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Abstract: Exploring the dynamics of a mobile impurity immersed in field excitations is challenging,
as it requires to account for the entanglement between the impurity and the surrounding excitations.
To this end, the impurity’s effective mass has to be considered as finite, rather than infinite. Here,
we theoretically investigate the interaction between a finite-mass impurity and a dissipative soli-
ton representing nonlinear excitations in the polariton Bose–Einstein condensate (BEC). Using the
Lagrange variational method and the open-dissipative Gross–Pitaevskii equation, we analytically
derive the interaction phase diagram between the impurity and a dissipative bright soliton in the
polariton BEC. Depending on the impurity mass, we find the dissipative soliton colliding with the
impurity can transmit through, get trapped, or be reflected. This work opens a new perspective
in understanding the impurity dynamics when immersed in field excitations, as well as potential
applications in information processing with polariton solitons.
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1. Introduction

The motion of an impurity through a dynamical medium of field excitations is a
fundamental problem. In his seminal paper [1,2], Landau first studied an electron dressed
by phonons. Since then, such impurity problem has appeared in different incarnations,
such as the Kondo [3] and Cherenkov [4–6] effects, the polaron physics [7], and the Landau
criterion [8–12] for the sound speed of a superfluid. At present, there are great efforts and
interest in studying a mobile impurity in a quantum medium in diverse areas [13–19].

Central to understanding the dynamics of an impurity in a quantum many-body
medium is to include the entanglement between the impurity and the surrounding ex-
citations on a wide range of energy scales. To achieve this task, one needs to consider
the impurity’s effective mass as being finite, instead of infinite [8–12]. In addition, the
excitations surrounding the impurity can be linear or nonlinear excitations. For instance, in
ultracold quantum gases, the Bogoliubov modes are linear excitations, and dark (or bright)
solitons are nonlinear excitations. Numerous theoretical studies [13–19] have already been
carried out to study the interaction mechanism between the impurity and the excitations.
These studies, however, mainly involve linear excitations and an impurity with an infinite
mass [13–19] or finite effective mass [20]. Thus, it is highly desired to study the interaction
mechanism between a quantum impurity with a finite effective mass and nonlinear excita-
tions, such as the soliton, which is not only a key ingredient in the effective field theory, but
also plays an important role in information processing [21]. In this largely unexplored area,
we are interested in the interaction mechanism between an impurity and a moving bright
soliton in the exciton–polariton Bose–Einstein condensate (BEC).

The exciton–polariton BEC has emerged as a novel platform for studying impurity-
related problems. In comparison with previous systems [13–19], which mainly concerned
equilibrium quantum media, the polariton condensates have fundamental novel aspects
associated with their inherent nonequilibrium character and a strong nonlinearity. Firstly,
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because the polariton BEC is open-dissipative, the excitations of an homogeneous polariton
condensate exhibit exotic properties. For instance, the linear excitations are provided by
the diffusive Goldstone modes [22–25], with observable ghost branches of Bogoliubov
excitations [26]. These have already triggered questions and studies on the definition
of superfluidity and the characteristic observables in a nonequilibrium context, e.g., an
extension of the standard Landau critical velocity has been proposed [11,12,27–31]. Novel
kinds of nonlinear excitations have also been observed in recent experiments, such as
oblique dark solitons and vortices [32–34], or bright spatial and temporal solitons [35].
Secondly, compared to the light-only solitons in optical setups, the excitonic component of
the polariton leads to a weaker diffraction and stronger interparticle interactions, implying,
respectively, a tighter localization and lower powers for nonlinear functionality. These
appealing properties of polaritons can be used for quantum information processing [21] and
quantum computation and simulation [36]. In particular, Ref. [37] engineered dissipative
bright polariton solitons, whose picosecond response time made them more useful for
ultrafast information processing than the light-only solitons of semiconductor cavity lasers.
Thus, a timely question arises: In a nonequilibrium polariton BEC, what is the interaction
mechanism between an impurity with a finite effective mass and a dynamical medium
with nonlinear excitations?

In this work, we theoretically investigate the interaction between a finite-mass impurity
and the dissipative bright soliton in a polariton BEC. By using the Lagrange variational
method in the framework of the open-dissipative Gross–Pitaevskii equation, we analytically
derive the interaction phase diagram. Depending on the impurity mass, we find that the
dissipative soliton colliding with the impurity can have three fates, i.e., it can transmit
through, get trapped, or be reflected. Our analytical analysis agrees well with numerical
simulations based on the open-dissipative Gross–Pitaevskii equation.

