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Abstract: Spatiotemporal and motion feature representations are the key to video action recognition.
Typical previous approaches are to utilize 3D CNNs to cope with both spatial and temporal features,
but they suffer from huge computations. Other approaches are to utilize (1+2)D CNNs to learn spatial
and temporal features in an efficient way, but they neglect the importance of motion representations.
To overcome problems with previous approaches, we propose a novel block which makes it possible
to alleviate the aforementioned problems, since our block can capture spatial and temporal features
more faithfully and efficiently learn motion features. This proposed block includes Motion Excitation
(ME), Multi-view Excitation (MvE), and Densely Connected Temporal Aggregation (DCTA). The
purpose of ME is to encode feature-level frame differences; MvE is designed to enrich spatiotemporal
features with multiple view representations adaptively; and DCTA is to model long-range temporal
dependencies. We inject the proposed building block, which we refer to as the META block (or simply
“META”), into 2D ResNet-50. Through extensive experiments, we demonstrate that our proposed
method architecture outperforms previous CNN-based methods in terms of “Val Top-1 %” measure
with Something-Something v1 and Jester datasets, while the META yielded competitive results with
the Moment-in-Time Mini dataset.

Keywords: action recognition; multi-view; excitation; multi-layer neural network; temporal convolution;
videos

1. Introduction

Video action recognition is still challenging for researchers and practitioners as it
involves both spatiotemporal and motion understanding. In the meantime, as an impact
of the growth of technology, more people are involved in social media. They often record,
upload and share videos to media platforms. As a result, an abundant number of videos
are available to the public. This leads to more researchers engaging in the topic of video
understanding. Action recognition, the first step of video understanding, becomes critical
in practical applications such as suspicious behavior detection in camera surveillance and
video recommendation systems.

An action in videos can be recognized based on scenes with less temporal information,
while other actions need more temporal aspects to recognize. Such examples of actions
with fewer temporal cues are ’rafting’ and ’haircut’. We can judge the aforementioned
actions only by seeing the scene. Contrarily, more temporal information is needed to judge
an action involved in a video, e.g., ’zooming in with two fingers’ and ’picking something up’.
With this condition in mind, one must consider having both spatiotemporal and motion
information flow in the network.

Current existing convolutional neural networks (CNNs) for action recognition can
be categorized by the type of convolution kernel, i.e., three-dimensional (3D) and two-
dimensional (2D) CNN. Several researchers utilized 3D CNNs to learn both spatial and
temporal information simultaneously [1–3]. While this approach works very well for video
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action recognition tasks, the usage of a CNN-based 3D kernel certainly introduces more
parameters compared with the 2D kernel type; hence, the computation cost increases. This
will limit the implementation in real-time application. Additionally, 3D CNNs are typically
laborious to optimize and prone to overfitting [3].

To overcome the real-time and optimization problem, recently, more researchers
utilized 2D CNNs and equipped the network with temporal convolution for characterizing
the temporal information [4–6]. TSN [7] employs a sparse temporal sampling strategy
from the whole video to predict action in it, and this approach influenced several 2D CNN
methods afterward. The approach by Lin et al. [6] utilized a shift-part strategy together with
a sampling strategy to recognize an action very effectively. The shifting strategy is to shift
part of the channels along the temporal axis in order to endow the network with movement
learning. However, both approaches lack motion representations and spatiotemporal cues
from different views. Meanwhile, since optical flow represents a motion as an input-level
frame, many researchers take this modality into consideration. Two main drawbacks of
optical flow are that it needs huge space storage and tremendous time for computation,
which is not suitable for real-time application.

In different approaches from previous methods, several works factorized 3D cubes
of a kernel into a (1+2)D kernel configuration [8–10] to lessen the heavy computation.
Another interesting factorization strategy was introduced by the Deep HRI team [11] in
the action recognition competition. They proposed their novel architecture, coined as
multi-view CNN (MV-CNN), to act as a 3D convolution and showed a profound increase
in the accuracy. Figure 1 illustrates their proposed idea and shows the comparison with
two other convolution designs. Assuming k is the kernel with the size of 3: (a) the kernel
convolves on temporal (T) and spatial (H ×W) axes simultaneously; (b) temporal and
spatial feature learnings are constructed serially; and (c) multi-view feature learnings occur
independently, and the resulting feature maps are aggregated with weighted average αi
to produce multi-viewed feature maps. Nevertheless, these factorization strategies still
neglect the importance of motion features, which are beneficial for action recognition tasks.










(a) (b) (c)

+
Shared weights

Figure 1. Comparison of three designs of spatiotemporal feature learning: (a) vanilla 3D convolution;
(b) (1+2)D convolution; and (c) a multi-view design from [11].

