The subsequent sections of this paper are organized as follows. In Section 2, we review
the theoretical model to describe the dynamics of the light field and the lasing medium in
billiard lasers and show numerical results of the resonances and wave functions for the
cardioid billiard. In Section 3, the single-mode lasing is achieved in the course of time
evolution of a numerically calculated light field in the cardioid billiard laser, whereas
multi-mode lasing in the elliptic billiard laser when the pumping power is much larger
than the lasing threshold. In Section 4, it is shown that the properties of the resonance
wave functions of the cardioid and elliptic billiards are different from each other. We
numerically obtain phase diagrams for the cardioid, D-shaped, and stadium billiard lasers,
which verify the universal single-mode lasing. In Section 5, we provide experimental data
for semiconductor billiard lasers with the cardioid, D-shaped, stadium, and circular shapes,
which also validate the universal single mode lasing for fully chaotic billiard lasers. In
Section 6, we numerically demonstrate that the occasional appearance of a couple of peaks
experimentally observed in the spectra of the semiconductor fully-chaotic billiard lasers
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is attributed to the fluctuation of the temperature. Summary and discussion are given in
Section 7.

R
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Figure 1. Fully chaotic billiards. From left to right: cardioid, D-shaped, and stadium.

2. The Schrödinger–Bloch Model and the Resonances of the Cardioid Billiard Laser

We assume that the billiard laser is wide in the xy-directions and thin in the z-direction.
As a result, the electromagnetic fields are separated into transverse magnetic (TM) and
transverse electric (TE) modes. Here, we focus only on TM modes, whose electric field
vector is expressed as E = (0, 0, Ez). The atoms in the lasing medium are assumed to
have spherical symmetry and two energy levels. The relaxation due to the interaction
with the reservoir can be described phenomenologically with decay constants γ⊥ for the
microscopic polarization ρ and γ‖ for the population inversion W. The effect of the external
energy injected into the lasing medium is introduced phenomenologically and represented
by the pumping power W∞.

The slowly varying envelope approximation reduces the Maxwell equations as follows:

∂Ẽ
∂t

=
i
2

(
∇2

xy +
n2

n2
in

)
Ẽ− αL(x, y)Ẽ +

2πNκh̄
ε

ρ̃, (1)

where Ẽ and ρ̃ are, respectively, the slowly varying envelopes of the z-component of the
electric field and the microscopic polarization, and N is the number density of the atoms,
κ is the coupling strength, ε is the permittivity, and αL represents the losses describing
absorption inside the billiard and it equals to zero outside the billiard. The refractive index
n(x, y) equals to nin when the position (x, y) is inside the billiard and nout outside the
billiard. In the above, space and time are made dimensionless by the scale transforma-
tion ((ninωs/c)x, (ninωs/c)y)→ (x, y), tωs → t, respectively, where ωs is the oscillation
frequency of the fast oscillation part of the electric field.

The optical Bloch equations describing the active gain medium in interaction with the
light field are written as

∂

∂t
ρ̃ = −γ̃⊥ρ̃− i∆0ρ̃ + κ̃WẼ, (2)

and
∂

∂t
W = −γ̃‖(W −W∞)− 2κ̃

(
Ẽρ̃∗ + Ẽ∗ρ̃

)
, (3)

where γ̃⊥ ≡ γ⊥/ωs and γ̃‖ ≡ γ‖/ωs respectively represent the dimensionless transversal
and longitudinal relaxation rates, and ∆0 ≡ [ω0 − ωs]/ωs represents the gain center,
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and ω0 is the transition frequency of the two-level atoms, and κ̃ ≡ κ/ωs represents the
dimensionless couple strength. W∞ represents the external pumping power. The set of
Equations (1)–(3) is called the Schrödinger–Bloch (SB) model [1,6,8,9,14]. The SB model
can be numerically solved by the split-operator method (or so-called symplectic-integrator
method). Therefore, it is more convenient for numerical simulations than the Maxwell–
Bloch model.

