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Abstract: Fine-grained image retrieval aims at searching relevant images among fine-grained classes
given a query. The main difficulty of this task derives from the small interclass distinction and the
large intraclass variance of fine-grained images, posing severe challenges to the methods that only
resort to global or local features. In this paper, we propose a novel fine-grained image retrieval
method, where global–local aware feature representation is learned. Specifically, the global feature
is extracted by selecting the most relevant deep descriptors. Meanwhile, we explore the intrinsic
relationship of different parts via the frequent pattern mining, thus obtaining the representative
local feature. Further, an aggregation feature that learns global–local aware feature representation is
designed. Consequently, the discriminative ability among different fine-grained classes is enhanced.
We evaluate the proposed method on five popular fine-grained datasets. Extensive experimental
results demonstrate that the performance of fine-grained image retrieval is improved with the
proposed global–local aware representation.

Keywords: fine-grained image retrieval; global–local aware feature representation; local descriptors;
frequent pattern mining

1. Introduction

With the rapid advance of the internet and artificial intelligence, image retrieval is one
of the challenging research topics, which aims to take one image as a query and retrieve
relevant images of the same category [1]. In real-life scenarios, there are two types of
retrieval task: coarse-grained and fine-grained image retrieval, as shown in Figure 1. In
the former, when a user submits a query “Western Meadowlark”, it only returns results that
are related to the category of “Bird”, e.g., “Western Meadowlark”, “Summer Tanager”. In the
latter, when a user submits a query “Western Meadowlark”, the retrieval results must belong
to the same subcategory of “Western Meadowlark”, even though “Spotted Catbird” is similar
to “Western Meadowlark”. Here, “category” represents “super category”, and “subcategory”
refers to “subordinate category”.

Inspired by the breakthrough of deep learning methods [2], coarse-grained image
retrieval has achieved great progress in recent years [3]. These methods usually utilize an
image encoder (e.g., CNN) to extract global features of images and then devise a metric to
measure the similarity of image pairs. Beyond these coarse-grained methods, fine-grained
image retrieval faces the challenge of highly similar global geometry and appearance among
fine-grained classes; thus, many approaches have been proposed. Xie et al. [4] attempted
to construct a hierarchical database relying on handcraft features; subsequently, many
supervised methods based on the advanced deep learning models were proposed. Zhang
et al. [5] proposed a fine-grained object retrieval scheme that addresses the issues of object
localization and centralized ranking loss in a unified framework. Later, they presented
a metric learning scheme to address local structure and slow training simultaneously [6].
However, these supervised methods depend on manual annotations that are expensive and
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labor-intensive. This motivates the development of an unsupervised paradigm, which does
not need any training or fine-tuning process. Wei et al. [7] employed a pretrained CNN
model [8] to select the relevant deep descriptors. This method is under an unsupervised
paradigm that has two merits: on the one hand, it reduces the annotation cost; on the other
hand, more importantly, it does not depend on human annotation and, thus, is expected to
find more reasonable “labels” automatically. Meanwhile, this method reveals that selecting
meaningful deep descriptors is beneficial for removing background or noise. All these
approaches achieve promising performance, yet, fine-grained image retrieval is still facing
the challenges of learning the discriminative representation and reducing the expensive
and labor-intensive annotations.

Western Meadowlark

Western Meadowlark Western Meadowlark Western Meadowlark

Western Meadowlark Spotted Catbird Summer Tanager

Query

Retrieval Results 

Coarse-grained 

Fine-grained 

Figure 1. Coarse-grained vs. fine-grained image retrieval. When a user submits a query “Western
Meadowlark”, coarse-grained image retrieval simply returns results that are related to the category of

“Bird”, e.g., “Western Meadowlark”, “Summer Tanager”, or “Spotted Catbird”; fine-grained image retrieval
returns results that belong to the same subcategory of “Western Meadowlark”.