The rest of the paper is organized as follows. In Section 2, we present the model which
describes a polariton condensate. Furthermore, we derive the analytic expression of the
interaction using the Lagrange variational method. Section 3 investigate the influence
of the effective mass of the impurity on the interaction phase diagram between a soliton
and an impurity in a polariton condensate, by means of a direct simulation of the motion
equations of variational parameters and the Gross–Pitaevskii equation. Various interaction
effects such as transmission, reflection, and trapping of the soliton by a repulsive impurity
are described and verified by direct simulations of the equation. Finally, Section 4 provides
a summary and conclusions for this research.

2. The Theoretical Model and Lagrangian Approach

We consider an exciton–polariton BEC under nonresonant pumping, which is created
in a wire-shaped microcavity [38] that bounds the polaritons to a quasi-one-dimensional
(1D) channel. In the mean field theory, the time evolution of the polariton field is governed
by an effectively 1D driven-dissipative GPE for the condensate order parameter ψ(x, t),
which is coupled to a rate equation for the density nR(x, t) of reservoir polaritons [25,39–42],
i.e.,

ih̄
∂ψ

∂t
=

[
− h̄2

2m
∂2

∂x2 + Vimp + gC|ψ|2 + gRnR

+
ih̄
2
(RnR − γC)

]
ψ + Pad(x)ψ, (1)

∂nR
∂t

= Pincoh(x)−
(

γR + R|ψ|2
)

nR. (2)

In Equations (1) and (2), the m is the effective mass of lower polaritons, P is the off-resonant
continuous-wave pumping rate, γC and γR denote the lifetimes of the condensate and
reservoir polaritons, respectively, R is the stimulated scattering rate of reservoir polaritons
into the condensate, gC characterizes the strengths of the polariton interaction, while gR
denotes the interaction strength between the reservoir and the polaritons. The impurity
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potential [39,43] is Vimp = −V0δ(x), with the strength V0. The Pad(x) in Equation (1)
and Pincoh(x) in Equation (2) are the incoherent pumping rates on the condensate and
reservoir [44], respectively. The parameters gC, gR, and R have been rescaled into the
one-dimensional case by the width d of the nanowire thickness, i.e., gC → gC/

√
2πd,

gR → gR/
√

2πd, R→ R/
√

2πd. We aim to investigate the interaction mechanism between
the impurity and the nonlinear excitations.

As the first step, let us determine the steady state of Equations (1) and (2), which
will provide the density background for the nonlinear excitations. Following Ref. [40],
when the pumping rate P in Equation (2) exceeds the critical value Pth = γRγC/R, a
stable condensate with the condensate density n0

C = (Pincoh − Pth)/γC can be created. The
corresponding steady-state reservoir density is n0

R = γC/R, with Pincoh = Pstat.

By rescaling ψ→ ψ/
√

n0
C and denoting mR = nR − n0

R, Equations (1) and (2) can be
recast into a dimensionless form as

i
∂ψ

∂t
+

1
2

∂2ψ

∂x2 + |ψ|2ψ + γδ(x)ψ = 2|ψ|2ψ + P̄ad(x)ψ

+ (ḡRmR +
i
2

R̄mR)ψ, (3)

∂mR
∂t

= P̄incoh(x)+γ̄C(1−|ψ|2)−γ̄RmR−R̄|ψ|2mR. (4)

where ḡR = gR/gC, γ̄C = γCγ̄R/γR, P̄ad(x) = Pad/gCn0
C ,P̄incoh = (Pincoh(x)− Pstat)/gCn0

C
and R̄ = h̄R/gCn0

C. The term with γ = V0/gCn0
C describes the impurity potential. More-

over, we have measured the time t and the space coordinate x in the units of τ = h̄gn0
C

and ξ =
√

h̄2/mgn0
C. Equations (3) and (4) are the starting point for our subsequent in-

vestigation of the interaction between the impurity and the nonlinear excitations in the
polariton BEC. Note that the nonequilibrium nature of the model system is captured by the
parameters of R̄ in Equation (3).