Based on the aforementioned observation, we propose a novel building block, Motion
and Multi-View Excitation and Temporal Aggregation (META). Specifically, META com-
prises three submodules: (1) Motion Excitation (ME), (2) Multi-view Excitation (MvE),
and (3) Densely Connected Temporal Aggregation (DCTA). These three submodules are
integrated into the 2D ResNet-50 base model, and it provides the network the ability to
learn spatiotemporal and motion features altogether. The ME submodule addresses issues
with optical flow problems by calculating feature-level content displacement on the fly
during training or inferencing; thus, no space storage is needed. It also introduces an
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insignificant amount of FLOPs and time to calculate compared with optical flow. The MvE
submodule, on the other hand, produces enhanced spatiotemporal representation of output
features. This submodule adds a multi-view perspective to the original feature maps, and
we design the MvE submodule to be complementary to ME, in that output from the MvE
is directly added to the output from ME. For temporal feature learning, one-dimensional
(1D) convolution is suitable for such a task. In our work, we insert densely connected 1D
convolution layers inside a group of subconvolutions and arrange them in a hierarchical
layout to model the temporal representation and long-range temporal dependencies. In a
nutshell, the main contribution of our work is as follows:

1. We design three submodules, including ME, MvE and DCTA, to learn enriched
spatiotemporal and motion representations in a very efficient way and in an end-to-
end manner.

2. We propose META and insert it in 2D ResNet-50 with a few additional model parame-
ters and low computation cost.

3. We conduct extensive experiments on three popular benchmarking datasets, including
Something-Something v1, Jester and Moments-in-Time Mini, and the results show the
superiority of our approach.

2. Related Work

In this section, we discuss in more detail several related works for action recogni-
tion, including MV-CNN and TEA, which highly motivated this work. We also add a
Transformer-based approach in this section because it has contributed to recent advances
in computer vision, particularly for the task of action recognition.

With large-scale video datasets for action recognition available publicly, more 3D
CNNs are introduced for action recognition tasks. Researchers successfully implemented
them and outperformed state-of-the-art methods [3,9,12–15]. Three-dimensional CNNs
are thought to be capable of learning both spatial and temporal aspects of a video, which
are a very important aspect of action recognition. Among these researchers, Carreira
et al. [13] used an ImageNet [16,17] pre-trained cube-shaped –N × N × N kernel to learn
volumetric features. Another work by Hara et al. [15] used a 3D version of vanilla ResNet
and proved the superiority of this architecture. Several attempts by [18–20] investigate
the combination of a CNN and LSTM [21] or a densely connected LSTM. They claim that
the LSTM layer can model the temporal relation of a series of features coming from either
2D CNNs or 3D CNNs. An alternative to LSTM for modeling temporal relationships is
to use post hoc fusion [5] inside 2D CNNs. Later, a Temporal Shift Module (TSM) by
Lin et al. [6] implemented a shifting operator on channel axes to learn temporal features
without extra parameters and insignificant extra FLOPs. Afterwards, works proposed
by [8–10] decomposed 3D convolution into 1D and 2D convolution to distill temporal and
spatial features, respectively. This strategy was used to address the heavy computation and
quadratic growth of model size when using 3D convolution. A mix of 2D and 3D CNNs
in a unified architecture is also used to capture spatial and temporal features at the same
time [22]. ECO [23] utilized this mixing strategy with top-heavy architecture. However,
mixing the 2D CNN with the 3D CNN in one architecture will inevitably increase model
parameters and require more time to optimize the parameters.

Meanwhile, partially inspired by the visual system of biological studies on the retinal
ganglion cells in primates, Feichtenhofer et al. [24] advocated a two-stream architecture
approach. Considering a video may contain more static as well as more dynamic objects,
both streams have a different temporal rate, which makes their architecture unique com-
pared with the existing two-stream architectures. Furthermore, learning from the three
anatomical planes of the human body, i.e., sagittal, coronal and transverse, the DEEP HRI
team [11] tried to simulate 3D convolution in their work. A video clip can be represented as
a T× H×W volumetric data, with T, H and W denoting the number of frames, height and
width, respectively. They reshape it to 2D data (i.e., T × H, T ×W and H ×W) separately
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and operate a shared 2D kernel to convolve over the reshaped 2D data. Figure 2 depicts
images when they are seen in different views.

H  W

T  H

T  W

Figure 2. Image visualization with different views for action “Plugging something into something”
class from the Something-Something v1 dataset.

Apart from previous work, SENet [25] also attracts researchers to employ its squeeze-
and-excitation method. This method uses a global context pooling mechanism to enhance
the spatially informative channels and was verified to be effective in image understanding
tasks. A recent work by Hao et al. [26] studied the insertion of channel context into the
spatio-temporal attention learning block for element-wise feature refinement.

In addition to spatiotemporal representation, motion information is also the key
difference between action classification and image classification tasks; thus, exploiting
motion features is mandatory. A comprehensive study by Sevilla-Lara et al. [27] analyzed
the importance of optical flow for action recognition. They analyzed optical flow itself,
conducted several experiments using optical flow modality, and proved the contribution
to the accuracy. Another several attempts utilized optical flow as an additional input to
RGB [7,28]. A two-stream architecture is deployed to learn both optical flow and RGB
data, and an average result is generated to predict an action. Feichtenhofer et al. [29]
experimented with several fusion schemes so as to enhance spatiotemporal features. While
this approach demonstrates excellent results compared with RGB data alone, this approach
cannot be implemented in a real-world application, as extracting the pixel-wise optical
frame with the TV-L1 method [30] requires heavy computation as well as much storage
space. In this light, the RGB difference was introduced [7,31], which is more lightweight. A
work by Jiang et al. [32] with their STM module firstly outlined the motion calculation for
end-to-end learning in a 2D ConvNet and proved to be effective in capturing instantaneous
motion representation as short-range temporal evolution. Furthermore, Li et al. [33]
introduced a new block termed as TEA to explore the benefits of the attention mechanism
added to the motion calculation previously mentioned. Later, this attentive motion features
module was adopted by [34–36]. In addition, the authors of TEA suggested overcoming
the limitation of long-range temporal representation by introducing multiple temporal
aggregations in a hierarchical design. In this work, we propose a motion calculation and
a hierarchical structure of local temporal convolutions, similar to the previous work. We
explain more details of our work and highlight the difference from the previous work in
the subsequent section.