To address the difficulties, we propose a novel method for fine-grained image retrieval,
where global–local aware feature representation is learned. Specifically, we first extract the
global feature by selecting the most relevant deep descriptors to localize the saliency object.
Meanwhile, in light of the empirical success of frequent pattern mining (FPM) in the field
of data mining, we propose to mine the intrinsic correlation of different parts via FPM, and
thus extract the representative local feature. The inner correlation of parts is indeed crucial
in the fine-grained scenario. For example, “Western Meadowlark” and “Summer Tanager”
belong to the same category but to different subcategories. Common among them is a sharp
mouth, and differences are that “Western Meadowlark” has a yellow trunk and round tail. In
contrast, “Summer Tanager” has a yellow–green trunk and square tail. Therefore, the key to
distinguishing different subcategories is to mine the correlation. Furthermore, to enhance
the discriminative ability among different fine-grained classes, an aggregation feature that
learns global–local aware feature representation is designed. Then, we design a similarity
score to measure the relevance between the query and image database. Finally, we return
the candidate based on the maximum similarity. The main contributions are as follows:

• We learn global–local aware feature representation, which promotes the discriminative
property to identify different fine-grained classes.

• We propose to revisit the local feature via FPM, which mines the correlation among
different parts.

• We verify our method on five popular fine-grained datasets. Extensive experiments
demonstrate the effectiveness of our method.

The rest of our paper is organized as follows: Section 2 discusses the related works
about content-based image retrieval, fine-grained image representation, and FPM. Section 3
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describes details of the proposed method. Section 4 evaluates the proposed method on five
fine-grained datasets. Section 5 concludes this work.

2. Related Works

In this section, we briefly review the related works about content-based image retrieval,
fine-grained representation, and FPM.

2.1. Content-Based Image Retrieval

Given a query, an image retrieval system aims to find similar images from a large-scale
dataset. Early image retrieval techniques are not based on visual features but on the textual
annotations of images; this means that images are firstly annotated with text and then
searched using a text-based method from the traditional database management system [9].
However, its performance is sensitive to the keywords employed by the user and the
system. In order to solve the problem, many content-based image retrieval methods have
been proposed. These deal with the image content itself, such as color [10], texture [11],
and shape [12]. Recently, content-based image retrieval techniques via deep learning have
shown great performance [13–15]. Xiao et al. [13] proposed a new mechanism based on ad-
versarial examples to stash private images in a deep hash space. Zhang et al. [14] proposed
an improved deep hashing framework to enhance the ability of multilabel image retrieval.
Cui et al. [15] learned enhanced hash codes for social image retrieval and formulated a
unified scalable deep hash learning framework.

Compared with the coarse-grained methods, fine-grained image retrieval aims to
retrieve near-duplicate images that belong to the same subcategory. In the literature, many
approaches have been proposed and achieved promising results. Xie et al. [4] proposed
the challenging topic of fine-grained image search, which is less studied in the multimedia
community. Further, they formulated the problem by constructing a hierarchical database
and defined an evaluation method. In recent years, deep learning has witnessed the
remarkable breakthrough of feature representations. Zhang et al. [5] proposed a fine-
grained object retrieval scheme that conquered these issues of object localization and
centralized ranking loss in a unified framework. Zhang et al. [6] presented a metric learning
scheme to solve local structure and slow training simultaneously. Zeng et al. [16] presented
a variant of the cross-entropy loss for enhancing model generalization and promoting
retrieval performance. The methods mentioned above are supervised and depend on
manual annotations, which are labor-intensive. Wei et al. [7] proposed an unsupervised
paradigm that employed a pretrained model to select meaningful deep descriptors as the
global feature.

In this work, we focus on the fine-grained image retrieval task. Compared with
existing methods, ours learns global–local aware representation, which is unsupervised
and promotes the discriminative property to identify different fine-grained classes.

2.2. Fine-Grained Feature Representation

Fine-grained feature representation aims at learning the features of hundreds of
subcategories. It is a challenging task due to large intraclass variances and small interclass
distinctions. Generally, fine-grained feature representation methods can be divided into
two groups: two-stage and end-to-end.