We are interested in the fast reservoir limit, where the reservoir density in Equation (4)
can be written as [40]

mR =
P̄incoh(x)

γ̄R
+

γ̄C
γ̄R

(1− |ψ|2). (5)

where P̄incoh(x) = P̄c
incoh + P̄v

incoh(x), with the constant pumping rate P̄c
incoh and the spa-

tially dependent pumping rate P̄v
incoh(x). Following Ref. [40], we insert Equation (5) into

Equation (3), and rewrite Equation (3) as

i
∂ψ

∂t
+

1
2

∂2ψ

∂x2 + |ψ|2ψ

+ γδ(x)ψ =
i
2
[P(x)−σ− χ|ψ|2]ψ. (6)

Here, we model P(x) = R̄P̄v
incoh(x)/γ̄R as a spatially modulated Gaussian function with

the power P0 and width ω, i.e., P(x) = P0e−x2/ω2
; the parameters σ = −(P̄c

incoh + γ̄C)R̄/γ̄R
and χ = R̄γ̄C/γ̄R are referred to as the polariton loss rate and the gain saturation, re-
spectively. In deriving Equation (6), the incoherent pumping of P̄ad(x) is adjusted to be
P̄coh(x) = −2|ψ|2 − ḡRmR within the current experimental capability [44–46]. Below, we
investigate the interaction between a bright soliton and the impurity as captured by the γ
term in Equation (6).

Equation (6) can be viewed as a nonlinear Schrödinger equation subjected to a time-
dependent perturbation of the form D(ψ) = i[P(x) − σ − χ|ψ|2]ψ/2. As a benchmark,
let us recapitulate the unperturbed case D(ψ) = 0 without the open-dissipative effects:
(i) for a vanishing nonlinearity in Equation (6), Equation (6) can be simplified into the
linear Schrödinger equation with the delta-potential. It has the well-known exact so-
lution ψim(x) =

√
λe−λ|x| with λ = γ that describes the impurity; (ii) for a vanishing
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delta-potential γ → 0, Equation (6) allows for the exact soliton solution
ψso = sech(η(x− ct)) exp(i(η2 − c2)t/2 + icx) with an arbitrary amplitude η.

Next, we take into account the open-dissipative effects captured by D(ψ) = i[P(x)−
σ− χ|ψ|2]ψ/2 in Equation (6). Since ψim(x) and ψso are no longer the exact solutions of
Equation (6), we exploit the Lagrangian approach of the perturbation theory to treat the
open-dissipative effects. We assume a trial wave function as a combination of the bright
soliton and impurity mode

ψ(x, t) =
[
η(t)sech[η(t)(x− z(t))]eiκ(t)x

+ a(t)
√

λ(t)e−λ(t)|x|+iϕ(t)]eiφ(t), (7)

where η, z, φ, κ, a, λ, and ϕ are the variational parameters. Specifically, φ(t) is the global
phase of the trial wave function, η(t) and Z(t) are the amplitudes and center position of
the bright soliton, respectively, κ(t) is referred to as the wavenumber of the soliton, a(t)
and λ(t) are associated with the strength of the variable function induced by the impurity,
and ϕ(t) is the relative phase between the soliton and impurity-induced function.

The key assumption underlying the ansatz (7) is that the functional forms of the soliton
and the impurity-induced function are preserved in the presence of perturbation, whereas
the corresponding parameters become slowly time-dependent. The time evolution of the
parameters in Equation (7) can be obtained via the Euler-Lagrangian equations for the
dissipative system [47–51]

∂L
∂qi
− d

dt

(
∂L
∂q̇i

)
= 2R

(∫ +∞

−∞
D∗(ψ)

∂ψ

∂qi

)
, (8)

with q̇i ≡ dqi/dt and qi = η, z, φ, κ, a, λ, ϕ, andR labels the real part of the expression. In
Equation (8), the Lagrangian L =

∫ +∞
−∞ Ldx is referred to as the average Lagrangian of

Equation (6) with D(ψ) = 0, where the Lagrangian density L is given by

L =
i
2
(ψ∗ψt − ψψ∗t )−

1
2
|ψx|2 +

1
2
|ψ|4 + γ|ψ|2δ(x). (9)

Inserting the ansatz (7) into Equation (9), we calculate the average Lagrangian L in
Equation (8) as

L = −2ηφ̇− 2κ̇z− a2(φ̇ + ϕ̇) +
η3

3
− κ2η − a2λ2

2
+ γa2λ

+ γη2sech(z)2 + 2γηa
√

λsech(z) cos(ϕ) + O
(

a4
)

. (10)

Here, we have ignored the higher-order terms of O
(
a4), as inspired by Ref. [52]. Physically,

this corresponds to ignoring the direct interaction between the soliton and the local mode,
except for the energy exchange through the defect. This approximation will be justified a
posteriori by comparing the analytical results from Equation (10) and the simulation results
based on Equation (6).