As Vision Transformers brought recent breakthroughs in computer vision, specifically
for action recognition tasks, many researchers have adopted them as their model [37–40]
or combined them with 2D CNN [41]. For example, Arnab et al. [37] proposed several
factorization variants to model spatial and temporal representation effectively inside a
transformer encoder. TimeSformer [38] investigated several self-attention combinations
on frame-level patches and suggested that separated attention for spatial and temporal
representation applied within each block yielded the best video classification accuracy.
Another work by Tian et al. [41] introduced a 2D ResNet with Transformer injected at the
top layer before the linear layer to accurately aggregate extracted local cues from preceding
blocks into a video representation. Although these current approaches seem promising, a
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Transformer-based network is not suited for real-world applications because it is highly
computationally intensive [36].

3. Our Proposed Method

This section discusses the technical details of our work. Firstly, we present a method to
extract motion representations to simulate the optical flow modality. Afterward, our novel
Multi-view Excitation is introduced. Lastly, a simple stacking local temporal convolution
with dense connection is also discussed here as a part of our improvement strategy. We also
include a short discussion regarding comparing our work and TEA. Some notations written
in this section are: N, T, C, H and W, indicating batch size, number of frames, number of
channels, height and width, respectively.

3.1. Motion Excitation (ME)

Introduced firstly by STM [32], and later enhanced by TEA [33], the motion excitation
submodule performs frame difference calculation in a unified framework for end-to-end
learning. In principle, motion representation indicates content displacement of two adjacent
feature maps, therefore called feature-level-based motion, rather than pixel-level-based mo-
tion, as in the concept of optical flow. Figure 3 illustrates the steps to measure approximate
feature-level temporal differences.

The first step is to reduce the number of channels for efficiency with the ratio r = 16 by
applying a 1× 1 convolution layer Kred to the initial input X, formulated in Equation (1).
Then, we slice feature maps at the temporal axis, followed by element-wise subtraction
for every adjacent output feature and obtain M at time step t. Before subtraction, a 3× 3
transformation convolution layer Ktrans f is applied to the output features X′ at the time
step (t + 1). Next, we concatenate motion representations M at all time steps according to
the temporal axis with 0 padded to the last segment. Concretely, given X ∈ RNT×C×H×W

are input features to the ME submodule, the above processes are expressed as follows:

X′ = Kred ∗ X, X′ ∈ RNT× C
r ×H×W (1)

Mt = Ktrans f ∗ X′t+1 − X′t, 1 ≥ t ≥ T − 1 (2)

X′ = concat(Mt, 0), 1 ≥ t ≥ T − 1, (3)

where Mt ∈ RN× C
r ×H×W and the last X′ ∈ RNT× C

r ×H×W .

Temporal slice

, 2D Conv

Spatial pool

,

2D Conv

,

2D Conv

, 

2D Conv

,

2D Conv

, 2D Conv
Sigmoid

Temporal concat

Output features

Input features

Figure 3. Two adjacent frames are subtracted to obtain motion representation. We firstly apply
channel-wise 3 × 3 convolution on frames [t + 1] before subtraction.
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At this point, we have a new X′ as approximate feature-level motion representa-
tions. Since we want to emphasize the informative features and suppress less useful ones
alongside with [25], we squeeze the global information from each channel of the motion
representations by utilizing the global spatial pooling layer. Then, another 1× 1 2D con-
volution layer Kexp performs channel expansion to restore the number of channels, and
we obtain a new X, as in Equation (4). Lastly, attentive feature maps are obtained by
feeding the new X to a sigmoid function δ, while final outputs XME are produced from
a multiplication between the initial inputs X and attentive feature maps, as defined by
Equation (5).

X = Kexp ∗ pool(X′), X ∈ RNT×C×1×1 (4)

XME = δ(F) ∗ X, XME ∈ RNT×C×H×W (5)

When subtracting the feature maps, we only calculate them one time: A collection of
feature maps containing [2 ∼ T] timestamps minus [1 ∼ T − 1].

3.2. Densely Connected Temporal Aggregation (DCTA)

Previously, learning temporal relationships in the task of action recognition was
achieved by repeatedly stacking local temporal layers in deep networks. Unfortunately, it
raises some problems. It is considered to be harmful to the features because the optimization
message transmitted from distant frames has been weakened. To alleviate such a problem,
we propose the Densely Connected Temporal Aggregation submodule. We follow the
Res2Net design [42] to split feature maps in channel dimension into four subgroups of
convolutions separately. Each subgroup consists of temporal and spatial convolutions
configured serially, while one subgroup has temporal convolution only. In addition, output
features from each subgroup flow to the next convolutional block and the neighboring
subgroup through a residual connection, except for one subgroup without a residual-
like connection (see DCTA submodule in Figure 4 for details). Thus, the last subgroup
aggregately receives refined spatiotemporal features from former subgroups.