The two-stage methods usually utilize handcrafted annotations or localization subnet-
works to locate crucial parts and extract the features based on corresponding parts. Early
works [17,18] relied on manual annotations to locate semantic parts (e.g., head, mouth) of
objects. Zhang et al. [17] learned part-based detectors, and Wei et al. [18] leveraged seg-
mentation methods. However, obtaining such annotations is expensive and labor-intensive,
which limits both the scalability and practicality of real-world fine-grained applications.
This motivates the development of weakly supervised methods [19,20], which only use
image-level annotations. Concretely, Ge et al. [19] built complementary parts models to
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retrieve information suppressed by dominant object parts. Huang et al. [20] presented an
interpretable model and learned a dictionary of object parts.

The end-to-end methods focus on developing deep models to learn more discrimi-
native features. Lin et al. [21] presented the bilinear CNN model, which can efficiently
represent an image as a pooled outer product of two CNN features. Another study [22]
focused on designing specific loss functions, which drive the whole deep model for learning
discriminative fine-grained representations.

In order to promote the discriminative property of fine-grained representation, we
propose exploring the inner correlation of different parts. Previous methods only focus on
parts, and ignore the inner correlation of different parts.

2.3. Frequent Pattern Mining

In data mining, FPM is an important technique, which has received wide attention in
many areas such as marketing, advertising, science, and social network analysis. It was
firstly introduced by Agrawal et al. [23]. After that, Han et al. [24] designed the frequent
pattern tree (FP-tree), which is an extended prefix-tree structure for storing crucial infor-
mation, and proposed an efficient FP growth algorithm. Benefiting from its development,
many researchers applied it to perform computer vision tasks, e.g., image classification [25]
and object localization [26].

In this work, we apply FPM to the computer vision task, and mine the intrinsic relation-
ship of different parts. Meanwhile, our method demonstrates that exploring the intrinsic
relationship of different parts has a potential for fine-grained feature representation.

3. Fine-Grained Image Retrieval via Global and Local Features

In this section, we introduce the proposed method for fine-grained image retrieval.
We start with the motivation and overview, and then elaborate details of feature extraction.
We also describe the retrieval process. Finally, we discuss the differences with some related
works.

3.1. Motivation and Overview

Existing fine-grained image retrieval methods focus on capturing the discriminative
parts (e.g., ears, tails for birds) for better accuracy. Despite achieving promising results, they
show two limitations: (1) Some studies [5,6,16] tend to design specific loss functions under
the supervised paradigm, but they are labor-intensive for manual annotation. (2) SCDA
method [7] employs the pretrained model to select the meaningful deep descriptors under
the unsupervised paradigm but ignores localizing the discriminative local feature. The
above challenges have motivated us to design a global–local aware representation. On the
one hand, the global feature could coarsely capture the object and discard the background
clutters; on the other hand, the local feature could point out the correlation among parts,
which are discriminative from other subcategories. Besides, we tackle the issue under an
unsupervised paradigm, which is more realistic and proper for the fine-grained scenario.

As shown in Figure 2, for each image in a database, we learn its global–local aware
representation. Concretely, the global feature is extracted by localizing the saliency object,
and the local feature is extracted via mining the intrinsic correlation of parts. Then, the two
level features are aggregated together to enhance the discriminative ability for the subtle
differences among fine-grained classes. Similarly, when given a query image, we also learn
its global–local aware representation. Then, we design a similarity score to measure the
relevance between the query and database images. Finally, we return the candidate based
on the similarity score.
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Figure 2. The schema of the proposed method. For each image in a database, we learn its global–
local aware representation. Similarly, when given a query image, we also learn its global–local
aware representation. Then, we measure the relevance between the query and database images by a
similarity score. Finally, we return the candidate based on the score.

3.2. Global Feature Learning

Global feature extraction firstly localizes the object via selecting the relevant deep
descriptors, and then extracts its feature. The details are as follows. Feed an image into
CNN; the activation of a convolution layer is denoted as a tensor T of size h×w× d, where
h, w, d represent the height, width, and depth, respectively. T includes d feature maps of
size h× w. From another point of view, T can be also considered as having h× w cells,
and each cell is a d-dimension deep descriptor. For example, we input an image of size
224× 224 into the pretrained VggNet-16 [8]; in the layer of pool5, we obtain a 7× 7× 512
activation tensor; on the other hand, 49 deep descriptors of 512-dimension are obtained.
When the activation tensor is produced, the following task is how to obtain the object.