By substituting Equation (10) into Equation (8), we obtain the equations of motion for
the variational parameters φ, κ, ϕ, z, a, η, and λ in Equation (8) as
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η̇ =
1

12

[
(6a2 + 12η)(P0 − σ)− 12aȧ− 8χη3 − 3χa4λ

]
, (11a)

ż =
1
3

[
3z(P0 − σ)− 2χzη2 + 3ηκ

]
, (11b)

ȧ =
1
4

[
2a(P0 − σ) + 4γsech[z] sin[ϕ]η

√
λ− χa3λ

]
, (11c)

κ̇ = −γsech[z]2 tanh[z]η2 − γa cos[z]sech[z] tanh[z]η
√

λ, (11d)

ϕ̇ = −γsech[z]2η − η2

2
+

κ2

2
− γa cos[ϕ]sech[z]

√
λ + γa−1 cos[ϕ]sech[z]η

√
λ + γλ− λ2

2
, (11e)

φ̇ = γsech[z]2η +
η2 − κ2

2
+ γa cos[ϕ]sech[z]

√
λ, (11f)

0 = a(γ− λ) + γηλ−1/2 cos[ϕ]sech[z]. (11g)

Equations (11a)–(11g) are the key results of this work, which describe the interaction
of an impurity and a bright soliton in the polariton condensate. Note that without the
dissipation (i.e., P0 = σ = χ = 0), the above equations obviously reproduce the result of
Ref. [52]. According to Equations (11a)–(11c), the nonequilibrium nature of the polariton
condensates will directly affect the soliton’s center position z and its amplitude η, as well as
the impurity’s amplitude a[t]λ[t]1/2. Since φ does not appear in Equations (11a) and (11b),
the relevant equations for our study, Equation (11f) for φ̇ is not important. Equation (11c),
on the other hand, is crucial because it shows that the moving soliton excites the local mode.
Note that Equation (11g) without the soliton (η = 0) gives the correct value λ = γ for the
spatial decay of the impurity mode.

3. Interaction between an Impurity and a Bright Soliton

In the previous section, we used the Lagrangian approach to analytically derive
Equations (11a)–(11g). Below, we construct the interaction phase diagram by solving
Equations (11a)–(11g) and comparing the results with the exact numerical simulations
of the dynamics governed by Equation (6), supplemented with the initial function of
Equation (11b).

Let us first specify the initial conditions of Equations (11a)–(11g). We assume the
soliton is initially at z = −10, far from the impurity at z = 0. The initial amplitude and
velocity of the soliton are chosen as η = 0.1 and κ = 0.02, respectively. For other parameters
(a, λ, ϕ and φ), we set their initial values as 0.

We then solve the time-evolutions of the parameters z, a, κ, and ϕ from Equations (11b)–(11e).
The soliton amplitude η is determined by Equations (11a)–(11c), and λ is calculated from
Equation (11g). In addition, Equation (11g) allows us to follow independently the evolution
of the soliton and the impurity. The solutions to Equations (11a)–(11g) are plotted in the left
column of Figures 1–3. To validate our variational approach, we also show the numerical
results from the direct solutions of Equation (6) on the right column of Figures 1–3.

In understanding the interaction between the impurity and the quantum many-body
medium, we emphasize the key role of the effective mass of the impurity [5,6]. For an
infinite mass, corresponding to a pinned impurity [5,53], a kinematic scale is set up by the
sound speed of the superfluid according to the Landau criterion. In contrast, an impurity
with a finite mass is expected to recoil due to the interactions with the surrounding quantum
gas, yielding novel physics beyond the kinematic picture [6]. Indeed, quantum fluctuations
already become highly relevant to the dynamics for the slowly moving impurities with a
finite mass.
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Figure 1. Transmission scenario corresponding to the bright soliton with the initial value
η = 0.01 passing through the impurity with a strength of γ = 0.02. The analytical results of
Equations (11a)–(11g) and the numerical simulation based on Equation (6) are plotted in the left
and right columns, respectively. In (a–c), the positions Z of the bright soliton are plotted by solid
lines and scaled on the right axis; the amplitudes η of the bright soliton are plotted by dash-dotted
lines and scaled on the left axis; the impurity amplitudes of aλ1/2 are plotted by the dashed lines
and scaled on the left axis. The other parameters are given as follows: P0 = σ = χ = 0 in (a,d);
P0 = σ = χ = 0.005 in (b,e); P0 = σ = χ = 0.01 in (c,f).
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Figure 2. Trapping scenario corresponding to the bright soliton with the initial value η = 0.01 passing
through the impurity with a strength of γ = 0.05. The other parameters and descriptions about the
figures are the same as the ones in Figure 1.
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Figure 3. Reflection scenario corresponding to the bright soliton with the initial value η = 0.01
passing through the impurity with a strength of γ = 0.14. The other parameters and descriptions
about the figures are the same as the ones in Figure 1.