Regarding the temporal convolution, we arrange the layers in a stacked and densely
connected fashion. Notably, its parameters are shared across subgroups. In this work, the
number of temporal convolution layers for stacking is three, and these stacked layers
are placed in three subgroups having a residual connection. More specifically, the first
layer receives the encoded features from the summation of ME and MvE; the second layer
receives input features from the first layer; and for the third layer, its input is formed from
the summation of all the preceding layers’ output features. Formally,

X′0 = Ktemp ∗ X

X′1 = Ktemp ∗ X′0
X′T = Ktemp ∗ (X′0 + X′1)

 (6)

where Ktemp, X, X′i ∈ RNHW×C×T , X′T ∈ RNHW×C×T denote 1D convolution with a kernel
size of 3, initial input features, output features from the i–th layer and the final result of the
last temporal layer. We omit the necessary permutation and reshape X and X′T for simplicity.
After that, a 3× 3 spatial convolution follows, as stated in the previous paragraph. For all
subgroups in the DCTA submodules, the process can mathematically be expressed as:

X′0 = Ktemp ∗ X

X′1 = Kspa ∗ X′T
X′2 = Kspa ∗ (X′1 + X′T)

X′3 = Kspa ∗ (X′2 + X′T)

 (7)
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where X′i ∈ RNT× C
4 ×H×W , Kspa and Ktemp are output features of the i–th subgroup, spa-

tial convolution and part-shift temporal convolution from [6], respectively. Lastly, we
concatenate across channel dimensions to obtain the final output features X′:

X′ = concat([X′i ]), i = [0, 1, 2, 3] (8)

where X′ ∈ RNT×C×H×W . Notice that in Figure 4, indices of subgroups from left to right
are from 0 to 3, correspondingly.

DCTA

, 2D Conv

DCTA

DCTA

Channel concat

, 1D Conv

, 1D Conv

, 1D Conv

DCTA

Shared weights

, 1D Conv

part shift

Reshape

Reshape

, 2D Conv

, 2D Conv

Channel split

Reshape

Reshape

Figure 4. A detailed diagram showing the architecture of the DCTA submodule inside the
Res2Net module.

3.3. Multi-View Excitation (MvE)

As illustrated in Figure 5, the MvE submodule has three branches to extract beneficial
information from different views, similar to that in [11]. Given an input feature X ∈
RNT×C×H×W for branch TH, we utilize a 1× 1 2D convolution layer Kred to reduce the
channel number for efficiency with a ratio of r = 16, identical to Equation (1). Then, the
tensor dimension is reshaped to comply with the desired dimension, i.e., NT × C

r × H ×
W → NW × C

r × T × H. After that, a shared channel-wise convolution layer K is utilized to
produce transformed feature maps X′TH . Formally,

X′TH = K ∗ X′, X′TH ∈ RNW× C
r ×T×H (9)

The last step is to reshape back the tensor dimension, i.e., NW × C
r × T × H →

NT × C
r × H ×W. The rest of the branches are processed accordingly to produce X′TW and

X′HW . If we have obtained all the outputs from the other two branches, then the new X′ is a
convex combination of the X′i :

X′ = ∑
i

αi ∗ X′i , i ∈ [TH, TW, HW] (10)

where α is a weighted average with constraints of ∑i αi = 1 and each of the αi ≥ 0. We
argue that each branch will contribute differently to the performance of the model. The rest
of operations are identical to Equations (4) and (5) to obtain attentive multi-view feature
maps XMvE.
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Shared weights

ReshapeReshape

,

2D Conv

Reshape

, 

2D Conv

Reshape

Reshape

, 

2D Conv

, 2D Conv

Reshape

+

 branch branch  branch

Output features

Input features

     
  

Spatial pool
, 2D Conv

Sigmoid

Figure 5. Detailed architecture of MvE submodule.

The initial work of the multi-view design was proposed by Li et al. with their team
DEEP HRI [11]. Different from their work, our work introduces the excitation algorithm to
the MvE submodule so that it has a kind of attention mechanism.

3.4. Meta Block

For comparative purposes, we adopt 2D ResNet-50 as a backbone like other state-of-
the-art methods [33–35]. As shown in Figure 6, each “conv2” in all residual blocks (conv2_x
until conv5_x) is replaced by META. In total, we insert 16 blocks of META to endow the
network with the ability to learn both spatiotemporal and motion representations efficiently.
When feeding feature maps to the DCTA submodule, we sum all of the output features
generated from ME, MvE and the former convolution block (denoted by XME, XMvE and
X, respectively) to obtain X′.

X′ = XME + XMvE + X, X′ ∈ RNT×C×H×W (11)
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Figure 6. An overview of our proposed model implemented in 2D ResNet50 [43] architecture. We
replace the original “conv2” with ME, MvE and DCTA inside every residual block to construct the
META block. Inside the Res2Net [42] module, we insert a DCTA submodule. Details on data flow are
given in Section 4.2.1.