Considering that a position is expected to belong to an object if multiple channels fire
there, we add up the activated tensor through the d direction. In this way, a 3-D h× w× d
tensor becomes a 2-D h× w tensor, called “aggregation map”, A. For A, there are h× w
summed responses, corresponding to h× w positions. Based on the observation [7], the
higher response a position has, the more possibility it belongs to an object. Thus, we firstly
calculate the mean value of A as the threshold, δ. Then, we scan A to generate the mask
map A′:

A′i,j =

{
1, if Ai,j > δ

0, otherwise,
(1)

where (i, j) is the position index of feature map, 1 ≤ i ≤ h, and 1 ≤ j ≤ w.
After A′ is generated, we utilize the flood fill algorithm [7] to retain the largest con-

nected component, which represents the salient object. Then, we employ the pooling
operation to learn the global feature, fG.

3.3. Local Feature Learning

Previous local feature learning works [19,20] focus on localizing the discriminative
parts but ignore the correlation among parts. In this work, we propose to mine the inner
relationship of different parts via FPM, which is described in Figure 3. To make this paper
self-contained, we first restate the preliminary of FPM; then, we depict how the feature
maps and positions are converted into transactions and items and how the meaningful
patterns are discovered.
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Figure 3. The procedure of local feature learning. We input an image into the CNN and obtain feature
maps. By threshold operation, we retain activated positions (orange dots) and discard inactivated
positions (blue dots). Then, we convert feature maps and activated positions into transactions and
items, and mine the frequent patterns. Finally, the local feature is extracted.

3.3.1. Preliminary

In data mining, FPM is a prevalent algorithm that aims to reveal the essential charac-
teristics of things by analyzing a large number of data and extracting the correlation. FPM
originated from market analysis. The supermarket manager analyzes the past transaction
records and explores customers’ shopping motivation and habits to maximize the profit
and formulate a targeted marketing strategy, e.g., ”bread→milk (80%)” means that 80% of
customers buy milk while buying bread. This discovery can provide vital support to make
business decisions, such as promotions and mall layout.

Formally, let I = {ai}n
i=1 be a set of items, where ai denotes the i-th item. Let

T = {ti}m
i=1 be a set of transactions, where ti represents the i-th transaction, and ti is

also a subset of I. Given an itemset P ⊆ I, we define the support value of P as

supp(P) =
k
m

=
|{ti | ti ∈ T, P ⊆ ti}|

m
∈ [0, 1], (2)

where | · | measures the cardinality. Considering that, in our task, m is a constant and
denotes the number of feature maps, we directly set it as

supp(P) = k, (3)

where P is a frequent pattern when supp(P) ≥ minsupp. Here, minsupp refers to a thresh-
old.

FPM adopts the divide-and-conquer strategy, including two steps: frequent pattern
tree construction (FP-tree construct) and frequent pattern growth (FP growth).

FP-tree construct: we first generate frequent items through minsupp and compress
them in an FP-tree. Each node of the FP tree consists of two parts: label and count. The
construction process is as follows:

• Create the root of FP-tree.
• Scan the transactions. For each transaction, sort the reserved items in order of decreas-

ing support.
• Create a branch for the first transaction and insert subsequent transactions into the

FP-tree one by one. Specifically, when inserting a new transaction, check whether a
shared prefix exists between the transaction and the existing branches. If so, increase
the count of all shared prefix nodes by 1 and create a new branch for the items after
the shared prefix.
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FP growth: when the FP-tree is constructed, we aim to mine the frequent patterns
from the FP-tree. Details are as follows:

• For any frequent item, construct its conditional pattern base. Here, the conditional
pattern base refers to the FP-subtree corresponding to the node we want to mine as
the leaf node. To obtain the FP-subtree, we set the count of each node in the subtree
to equal the count of the leaf node, and delete the nodes whose count is lower than
minsupp.