Figures 1–3 show the interaction diagrams between the impurity and a bright soliton
under various impurity trap strengths γ. Different γ’s correspond to different effective
masses meff of the impurity [52]. For γ = 0.02, 0.05, 0.14 used in the plots, we have
meff = 1.04, 1.10, 1.28. In the following, we analyze how the impurity–soliton interaction is
affected by the open-dissipative nature of the condensate, as captured by the parameters of
P0, σ, and χ in Equation (6).
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The results for P0 = σ = χ = 0 in the absence of dissipation [52] are plotted in
Figures 1a–3a, respectively. Depending on γ, we find there exist three scenarios. (i) The
transmission scenario (Figure 1a): when γ is small, the bright soliton directly transmits
through the impurity. (ii) The trapping reflection scenario (Figure 2a): when γ increases,
the bright soliton can be trapped by the impurity (see Figure 2a). (iii) The reflection scenario
(Figure 3a): when γ is strong enough, the bright soliton is reflected by the impurity.

To compare the interaction of the soliton with the impurity in the presence and absence
of dissipation, we change the dissipative parameters of P0, σ, and χ in each scenario:

(i) Transmission scenario: As mentioned before, in the absence of dissipation (Figure 1a),
the bright soliton can simply pass through a light impurity (meff = 1.04), almost
unaffected by the latter. The dotted lines in Figure 1a denotes the amplitude of the
impurity. There, the appearance of the maximal amplitude of the impurity indicates
that the impurity mode can be excited during the collision with the bright soliton, but
after the collision, the excitation returns to a very small level. This analysis is consistent
with Figure 1d obtained from the numerical simulation of Equation (6). Thus, we
conclude that the analytical results in Equations (11a)–(11g) not only provide a good
solution to Equation (6), but also allow us to follow independently the evolution of
the bright soliton and the impurity. In the presence of dissipation, the amplitude of
soliton gradually decreases after the collision with the impurity; see the solid lines
in Figure 1b,c. These results are consistent with the full numerical simulations in
Figure 1e,f. Comparing Figure 1b,c, therefore, we see that the soliton amplitude
decays faster when the dissipation parameter increases.

(ii) Trapping scenario: In the absence of dissipation (Figure 2a,d), the bright soliton can
be trapped by an impurity with a moderate mass (meff = 1.10), as indicated by the po-
sition of the bright soliton (solid lines in Figure 2a). Furthermore, the impurity mode
(dashed lines in Figure 2a) is strongly excited and begins to oscillate, whereas the
soliton amplitude (dashed-dotted lines in Figure 2a) decreases drastically. This result
is verified by the numerical simulations in Figure 2d. In the presence of dissipation
(Figure 2b,c,e,f), the bright soliton can still be trapped by the impurity, but the oscillat-
ing behavior of the bright soliton begins to disappear. This can be understood, as the
dissipation will destroy the low-energy excitations generated from the collisions of
the bright soliton and the impurity.

(iii) Reflection scenario: In the absence of dissipation (Figure 3a,d), the bright soliton can be
reflected by a heavy impurity (meff = 1.28). In contrast to the above transmission and
trapping scenarios, dissipation has relatively small effects on the reflection scenario,
as shown in Figure 3b,d–f. This can be expected, because the heavier the impurity is,
the less excitations are created from the collisions.

4. Conclusions

In summary, we investigated the interaction dynamics of a soliton with an impurity
mode in the exciton–polariton condensates excited by a nonresonant pump. Our study
was based on the Lagrange variational approach, which allowed us to analytically derive
the equations of motion for each variational parameter. Depending on the interaction
strength between the soliton and the impurity, we observed the occurrence of transmission,
reflection, and trapping of the soliton by the impurity. We showed that these effects were
weakened with the increase of dissipation. Our analytical results of the interaction phase
diagram agreed well with the numerical results of the open-dissipative Gross–Pitaevskii
equation. The present work goes beyond prior research studies in the context of equilibrium
systems, opening a new perspective toward understanding the nonequilibrium dynamics
of a mobile impurity immersed the field excitations.
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