By assuming the stationary oscillation of the electric and polarization field, respectively,
Ẽ = Ẽse−i∆st, ρ̃ = ρ̃se−i∆st, and the constant population inversion, we obtain the time-
independent SB equation,[

∇2
xy +

(
2∆s +

n2

n2
in

)]
Ẽs = 2iα(∆s)

W∞

1 + η(∆s)|Ẽs|2
Ẽs − 2iαLẼs, (4)

where the complex Lorentzian gain α(∆s) and the strength of the nonlinearity η(∆s) are
defined as follows:

α(∆s) ≡ α0
1

γ̃2
⊥ + (∆s − ∆0)2 (γ̃⊥ + i(∆s − ∆0)), (5)

and

η(∆s) ≡
4κ̃2

γ̃//γ̃⊥

γ̃2
⊥

γ̃2
⊥ + (∆0 − ∆s)2

, (6)

where α0 ≡ 2πNκκ̃h̄/ε. The right-hand side of Equation (4) represents the effect of the
lasing medium and vanishes outside the billiard.

The resonance wave function corresponding to the resonance (i.e., complex eigenfre-
quency) ∆j is the solution of Equation (4) with W∞ = 0 and αL = 0. When the pumping
power W∞ is sufficiently increased from zero, the low-loss resonance closest to the gain
center ∆0 changes into a stationary lasing state of the SB model. By linearizing the SB
model equations, the lasing condition for the resonance ∆j is obtained from the energy
balance condition that the gain due to the pumping exceeds the losses [14]. Its mathematical
expression is given by

α0
γ̃⊥W∞

γ̃2
⊥ + (∆0 − Re ∆j)2

> − Im ∆j + αL, (7)

where the left-hand side represents the gain, and the right-hand side the losses. The
frequency of the lasing mode is given by

∆′j =
γ̃⊥ Re ∆j + (− Im ∆j + αL)∆0

− Im ∆j + αL + γ̃⊥
, (8)

which is generally shifted from the frequency of the resonance Re ∆j.
Figure 2 shows the distribution of the resonances of the cardioid optical billiard numer-

ically obtained by the boundary element method [47] and the gain function for the SB model
defined by g(∆) = α0γ̃⊥/

{
γ̃2
⊥ + (∆0 − Re ∆)2}. The shape of a cardioid optical billiard is

defined as r = R(1 + cos θ) in the 2D polar coordinates with R = 30 in our numerical sim-
ulations as shown in Figure 1. Due to the symmetry of the cardioid billiard, the resonances
are classified into two different classes of even and odd parities. The refractive index nin
is 3.3 inside the billiard and nout = 1 outside the billiard. The other parameters are set as
follows: ∆0 = 0.04, γ̃⊥ = 0.02, αL = 0.004, κ̃ = 0.5, ε = 3.3, and Nκh̄ = 0.5. From Figure 2,
one can see that there exist a number of resonances with low decay rates (i.e., |Im∆| < 0.01).
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Figure 2. Gain and resonances in a cardioid billiard. Circles (◦) denote the resonances with odd parity
while crosses (×) those with even parity.

It has been theoretically shown that in a fully chaotic billiard laser, at least one single-
mode lasing state is stable, whereas all multi-mode lasing states are unstable, when the
external pumping power is sufficiently large and the billiard size is much larger than
the wavelength so that γ̃‖ � |∆ij| holds, where ∆ij is the difference between adjacent
lasing frequencies [33]. This result provides a theoretical ground for recent experimental
observations of universal single-mode lasing in fully chaotic billiard lasers [28,32]. We
emphasize that the cardioid billiard laser numerically studied in this paper is much larger
than those billiard lasers which have been studied so far. In addition, the gain band is
much wider than those of previous studies. Therefore, the simulation condition shown in
Figure 2 is more appropriate to numerically verify the universal single-mode lasing of fully
chaotic billiard lasers. Figure 3 shows the spatial patterns of the resonance wave functions
corresponding to the resonances labeled in Figure 2. All of these low-loss wave functions are
distributed over the billiard domain and significantly overlap with one another reflecting
fully chaotic ray-dynamical trajectories in the cardioid billiard [31–33,48].

1 2 3 4 5

87

6

9 11 12

13 1614 15

10

17 18

Figure 3. Spatial intensity patterns of eighteen low-loss resonances labeled in Figure 2.