• Mine frequent patterns recursively after obtaining the conditional pattern base. When
the conditional pattern base is empty, its leaf node is the frequent pattern; other-
wise, enumerate all combinations and connect them with the leaf node to obtain
frequent patterns.

3.3.2. Transaction and Item Creation

The most critical step is converting the computer vision task into a data mining task. In
our scenario, each feature map is converted into a transaction, and each activated position
corresponds to an item. For example, if there are six activated position in the j-th feature
map, from the perspective of data mining, the corresponding transaction tj would contain
six items, i.e., tj = {a1, a2, a3, a4, a5, a6}. In practice, we input an image into the pretrained
model, and the image is mapped into a set of feature maps via the convolution operation.
For each feature map, we calculate its mean value as the threshold. Then, we scan the pixels
of the feature map, and if the response of a pixel is higher than the mean value, the pixel
will be activated. In this manner, we retain activated positions and discard inactivated
positions. Finally, each feature map and activated pixel are regarded as a transaction and
item, respectively.

3.3.3. Frequent Pattern Mining

Formally, let I′ = {a′i}n
i=1 be a set of activated positions, where a′i denotes the i-th

activated position. Let T′ = {t′i}m
i=1 be a set of feature maps, where t′i represents the i-th

feature map, and is also a subset of I′. Given an itemset P′ ⊆ I′, P′ is considered frequent
if supp(P′) ≥ minsupp. A proper choice of minsupp depends on the distribution of the
handled dataset. Thus, we leave minsupp as a hyperparameter and will empirically discuss
it in Section 4.1.

The overall process of local feature learning is shown in Figure 3. Firstly, we input an
image into the CNN and obtain feature maps. By threshold operation, we retain activated
positions and discard inactivated positions. Note that the activated positions and the
inactivated positions are represented by orange and blue dots, respectively. Then, we
transform feature maps and activated positions into transactions and items, and mine the
frequent patterns via FPM. Finally, we employ a pooling operation to extract the local
feature fL from the patterns. The complete process is summarized in Algorithm 1.

Algorithm 1 Revisiting Local Feature Learning via FPM

Input: Feature maps (T′), Activated positions (I′).
Output: Local feature (fL).

1: FP-tree construct: generate frequent positions through minsupp, and compress them
in an FP-tree;

2: FP growth: for any frequent position of FP-tree, construct its conditional pattern base
and mine frequent patterns recursively;

3: By the pooling operation, extract the local feature (fL) from the frequent patterns.

3.4. Retrieval Procedure

In order to tackle the retrieval task, when given a query, we aim at searching the top
K nearest neighbors from the image database. Precisely, for a query, we extract its global
feature fG and local feature fL. Likewise, for each image in the database, we extract its
global feature fG and local feature fL. Then, we calculate the aggregated feature F by
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F = fG + αfL, (4)

where α is a weight balancing the effect of different features, and more details are found in
Section 4.1.

To measure the similarity between the query and database image, we define the
similarity score as

S(FQ, FD) =
FQ

TFD

|FQ||FD|
, (5)

where FQ and FD denote the aggregated feature of query and the aggregated feature of
database image, respectively. Finally, we return the candidate based on the score.

3.5. Discussion

While our method performs feature extraction via a global–local aware feature repre-
sentation and is devised for fine-grained image retrieval, it bears certain correlations with
some related works. We highlight them in the following.

Difference with existing unsupervised method. In contrast with [7], though we
share the similar idea of selecting the related deep descriptors to learn the global feature,
we apply the idea of learning local features to point out the intrinsic relationship of different
parts, which enhances the discrimination among subcategories and is complementary with
the global feature.

Difference with existing supervised methods. Compared with existing supervised
approaches [5,6] driving the deep models by designing loss functions, we perform the
fine-grained image retrieval in a purely unsupervised setting, which is more realistic for the
fine-grained scenario. Meanwhile, the proposed method demonstrates that incorporating
frequent pattern mining strategy with the pretrained model has potential to learn the
fine-grained representation.