3.5. Discussion with TEA

We want to highlight the differences between our work and TEA in this subsection.
TEA adopted feature-level motion representation and enhanced it by excitation strategy
with negligible extramodel parameters. Unlike TEA, which only considers X in parallel
with the output of ME, we also added output features from the MvE submodule, as in
Equation (11). Moreover, the network enjoys richer spatiotemporal and motion representa-
tion features since we re-calibrate the features by both ME and MvE submodules.

Regarding temporal aggregation inside the Res2Net module, TEA adopted it to enable
their network to model the long-range spatiotemporal relationship by adding a local
temporal convolution to each subgroup of convolution. However, in our work, we also
added local temporal convolutions in each subgroup of convolution and arranged them in
a stacked up and densely connected manner.

4. Experiment and Evaluation

In the following section, we explain our experiments in detail. Firstly, we describe the
datasets we used and explain how we implement training and testing strategies, including
hyperparameter settings. We also perform certain ablation experiments to investigate the
contribution of each component of META. Later, we present the results and analysis along
with the discussion.

4.1. Datasets

Our proposed method is evaluated on three large-scale action recognition benchmark
datasets, i.e., Something-Something v1, Jester and Moments-in-Time Mini.

An action classification on the Something-Something v1 [44], a motion-centric type of
dataset with 174 classes, requires temporal understanding to classify an action. This dataset
is designed to emphasize the interaction between human and object, for example, “Throwing
something” and “Throwing something in the air and catching it”. It contains 108,499 videos,
with 86,017 in the training set and 11,522 in the validation set. Jester [45], which is also
considered a temporal-related dataset, consists of 118,562 training videos, 14,787 validation
videos and fewer categories than the Something-Something v1 dataset, i.e., 27. Example
actions are “Swiping up” and “Zooming out with two fingers”. The Moments-in-Time Mini
dataset [46] is a large-scale human-annotated collection of one hundred thousand short
videos corresponding to dynamic events unfolding within three seconds; “boxing” and
“repairing” are the two examples of categories. This dataset provides 100,000 videos for
training and 10,000 for validation. It involves 200 action categories and offers a balanced
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number of videos in each category. While the previous datasets are more temporal-related,
the Moments-in-Time Mini dataset can be considered both a temporal- and scene-related
dataset. Frames have already been extracted from all videos in the Something-Something
v1 and Jester datasets when they are made publicly available. However, in the Moments-in-
Time Mini dataset, we must extract RGB frames from the videos at 30 frames per second
at a resolution of 256 by 256. Figure 7 shows some images with their classes for the
aforementioned datasets.

  t  

Figure 7. Examples of frames from (top-down) Something-Something v1 (“Throwing something”),
Jester (“Swiping up”) and Moments-in-Time Mini (“repairing”, “boxing”) datasets.

4.2. Implementation Details
4.2.1. Training

We conduct all experiments on one Nvidia Quadro P6000 GPU card with PyTorch as
the deep learning framework. We follow a sparse sampling strategy by TSN [7]. We extract
T frames randomly from a number of evenly divided segments (in all our experiments,
T = 8). Selected frames go through the network, and simple temporal pooling strategy is
utilized to averagely predict an action for an entire video. Random scaling and cropping
are applied as data augmentation. The size of the shorter side of the frame is cropped to
256 and resized to 224× 224 to serve as the final frame size; hence, the final input shape is
NT × 3× 224× 224. Before the training started, we loaded our base model with weights
trained on the popular ImageNet dataset [16,17]. As we adopt the Res2Net module for
residing the DCTA submodule, we select the publicly available res2net50 26w 4s (available
at: https://shanghuagao.oss-cn-beijing.aliyuncs.com/res2net/res2net50_26w_4s-06e791
81.pth, accessed on 2 February 2022) pre-trained weights.

Regarding the hyperparameters for the Something-Something v1 and Moments-in-
Time Mini datasets, the batch size, initial learning rate and dropout rate are set to 8, 0.0025
and 0.5, respectively. Moreover, the learning rates are decreased by factors of 10 at 30, 40
and 45 epochs and stops at 50 epochs. For the Jester dataset, the model is optimized for 30
epochs and the dropout is set to 0.5. Then, a learning rate is started at 0.0025 and reduced
by factors of 10 at 10, 20 and 25 epochs. In addition, we unfreeze all instances of batch
normalization layers during training. For the network optimizer, we select SGD with a
momentum of 0.9 and a weight decay of 5× 10−4. When setting the learning rate and
weight decay for the classification layer on the three datasets above, we follow [33], i.e., 5×
higher than other layers.