3. Dynamical Simulation of Large Fully Chaotic and Integrable Billiard Lasers

Typical examples of the time evolution of the total light intensity inside the cardioid
billiard laser are shown in Figure 4a,d,g. The longitudinal relaxation rate γ̃‖ is set to 0.01,
which is much larger than the frequency differences of adjacent resonances, i.e., γ̃‖ � |∆ij|
(see also Figure 2). The lasing threshold Wth is found to be 0.000866. When the pumping
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power W∞ is 0.001 just above the threshold, the intensity converges to a certain constant
after initial transient behavior as shown in Figure 4a. The power spectrum is obtained by
the Fourier transformation of the time series in the stationary lasing regime in Figure 4a
and has a single peak as shown in Figure 4b, which means that the stationary lasing state
includes only one lasing mode. The spatial intensity pattern of this stationary single-mode
lasing state is shown in Figure 4c. One can see that this intensity pattern is almost the same
as that of the resonance wave function labeled by 8© in Figure 3.
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Figure 4. Dynamics of a cardioid billiard laser numerically simulated by the SB model. Time evo-
lution of the total intensity inside the billiard with the pumping power W∞ = (a) 0.001, (d) 0.005,
and (g) 0.010. (b,e,h) The spectrum obtained from the stationary oscillation regime with the corre-
sponding pumping powers. (c,f,i) The intensity patterns of the final lasing states with the correspond-
ing pumping powers.

As the pumping power W∞ is increased, the other resonances become the stationary
lasing modes which interact with one another due to the nonlinear effect of the lasing
medium and the time evolution of the light intensity becomes oscillatory around a certain
constant value as shown in Figure 4d where W∞ = 0.005. In this multi-mode lasing regime,
the spectrum has several peaks as shown in Figure 4e and the final lasing state is not a
stationary state but a limit-cycle or chaotic oscillation. Figure 4f shows a snapshot of the
intensity pattern of the multi-mode lasing state.

When the pumping power W∞ is increased further, the intensities of the lasing modes
increase much more, and hence, they strongly interact with one another, and finally, only
one lasing mode wins the mode competition. The light intensity takes a constant value
and the spectrum has a single peak as shown in Figure 4g,h as in the case of just above
the threshold. However, typically, the stationary lasing state in this high pumping power
regime is not a simple lasing mode corresponding to one resonance as in the case of just
above the threshold but a locked state of a couple of resonances as shown in Figure 4i. One
can see that the spatial pattern of this final stationary lasing state is asymmetric, violating
the symmetry of the cardioid shape due to the spontaneous symmetry breaking caused by
locking of resonance wave functions with different parities [9]. To summarize, the spectral
peak in Figure 4b is attributed to a single resonance, but that in Figure 4h corresponds to a
locked state of resonances.
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The intensity pattern in Figure 4i is almost the same as that in Figure 5 which is
obtained by superposing the resonance wave functions corresponding to the two resonances
denoted by 8© and 9© in Figure 3. Accordingly, one can see that the final lasing state in
the highly pumping regime is composed of two different resonance wave functions whose
frequencies are originally different from each other. The frequency difference of these
two modes vanishes because they are locked due to the mode pulling effect of the lasing
medium. Consequently, the spectrum has a single peak and the light intensity takes a
constant value instead of beating oscillatory behavior with two peaks in the spectrum.
This is a typical transition process from multi-mode to single-mode lasing as the pumping
power is increased in fully chaotic billiard lasers.

Figure 5. The spatial intensity pattern obtained by the superposition of the two resonances denoted
by 8© and 9© in Figure 3, which have even and odd parity, respectively. The superposition of
different-parity wave functions yields an asymmetric intensity pattern (see Ref. [9] for a detailed
explanation).

Next, we show laser dynamics of an elliptic billiard laser. The elliptic billiard shape for
our numerical simulation is defined by x2 + y2/0.72 = R2

0, where R0 = 43.9155, so that this
elliptic billiard has the same area as the cardioid billiard. Hence, the numbers of resonances
are almost the same because of the Weyl formula. The longitudinal relaxation rate γ̃‖ is
set to 0.01, which is much larger than the frequency differences of adjacent resonances,
i.e., γ̃‖ � |∆ij|, that is, the same condition as that of the SB model simulation for the
cardioid billiard lasers.