4. Experiments

In this section, we evaluate the performance of our proposed method. We first intro-
duce the data, evaluation metrics, implementation details, and compared methods. Then,
we describe the comparison of our method with some state-of-the-art methods. In order
to better understand the influence of each component, we conducted an ablation study.
Finally, we visualize some qualitative results.

4.1. Experimental Settings

Datasets. We evaluate our model on five fine-grained datasets. In the following, we
briefly introduce these datasets; Table 1 shows the statistics.

• Dataset 1: CUB200-2011 [27] contains 11,788 images of 200 subcategories.
• Dataset 2: Stanford Dog [28] contains 20,580 images of 120 subcategories.
• Dataset 3: Oxford Flower [29] contains 8189 images of 102 subcategories.
• Dataset 4: Aircraft [30] contains 10,200 images of 100 subcategories.
• Dataset 5: Car [31] contains 16,185 images of 196 subcategories.

Table 1. Summary of datasets. Note that “BBox” denotes whether this dataset provides object
bounding boxes. “Part Anno” indicates providing key part localizations.

Dataset Images Categories BBox Part Anno

CUB200-2011 11,788 200 X X
Stanford Dog 20,580 120 X
Oxford Flower 8189 102
Aircraft 10,200 100 X
Car 16,185 196 X
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Evaluation Metrics. We used the commonly used evaluation metric, mean average
precision (mAP) score, as the metric, to evaluate the performance [32]. Concretely, we first
calculated the average precision (AP) score for each query, and then calculated their mean
value as the mAP score. Formally, mAP is computed by

mAP =
1
Q

Q

∑
q=1

AP(q), (6)

AP =
1
R

n

∑
k=1

(p(k) · rel(k)), (7)

where Q represents the number of images to be retrieved, R denotes the total number of
relevant images, k refers to the sorting position, p(k) is the accuracy of the first k results,
and rel(k) indicates whether the images at position k are related.

Implementation Details. All experiments are conducted on a 64-bit Ubuntu 16.04
with 2 Intel 2.40 GHz CPUs, 256 GB memory, and 6 NVIDIA Tesla GPUs. For a fair
comparison, we employ the publicly available pretrained VggNet-16, which is initialized
with the weights on ImageNet [33]. Note that VggNet-16 can be replaced with any CNN
model. For each dataset, the hyperparameters minsupp and α are searched in the scopes
{0, 1, 2, · · · , 10} and {0, 0.01, 0.1, · · · , 100}, respectively. Figure 4 shows the details. In
practice, we input the image of size 224× 224 into the VggNet-16, and obtain its salient
object by the mask operation. Then, we concatenate the max-pooling (512-dimension) and
average-pooling (512-dimension) of the saliency as the global feature, fG (1024-dimension).
For local feature learning, we first mine the frequent patterns by the frequent pattern mining
algorithm. Then, we concatenate the max-pooling (512-dimension) and average-pooling
(512-dimension) of patterns as the local feature, fL (1024-dimension). Finally, we aggregate
the global and local features to obtain the global–local aware feature.
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Figure 4. Hyperparameter analysis. The above figures show the mAP values with different parame-
ters minsupp (for FPM) and α (for balancing the effect of global and local features).

Methods for Comparison. We divide the baseline approaches into two categories,
including six coarse-grained and four fine-grained methods. Details are as follows:

• SIFT_FV (coarse-grained): The SIFT features are conducted with Fisher Vector encod-
ing as the handcrafted feature-based retrieval baseline. The parameters of SIFT and
FV used in our experiment follow [4]. The feature dimension is 32,768. In addition,
we replace the whole image with the region within the ground truth bounding box as
the input, which is named “SIFT_FV_gtBBox”.

• Fc_8 (coarse-grained): For the Fc_8 baseline, because it requires the input images at
a fixed size, the original images are resized to 224× 224 and then fed into VggNet-
16. Similarly, we replace the whole image with the region within the ground truth
bounding box as the input, which is named “Fc_8_gtBBox”.