As a final thought, as suggested by [47], the learning rate must be matched with the
batch size, i.e., the corresponding learning rate must be 2× higher when the batch size is
scaled up by two. For example, if the learning rate changes from 2.5 × 10−3 to 5× 10−3,
then batch size should increase from 8 to 16.

https://shanghuagao.oss-cn-beijing.aliyuncs.com/res2net/res2net50_26w_4s-06e79181.pth
https://shanghuagao.oss-cn-beijing.aliyuncs.com/res2net/res2net50_26w_4s-06e79181.pth


Entropy 2022, 24, 1663 11 of 18

4.2.2. Testing

We follow settings from [33] to adopt two methods as testing protocols: (1) efficient
protocol, with frames × crops × clips is 8 × 1 × 1 and cropped 224 × 224 at central region
as final frame size; and (2) accuracy protocol, with frames × crops × clips is 8 × 3 × 10,
full resolution images (256 × 256 for final input size for frames) and averaged softmax
scores for all clips for final prediction. When comparing with other recent works, we apply
the accuracy protocol, as in Tables 1 and 2. For the Moments-in-Time Mini dataset, as in
Table 3, we apply the efficient protocol.

4.3. Results on Benchmarking Datasets

We report our experimental results and compare them with state-of-the-art methods.
We list TSM to act as the baseline for Tables 1 and 2. Since META is designed to function
on CNN-based networks, we primarily compare our work with others whose networks
are the same type as META to make relevant comparisons. Nevertheless, we still include
recent Transformer-based networks in our comparison to demonstrate that META can
achieve competitive accuracy while still being lightweight. We also include some successful
predictions of META compared with other works on the three datasets we used.

4.3.1. Something-Something V1

Something-Something v1 can be categorized as a temporal-related dataset; thus, ME
and DCTA play important roles here. We divide Table 1 into four compartments; the upper
part contains 3D CNNs, followed by 2D-based CNNs, Transformer networks and lastly,
our model.

Table 1. The comparison result of META against other state-of-the-art methods on the Something-
Something v1 dataset. RN in the column backbone indicates ResNet. We list UniFormer methods
with 16 input frames for relevant comparison. The highest accuracies for CNN-based networks are
highlighted in bold.

Methods Backbone Pre-Train Inputs FLOPs Param. Top-1
(%)

Top-5
(%)

Three-Dimensional CNNs: ECO RGB
from [6] BNInception Kinetics 8 × 1 × 1 32.0 G 47.5 M 39.6 –

ECO RGB from [6] + 3D RN-18 16 × 1 × 1 64.0 G 47.5 M 41.4 –
I3D NL RGB [14] 3D RN-50 ImgNet 32 × 1 × 2 168.0 G × 2 35.3 M 44.4 76.0
I3D NL+GCN RGB [14] + Kinetics 303.0 G × 2 62.2 M 46.1 76.8

Two-Dimensional CNNs: TSM RGB [6]

2D RN-50 ImgNet

8 × 1 × 1 33.0 G 24.3 M 45.6 74.2
TSM RGB 16 × 1 × 1 65.0 G 24.3 M 47.2 77.1
TSN from [6] 8 × 1 × 1 33.0 G 24.3 M 19.7 46.4
STM [32] 8 × 3 × 10 33.3 G × 30 24.0 M 49.2 79.3
STM 16 × 3 × 10 67.0 G × 30 24.0 M 50.7 80.4
TEA [33] 8 × 1 × 1 35.1 G 2 26.1 M 2 48.9 78.1
TEA 8 × 3 × 10 35.1 G× 30 2 26.1 M 2 51.7 80.5
ACTION-NET [34] 8 × 1 × 1 34.7 G 28.1 M 47.2 3 75.2 3

MEST [35] 8 × 1 × 1 34.0 G 25.7 M 47.8 77.1
MEST 16 × 1 × 1 67.0 G 25.7 M 50.1 79.1
AIA TSM [26] 8 × 1 × 1 33.1 G 23.9 M 49.2 77.5
SMNet [36] 8 × 3 × 10 33.1 G × 30 23.9 M 49.8 79.6

Transformers:
UniFormer-B [40] Transformer Kinetics 16 × 1 × 1 96.7 G 49.7 M 55.4 82.9
UniFormer-S [40] 41.8 G 21.3 M 53.8 81.9

EAN RGB+LMC [41] Transformer +
2D RN-50 ImgNet (8× 5)× 1× 1 37.0 G 36.0 M 1 53.4 81.1

Ours:
META

2D RN-50 ImgNet
8 × 1 × 1 35.6 G 26.6 M 50.1 78.5

META 8 × 3 × 1 35.6 G × 3 26.6 M 51.0 79.3
META 8 × 3 × 10 35.6 G × 30 26.6 M 52.1 80.2

1 Not counting Latent Motion Code (LMC) module parameters. 2 Re-counted using official public code for digit

precision. 3 Our implementation using official public code.
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According to the table, our methods outperform the baseline for the 8 × 1 ×1 layout
by sizable margins of 4.5% and 4.3% for top-1 and top-5 accuracy, respectively, while the
FLOPs are only 1.08× higher. Our work is superior in that it significantly outperforms
the baseline method’s 16 frames with a 2.9% accuracy improvement and low FLOPs, even
when only eight frames and the one clip–one crop methodology are used. For the methods
listed in the first compartment, we outperformed their work significantly. We considerably
outscored I3D NL+GCN by only using eight frames, about 17× fewer FLOPs and fewer
than half the parameters the I3D network used. A more competitive result is shown in the
third compartment, where we outperform all current state-of-the-art methods in terms of
top-1 accuracy. The nearest score to ours is TEA, where we obtain a substantially higher
margin (52.1% vs. 51.7%), except top-5 accuracy is 0.3% lower (80.2% vs. 80.5%) when
employing 10 clips. For comparison with SMNet [36], a more recent work, we noticeably
outperform their work by big margins of 2.3% and 0.6% for top-1 and top-5 accuracy,
respectively. This definitely demonstrates our superior submodules of MvE and DCTA
combined with ME, considering SMNet also equipped their network with motion encoding.