The wave functions corresponding to the bouncing ball trajectories have much larger
decay rates than the whispering gallery modes which become stationary lasing states.
Therefore, the resonance wave functions of an elliptic billiard which comprise the stationary
lasing states are regularly localized inside the billiard according to the quantum numbers
in the radial and rotational directions, which systematically determine the high-intensity
positions in the spatial patterns of the resonance wave functions. Consequently, many
lasing modes coexist without interacting with one another by avoiding the overlap of
high-intensity regions of the wave functions, and hence, many peaks are observed in
the spectrum as shown in Figure 6e. For the elliptic billiard laser, single-mode lasing is
only observed just above the threshold Wth = 0.000666. Figures 6a–c show data for such
single-mode lasing at W∞ = 0.001.

When the pumping power is increased further, those resonance wave functions which
do not overlap with the dominant lasing modes become new stationary lasing modes
and the number of the stationary lasing modes increases as shown in Figure 6g–i. Conse-
quently, multi-mode lasing is always observed in the high pumping regime in integrable
billiard lasers.
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Figure 6. Dynamics of an elliptic billiard laser numerically simulated by the SB model. Time evo-
lution of the total intensity inside the billiard with the pumping power W∞ = (a) 0.001, (d) 0.005,
and (g) 0.010. (b,e,h) The spectrum obtained from the stationary oscillation regime with the corre-
sponding pumping powers. (c,f,i) The intensity patterns of the final lasing states with the correspond-
ing pumping powers.

4. Spatial Overlap between Two Modes and Phase Diagram

Long-lived eigenstates in open chaotic mapping systems have been shown to be
localized on the forward trapped set of the corresponding classical dynamics in the short-
wavelength limit [49–53]. This localization is a manifestation of quantum ergodicity in open
quantized classically fully-chaotic systems. Similar phenomena have also been observed
in fully chaotic 2D optical billiards numerically [32], where resonance wave functions of
low-loss modes are localized around the forward trapped set of the corresponding ray-
dynamics with Fresnel’s law in the short wavelength limit as shown in Figure 7 [31,48,54].
In addition, assuming that all of the spatial patterns of the wave functions for low-loss
modes in a fully chaotic billiard lasers are similar to one another, one can analytically prove
the stability of a single-mode lasing state and instability of a multi-mode lasing state [33].
The overlap is an important quantity to measure the wave function similarity. It is defined
by the following cross-correlation of the amplitude distributions between an arbitrary pair
of resonance wave functions,

C =

∫
|φ(r)||ψ(r)|)dr√

(
∫
|φ(r)|2dr)(

∫
|ψ(r)|2dr)

, (9)

where φ and ψ are the resonance wave functions and the integrals are taken over the 2D
billiard [32].
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Figure 7. Numerically computed light intensity distributions inside the stadium optical billiard with
refractive index 3.3 (because of the C2v symmetry of the stadium shape, only a quarter domain is
shown). (a) Conditionally invariant measure obtained by ray simulation incorporating Fresnel’s law
with 25 million initial conditions (See Ref. [48] for a detailed explanation). (b) Average of 30 low-loss
resonance wave functions.

Figure 8 shows the histogram of the overlap C for the cardioid billiard, where most of
the overlap values are found between 0.6 and 0.8. The functional form of the histogram is
found to be universal for fully chaotic billiards [32,48]. For the elliptic billiard, the overlap
C can take a smaller value and is distributed over a wider range. These results indicate that
almost all resonance wave functions of the cardioid billiard lasers are similarly distributed
inside the billiard, whereas the resonance wave functions of the elliptic billiard lasers
exhibit various spatial patterns inside the billiard [31,33,48]. On the basis of quantum-
classical correspondence in the semiclassical regimes, it is expected that the shorter the
wavelength, the more distinct the histograms between fully chaotic and integrable billiards.
This means that the effects caused by the spatial distributional difference of the resonances
between fully chaotic and integrable billiards are expected to be more prominent for larger
billiard lasers.

0.1

0.2

0         0.2       0.4       0.6       0.8       10
Overlap C [a.u.]

Fr
eq

ue
nc

y
[a

.u
.]

Figure 8. The histogram of the overlap C for the cardioid billiard (red solid line) and the elliptic billiard
(blue dotted line) calculated by using 30 and 19 low-loss resonance wave functions, respectively.