• Pool_5 (coarse-grained): For the Pool_5 baseline, it is extracted directly without any
selection procedure. We concatenate the max-pooling (512-dimensional) and average-
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pooling (512-dimensional) into avg+maxPool (1024-dimensional), as the image feature.
In addition, VLAD and FV are employed to encode the selected deep descriptors,
and we denote the two methods as SelectVLAD and SelectFV, which have larger
dimensionality.

• SPoC [34] (coarse-grained): SPoC aggregates local deep features to produce compact
global descriptors for image retrieval.

• CroW [35] (coarse-grained): CroW presents a generalized framework that includes
cross-dimensional pooling and weighting steps; then, it proposes specific nonparamet-
ric schemes for both spatial and channelwise weighting.

• R-MAC [36] (coarse-grained): R-MAC builds compact feature vectors that encode
several image regions without feeding multiple inputs to the network. Furthermore, it
extends integral images to handle max-pooling on convolutional layer activations.

• SCDA [7] (fine-grained): SCDA utilizes the pretrained CNN model to localize the
main object, and meanwhile discards the noisy background. Then, SCDA aggregates
the relevant features and reduces the dimensionality into a short feature vector.

• CRL [5] (fine-grained): CRL proposes an efficient centralized ranking loss and a
weakly supervised attractive feature extraction, which segments object contours with
top-down saliency.

• DCLNS [6] (fine-grained): DCLNS presents a metric learning scheme, which contains
two crucial components, i.e., Normalize-Scale Layer and Decorrelated Global-aware
Centralized Ranking Loss. The former eliminates the gap between training and testing
as well as inner-product and the Euclidean distance, while the latter encourages
learning the embedding function to directly optimize interclass compactness and
intraclass separability.

• PCE [16] (fine-grained): PCE proposes a variant of cross entropy loss to enhance model
generalization and promote retrieval performance.

4.2. Comparisons with State-of-the-Art Methods

Table 2 compares the proposed method with established methods, including coarse-
grained and fine-grained image retrieval methods.

Table 2. mAP accuracy (%) comparison with coarse-grained (the upper part) and fine-grained
methods (the lower part) on five datasets. The best results are highlighted by bold face.

Dataset CUB Stanford Dog Oxford Flower Aircraft Car

SIFT_FV 8.07 16.38 36.19 37.44 24.11
SIFT_FV_gtBBox 14.29 21.15 - 46.87 40.34

Fc_8 48.10 72.69 60.37 35.00 25.77
Fc_8_gtBBox 55.34 76.61 - 41.25 37.45

Pool_5 63.66 75.55 74.05 53.61 41.86
SelectFV 59.19 73.74 73.60 54.68 41.60

SelectVLAD 62.51 74.43 76.86 56.37 43.84
SPoC 47.30 55.69 70.05 48.95 33.88
CroW 59.69 68.33 76.16 58.62 51.18

R-MAC 59.02 66.28 78.19 54.94 52.98

SCDA 65.79 79.24 77.70 58.64 45.16
CRL 67.23 76.43 78.65 60.21 48.16

DGCRL 67.97 78.25 79.21 59.34 49.67
PCE 66.79 78.43 78.23 60.64 47.16
Ours 68.32 79.68 79.62 62.45 48.76

Comparison with Coarse-grained Methods. The proposed method outperforms the
coarse-grained methods on CUB200-2011, Stanford Dog, Oxford Flower, and Aircraft datasets.
However, on the Car benchmark, the performance of coarse-grained methods is better
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than the proposed method. The reason is that fine-grained methods pay attention to
subtle features, but coarse-grained methods focus on expressing the whole image; for the
Car dataset, since the cars belong to rigid bodies, the variations in the same subcategory
are subtle. Besides, the distinctions among different subcategories are large enough. So,
coarse-grained methods achieve better performance.