When comparing our work with recent Transformer-based state-of-the-art methods,
however, META is inferior to those methods presented in the middle part. Without consid-
ering FLOPs and the number of parameters, META is 3.3% less accurate than UniFormer-B
in terms of top-1 accuracy and 1.3% lower than EAN RGB+LMC. According to [48], Trans-
former strength comes from its architecture, which was built to aggregate global information
earlier due to self-attention. In addition to striking differences in architecture concept, we
found that UniFormer used Kinetics as its pre-trained model, while we only pre-trained our
model from ImageNet. Moreover, our model takes eight frames as the input image, while
the Transformer-based models require more frames than us to serve as an input image.

Figure 8 shows a visual comparison of CNN-based techniques using a ball chart. We
report the top-1 accuracy with respect to floating-point operations in gigabyte (GFLOPs).
Accuracies are calculated using only center crop and single forward pass unless otherwise
specified. The plot demonstrates how we consistently excel over comparable works while
keeping FLOPs to a minimum level (only 1.08× as many as TSM). For our method and
TEA, we find that total accuracy may be improved by a factor of ±1.05, at the expense of
computational costs that increase to well over a thousand GFLOPs. The plot shows that
overall, 2D CNNs may outperform 3D CNNs when the 2D-based network is provided with
sufficient temporal feature learning.

To
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Figure 8. Ball chart reporting the top-1 accuracy vs. computational complexity (in GFLOPs). The size
of each ball indicates model complexity. “A & M” corresponds to ACTION-NET [34] and MEST [35],
while “S & S” denotes STM [32] and SMNet [36], respectively. We merge their icon since they share
similar numbers of accuracy and GFLOPs.
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4.3.2. Jester

Likewise, Jester is classified as a temporal-related dataset. Our experiment result is
provided in Table 2. Clearly, our work demonstrates superiority on the Jester dataset in
terms of top-1 accuracy compared with the baseline (97.1% vs. 97.0%) and other state-of-
the-art methods, except for ACTION-NET, where we obtained the same accuracy. Our
interesting finding according to this table is: Both META and ACTION-NET, which are
equipped with a motion representation module, achieved only a slightly higher accuracy
than TSM (40.1% of accuracy) without a motion representation module in it. Though,
admittedly, we need further experiments to verify this, we think that motion encoding
may have less meaning for this dataset. Moreover, results from TEA and MEST confirm
our thoughts, as both methods proposed this module, and the performance is inferior
compared with ours ({96.5%, 96.6%} vs. 97.1%).

Table 2. Comparison with state-of-the-art methods on Jester validation set. These methods used
8 frames as model input. The highest accuracies for CNN-based networks are highlighted in bold.

Methods FLOPs × Views Top-1 (%) Top-5 (%)

Two-Dimensioal ResNet-50:
TSM [6] 33.0 G × 2 97.0 99.9
TSN from [6] – 83.9 99.6
STM [32] 33.3 G × 30 96.6 99.9
TEA from [34] – 96.5 99.8
ACTION-NET [34] 34.7 G × 30 97.1 99.8
MEST [35] 34.0 G × 2 96.6 99.9

Transformers:
ViViT-L/16x2 320 [37] from [39] – 81.7 93.8
TimeSFormer [38] from [39] – 94.1 99.2
DirecFormer [39] 196.0 G × 3 98.2 99.6

META (Ours) 35.6 G × 30 97.1 99.8

Different from the previous dataset comparison, where our work has lesser predictive
top-1 and top-5 accuracies than the methods utilizing Transformer, our work demonstrates
very competitive results on the Jester dataset. META barely falls short of DirecFormer’s
top-1 accuracy by 1.1% but surprisingly achieves a slightly higher top-5 accuracy (40.2%).
With the other two Transformer-based methods, we constantly outperform their works in
top-1 and top-5 accuracies with significant gaps, proving the superiority of our work.

4.3.3. Moments-In-Time Mini

Unlike the above datasets, this dataset possesses characteristics of temporal-related
and scene-related datasets. The performance of our proposed work is still impressive, and
Table 3 confirms this. We achieved the highest accuracy in terms of top-5 accuracy. While we
obtain lower top-1 accuracy compared with IR-Kinetics400, we want to emphasize that IR-
Kinetics400 utilized a Kinetics-400 [13] dataset as their pre-trained weights, whereas we only
used ImageNet pre-trained weights. The closest accuracy to META is from I3D-DenseLSTM
(∆0.9% of top-1 acc.), where in their work, they utilized optical flow modality for encoding
motion representations and LSTM to model long-range temporal representation, similar to
META. Obviously, META is more efficient than I3D-DenseLSTM, as we estimate motion
representations in a unified framework.
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Table 3. The comparison result of META against other CNNs on the Moments-in-Time Mini valida-
tion set. The highest accuracies are highlighted in bold.