In addition, as the size of the billiard laser becomes larger, the frequency difference ∆ij
between adjacent resonances is decreased and becomes much smaller than the longitudinal
relaxation rate γ̃‖. Therefore, large billiards satisfy the condition γ̃‖ � |∆ij|. In order to
verify the importance of this condition, we change the value of the longitudinal relaxation
rate γ̃‖ with fixing the size and pumping power of the cardioid billiard laser. As we have
already shown in Figure 4g–i, single-mode lasing is observed with γ̃‖= 0.01 and W∞ = 0.01.
Here, we decrease the value of γ̃‖ without changing the remaining parameter values. When
its value is decreased to 0.009, the other two peaks appear in the spectrum as shown in
Figure 9a, where the left and right peaks respectively correspond to the locked state of
the resonances 4© and 5© and the locked state of the resonances 13© and 14© (resonances
are labeled in Figure 3). As the value of γ̃‖ is decreased gradually to 0.007, more and
more peaks appear as shown in Figure 9b,c. All of these peaks can also be assigned to the
resonances in Figure 3 and some of them are the locked states of adjacent different parity
resonance pairs. We confirmed that even with these smaller values of γ̃‖, those peaks in
the spectrum disappear and change into a single peak when the pumping power W∞ is
increased. This way, we obtain the phase diagram of the lasing state in the γ̃‖-W∞ plane
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shown in Figure 10a for the cardioid billiard laser. One can see that only single-mode lasing
is always observed as far as γ̃‖ and W∞ are sufficiently large.
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Figure 9. Power spectra obtained from the lasing states for the cardioid billiard laser with the fixed
pumping power W∞ = 9.1Wth and the values of the longitudinal relaxation rate γ̃ = (a) 0.009 (b) 0.008
(c) 0.007.
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Figure 10. Phase diagrams of lasing states with various longitudinal relaxation rates γ̃‖ and pumping
powersW∞/Wth for (a) the cardioid billiard laser, (b) the D-shaped billiard laser, and (c) the stadium
billiard laser. The white and black circles correspond to single-mode and multi-mode lasing states,
respectively.

Our simulations of the cardioid billiard laser revealed the existence of two types of
single-mode lasing regimes in the γ̃‖-W∞ plane. One regime appears just above the lasing
threshold, where the lasing mode corresponds to a single resonance with the largest net
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gain. Another regime appears for large W∞ values, where the lasing mode corresponds to
a locked mode of different symmetry-class resonances. We confirmed that these two types
of single-mode lasing regimes were observed in the SB model simulations of the D-shaped
billiard (R = 30 and d = 15) and the stadium billiard (R = 30), as shown in Figure 10b,c.
Figure 10 is our main result of this paper, showing that single-mode lasing of a locked
mode is commonly observed for the three different fully chaotic billiard lasers when the
pumping power is sufficiently large.

We note that although the SB model simulations reported in this paper are performed
for larger sizes of billiards than those previously numerically studied, they are still not so
large as the typical semiconductor lasers used in experiments. The sizes of billiards for
the SB model simulation in this paper are estimated less than 10 µm if the wavelength is
assumed 1 µm, which is typical for conventional semiconductor lasers while their typical
sizes are much larger than 10 µm.

Therefore, in relatively large billiard lasers with linear dimensions more than 100 µm,
the frequency differences ∆ij between adjacent resonances are significantly smaller than
those in the simulation of this paper, which implies that the transition threshold from
multi-mode to single-mode lasing is much smaller than those in Figure 10. Consequently, it
is expected that the universal single-mode lasing can be observed in the experiments of
semiconductor fully-chaotic billiard lasers with typical sizes.

5. Experiments of Semiconductor Billiard Lasers

By applying a reactive-ion-etching technique to a graded index separate-confinement-
heterostructure single quantum well GaAs/AlxGa1−xAs structure, we fabricated semicon-
ductor cardioid, D-shaped, and stadium billiard lasers of which microscope images are
shown in Figure 11a–c. We also fabricated the circular billiard laser, that is, the microdisk
laser as the representative example of integrable billiard lasers shown in Figure 11d.

(d)(b)(a) (c)

Figure 11. Optical microscope images of the fabricated lasers of (a) the cardioid billiard (R = 35 µm),
(b) the D-shaped billiard (R = 40 µm, d = 20 µm), (c) the stadium billiard (R = 50 µm), and (d) the
circular billiard, i.e., microdisk (R = 40 µm).