Comparison with Fine-grained Methods. The proposed method performs better than
the existing fine-grained methods in almost all experiments. The reason is that the proposed
method explores the inner correlation of different local parts. Meanwhile, it jointly considers
global–local two-level feature representations. Such two-level feature representations
ensure the compactness characteristic of the same subcategory and discriminative property
of different subcategories. Previous works have been devoted to solving this task via
designing specific loss functions to learn the local feature [5,6,16] or selecting the relevant
deep descriptors to obtain the global feature [7], but they all ignore the complementation of
global and local features.

4.3. Ablation Study

In order to better understand the different components of the proposed method, we
conducted the ablation study on five datasets. The results are shown in Table 3. Note that
“Original”, “Global-stream”, “Local-stream”, “Global–Local aware” refer to performances
of the original image, global representation learning, local representation learning, and
proposed approach, respectively. From Table 3, we can observe the following:

• Compared with the “Original”, “Global-stream”, and “Local-stream”, the proposed
method boosts performance significantly. This is mainly because global–local aware
feature representation combines “Global-stream” and “Local-stream” simultaneously.
On the one hand, global feature learning could localize the saliency areas and discard
the noises correctly. On the other hand, local feature learning could learn the coacti-
vated local features, which are mutually complementary with the “Global-stream”, to
enhance the discriminative property.

• Compared with “Global-stream”, the retrieval results of “Local stream” are also
promising. The reason is that subtle visual differences exist in different subcategories.
“Global-stream” encodes the basic-level object features but ignores the subtle features,
while “Local stream” captures the subtle and minute differences among different
subcategories, and mines the inner relationship.

Table 3. Ablation study on five datasets. “Original”, “Global-stream”, “Local-stream”, “Global–Local
aware” refer to performances of the original image, global representation learning, local representation
learning, and proposed approach, respectively.

Dataset CUB Stanford Dog Oxford Flower Aircraft Car

Original 56.21 64.63 58.31 50.69 40.46
Global-stream 65.79 79.24 77.70 58.64 45.16
Local-stream 67.78 77.23 78.98 60.98 48.35

Global–Local aware 68.32 79.68 79.62 62.45 48.76

Furthermore, to better understand global–local aware feature representation, we
visualize the two-level features in Figure 5. From top to bottom: the original image, the
heat map of global feature, the heat map of local feature. This shows that the global feature
focuses on the main salient object and discards noise, while the local feature captures
multiple interpretable semantic local details, e.g., belly, tail, and feet of the bird. In addition,
these local details are coactivated and could be assembled to provide a discriminative
fine-grained feature.
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(a)

(b)

(c)

Figure 5. Heat map comparison in CUB200-2011 dataset. From top to bottom: (a) original image,
(b) heat map of the global feature, (c) heat map of the local feature.

5. Conclusions and Future Work

In this paper, we propose a novel fine-grained image retrieval method, where global–
local aware feature representation is learned. Specifically, the proposed method performs
global feature learning by localizing the object, and extracts the local feature via mining
the intrinsic relationship. We evaluate the proposed method on five popular fine-grained
datasets. Extensive experimental results demonstrate the effectiveness.

In future research, there are some topics that we will investigate. (1) Fine-grained
hashing. As hundreds of thousands of images are uploaded to the Internet every day,
more and more large-scale and well-constructed fine-grained datasets have been released,
e.g., [37–39]. Therefore it is necessary to adopt an efficient and compact code to manage the
large-scale data. Hashing is an efficient tool for large-scale data retrieval. Compared with
traditional searching methods, hashing has lower time and space complexity. Consequently,
fine-grained hashing is a promising direction and deserves further exploration. (2) Fine-
grained cross modal retrieval. In recent years, different modalities of media, such as image,
text, and video, have grown rapidly on the Internet. It is prevalent to enable computers
to understand, match, and transform such cross-modal data; thus, cross-modal retrieval
is one of the most fundamental topics. Meanwhile, in many real-world scenarios—e.g.,
automatic biodiversity monitoring, climate change evaluation, intelligent retail, intelligent
transportation—the retrieval results are required to be further fine-grained. Thus, fine-
grained cross modal retrieval is promising and deserves further research efforts in the
future.
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