Methods Backbone Top-1 (%) Top-5 (%)

TRN from [49] BNInception +
InceptionV3 26.1 48.5

P3D from [49] P3D ResNet 14.7 33.4
P3D-Kinetics from [50] P3D ResNet 26.3 –
IR-Kinetics from [50] Inception-ResNetV2 30.3 –
I3D-DenseLSTM [19] I3D + ResNext 26.5 52.4

META (Ours) 2D ResNet-50 27.4 53.2

4.3.4. Example of Successful Predictions

We illustrate some accurate predictions of META over other works in Figure 9. To
obtain the probability score in (a), we re-train the model using the official code publicly
available (https://github.com/Phoenix1327/tea-action-recognition) (accessed on 11 July
2022), whereas we only load the model with the official weights (https://github.com/V-
Sense/ACTION-Net) (accessed on 11 July 2022) for (b). In all scenarios, we confidently
achieve top-1 accuracy (indicated by a number in parenthesis) with substantial difference
in probability score, whereas other works rank below ours. For instance, (a) informs
that META exactly predict an action of “Lifting something with something on it” while
TEA measures such action 8th out of the softmax outputs in descending order. This fact
demonstrates our predominance over existing related works in three datasets.

META : 8.54 (1)

TEA    : 3.99 (8)

META             : 11.96 (1)

ACTION-NET : 0.04 (9)

META          : 8.93 (1)

I3D-DLSTM : 0.06 (5)

(a) (b) (c)

Figure 9. Examples of prediction results showing three frames and their probability scores (a–c):
Something-Something v1 (“Lifting something with something on it”), Jester (“Pulling hand in”) and
Moments-in-Time Mini (“Tying”) datasets.

4.3.5. Learning Curve Analysis

During model training, we generate log statements of accuracies for each iteration and
save them in a plain text file for further analysis. Figure 10 shows a training visualization
in terms of top-1 and top-5 accuracies, with one crop–one clip for both training phase and
inference. It is clear from the visualization that after 50 training epochs the model has not
improved. Meanwhile, at epoch 30, the accuracy graph turned upward. This is due to our
strategy of changing the learning rate at the epoch with our optimization method SGD.

https://github.com/Phoenix1327/tea-action-recognition
https://github.com/V-Sense/ACTION-Net
https://github.com/V-Sense/ACTION-Net
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Figure 10. Training curve of our model on Something-Something v1 dataset.

4.4. Ablation Study

We perform some evaluations of our META comprehensively on the Something-
Something v1 validation dataset and report the result in this subsection. All experiments
utilize ImageNet pre-trained weights and are conducted using the efficient protocol. TSM
serves as our baseline.

1. Impact of each module
We examine how each submodule affects the performance and present the findings in
Table 4. It is clear that, in comparison with the baseline, each submodule continuously
improves the performance of the 2D ResNet on video action recognition. The DCTA
submodule makes the most contribution, improving top-1 accuracy by 2.4% while
being computationally efficient with only a 1.7 G overhead gap and the least number
of parameters, whereas the other two add 2.0 G of extra FLOPs.

2. Location of META
We examine the number of META implemented inside four convolution blocks toward
accuracy. From Table 5, it is evident that better precision can be attained with more
profound METAs placed in convolution blocks. Interestingly, META only requires
installing one convolution block to dramatically increase the performance, with top-1
and top-5 accuracies exceeding the baseline by 2.6% and 2.9%, respectively.

Table 4. The comparison result of an individual component against the baseline, including FLOPs
and the number of parameters.

Methods FLOPs Param. Top-1 (%) Top-5 (%)

TSM [6] 33.0 G 23.7 M 45.6 74.2

ME 35.0 G 26.1 M 47.9 77.8
MvE 35.0 G 26.1 M 46.3 76.9
DCTA 34.7 G 25.7 M 48.0 77.0

META 35.6 G 26.6 M 50.1 78.5
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Table 5. Examination of the quantity of location METAs inserted into 2D ResNet-50 residual convolu-
tional blocks.

Location Top-1 (%) Top-5 (%) 4 Top-1 (%) 4 Top-5 (%)

TSM [6] 45.6 74.2 – –

conv{2}_x 48.2 77.1 +2.6 +2.9
conv{2,3}_x 49.5 78.1 +3.9 +3.9
conv{2,3,4}_x 49.9 78.2 +4.3 +4.0

META 50.1 78.5 +4.5 +4.3

5. Conclusions

This paper presents a novel building block to overcome the existing problems for the
video action recognition task by designing three submodules to construct a META block
and integrating it into each residual block of 2D ResNet-50. The proposed block includes
excitation of motion and multi-view features followed by densely connected temporal
aggregation. While retaining modest computations, our META achieves competitive results
on three large-scale datasets compared with its 2D/3D CNN counterparts. Compared with
recent Transformer-based networks, our work still achieves competitive results on the Jester
dataset, while being inferior on the Something-Something v1 dataset. In the future, we
would like to investigate another fusion approach, i.e., channel concatenation in the DCTA
submodule, so that all layers are connected, and the current input is the concatenation
of the preceding layers. This fusion will guarantee that new information is added to the
collective knowledge.
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