The lasers were soldered on aluminum nitride submounts, and electrically driven with
current injection under continuous-wave (cw) operation. The temperature was kept at room
temperature. The difference between cw and pulse operations is crucial for observing the
universal single-mode lasing, because relaxation from initial transient multi-mode lasing
to single-mode lasing needs a constant pumping with a certain duration. Thus, for pulse
operations with pulse widths smaller than the above duration, one cannot observe the
universal single-mode lasing [13,28,55].

To measure the optical spectra of the semiconductor billiard lasers, the emitted light
was collected with anti-reflection-coated lenses and coupled to a multimode optical fiber
via a 30 dB optical isolator. The multimode optical fiber was coupled to a spectrum analyzer
(Advantest Q8347). Figure 12 shows the measured spectra of the semiconductor billiard
lasers. Every spectrum of three different fully chaotic billiard lasers has a single peak with
the injection currents much larger than their thresholds as shown in Figure 12a–c, whereas
the spectrum of the integrable billiard (microdisk) laser has more than 10 peaks as shown in
Figure 12d. The appearance of a single lasing peak in the spectra of the semiconductor fully-
chaotic billiard lasers can be more convincingly confirmed with the high-resolution mode
of the spectrum analyzer with wavelength interval of 0.002 nm. As shown in Figure 13,
a narrow linewidth peak was measured in the semiconductor D-shaped billiard lasers.
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Figure 12. Spectra observed in the experiments of (a) the cardioid laser with the injection current
160 mA, (b) the D-shaped laser with the injection current 200 mA, (c) the stadium laser with the
injection current 200 mA, and (d) the microdisk laser with the injection current 120 mA. The thresholds
of these lasers are around 30 mA, 45 mA, 40 mA, and 20 mA, respectively.
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Figure 13. A spectrum obtained by using the spectrum analyzer in high-resolution mode with
wavelength interval of 0.002 nm in the experiment of the semiconductor D-shaped billiard laser with
the injection current 200 mA.

To gain further insight in the spectral characteristics, we counted the number of the
peaks whose intensities were larger than −35 dB of the maximum peak intensity in each
spectrum. Figure 14 shows the injection–current dependence of the numbers of peaks in
the spectra. From Figure 14, one can see that the number of the lasing modes in a fully
chaotic billiard laser is distinctly different from that of the integrable one when the injection
currents are much larger than their thresholds. Similar experimental results were reported
for the semiconductor stadium and elliptic billiard lasers with various aspect ratios [32].
Accordingly, we conclude that this phenomenon is universal and independent of the details
of billiard lasers. Thus, the universal single-mode lasing in fully chaotic billiard lasers is
verified experimentally.

The spectra observed in the experiments of fully chaotic billiard lasers occasionally
contain a couple of peaks instead of one single peak even when the injection current is
much larger than the threshold as one can see in Figure 14. In the next section, we show
by the SB model simulation that this phenomenon can be explained by the temperature
fluctuation of the billiard lasers.

In the experiments, we always try to keep the temperature of the billiard lasers to
a fixed value by the Peltier cooler with the thermostat. However, even if we set the
temperature of the temperature control device to a fixed value, it is impossible to make
the actual temperature of the laser strictly kept to be this value, and the fluctuation of
temperature is practically unavoidable during the experiments. Temperature fluctuations
affect the states of the lasing medium and change the gain profile. Since the sizes of
the semiconductor fully-chaotic billiard lasers are large and the gain band contains a
number of resonances, a slight change of the gain profile can change the stationary lasing
states significantly.
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Figure 14. Injection current dependence of the number of the spectral peaks of fully chaotic and
integrable billiard lasers.

In order to elucidate the temperature dependence of the stationary lasing states of
the semiconductor stadium billiard laser, we investigate the change of spectral peaks by
increasing the temperature from 20.1 ◦C to 21.0 ◦C by 0.1 ◦C. The result is shown in
Figure 15, where we find that the gradual temperature increase from 20.4 ◦C to 20.8 ◦C
results in a drastic change of the lasing state (i.e., the appearance of a peak at 862 nm in
addition to a peak at around 857 nm), whereas the other temperature changes do not cause
significant spectral changes. The temperature increase shifts the gain center to the right,
i.e., longer wavelengths, which explains the appearance of the peak at around 862 nm.
What is interesting here is that only this peak is observed, despite there are a number of
resonances between the two peaks, and the gain center is gradually moved from left to right.
In the following section, we show that this experimental result can be reproduced by the
SB model simulations. Namely, we numerically demonstrate that low-loss resonances very
close to the gain center do not necessarily contribute to the formation of a final lasing state
obtained for a high pumping power, and that there is a selected set of low-loss resonances
that can contribute to the final lasing state.
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Figure 15. Spectra of the semiconductor stadium billiard laser with the injection current 80 mA at
various temperatures between 20.1 ◦C and 21.0 ◦C.
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6. Effect of Temperature Fluctuation

We investigate the dynamics of the D-shaped billiard laser by changing the gain center
∆0 in the SB model simulation with the fixed pumping power W∞. The size and deformation
parameters of this billiard are R = 30 and d = 15, respectively, and the distribution of the
resonances in the complex frequency plane is shown in Figure 16. When the gain centers
are 0.181 and 0.22, the power spectra have single peaks, respectively corresponding to the
locked state of the resonances A and B and the locked state of the resonances C and D as
shown in Figure 17a,c. When the gain center is 0.206, the two locked states simultaneously
appear in the power spectrum as shown in Figure 17b. This is explained by the fact
that the net gains of two locked states are larger than those of the resonances around
0.206. Consequently, two distinct peaks are simultaneously observed in the spectra, which
correspond to the experimental results shown in Figure 15.

Im
Δ[
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]

Re Δ [a.u.]

A
C

D
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Figure 16. The resonance distribution for the D-shaped billiard.
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Figure 17. Power spectra of the lasing states with different gain centers ∆0 (γ̃‖ = 0.008). (a) ∆0 = 0.181.
(b) ∆0 = 0.206. (c) ∆0 = 0.220.

Finally, the pumping power W∞ as well as the gain center ∆0 are increased. Even if
the position of the gain center is located between the real parts of the resonances B and C,
one of the two locked states corresponding to the two peaks in Figure 17b wins the mode
competition and becomes a single-mode lasing state with large pumping power. We define
this transition threshold Wt as the value of the pumping power where the lasing state
changes from the multi-mode to the single-mode lasing state. The gain center dependence
of Wt is shown in Figure 18. Wt is small when the gain center is near the low-loss resonances
such as 0.181 and 0.22. However, it becomes extremely large when the gain center is the
midpoint between these two values, and we could not obtain the single-mode lasing state by
the SB model simulation because the net gains of the locked state of A and B and the locked
state of C and D are equally large. If the size of the billiard is much larger, the resonance
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distribution is much more dense. Therefore, the two-mode lasing regime in the pumping
power is expected to be small in large fully-chaotic billiard lasers. However, when the
injection current is large, the temperature of the upper contact layer might be very high due
to the resistance there, and hence, the lower Peltier device might operate to cool the laser
from the bottom and the whole situation might become a highly non-equilibrium state,
which could result in the fluctuation of the gain center. Therefore, it might be inevitable to
observe a couple of peaks occasionally in the spectra of the semiconductor fully-chaotic
billiard lasers, which is the effect of the combination of the universal single-mode lasing
and the fluctuation of the gain center.
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Figure 18. The gain center dependence of the transition threshold Wt from multi-mode to single-
mode lasing.

7. Summary and Discussion

By the SB model simulation of the cardioid, D-shaped, and stadium billiard lasers,
we verified the universal single mode lasing in fully chaotic billiard lasers: at least one
single-mode lasing state is stable, whereas all multi-mode lasing states are unstable, when
the external pumping power is sufficiently large and the billiard size is much larger than
the wavelength so that γ̃‖ � |∆ij| is satisfied, where ∆ij is the difference between adjacent
lasing frequencies. The stability of multi-mode lasing states in integrable billiard lasers is
also demonstrated by the SB model simulation of the elliptic billiard laser.

We also verified the universal single-mode lasing by the experiments of the semicon-
ductor cardioid, D-shaped, stadium, and circular billiard lasers. The occasional observation
of a couple of peaks instead of a single peak in the spectra of the semiconductor fully-
chaotic billiard lasers was attributed to the fluctuation of the temperature on the basis of
the SB model simulation. We expect that the occasional appearance of a couple of peaks in
the spectra would vanish and only a single peak would be observed if the semiconductor
fully-chaotic billiard lasers have much lower resistances and the control of the temperature
is more accurate.
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