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Abstract: Since the grand partition function Zq for the so-called q-particles (i.e., quons), q ∈ (−1, 1),
cannot be computed by using the standard 2nd quantisation technique involving the full Fock space
construction for q = 0, and its q-deformations for the remaining cases, we determine such grand
partition functions in order to obtain the natural generalisation of the Plank distribution to q ∈ [−1, 1].
We also note the (non) surprising fact that the right grand partition function concerning the Boltzmann
case (i.e., q = 0) can be easily obtained by using the full Fock space 2nd quantisation, by considering
the appropriate correction by the Gibbs factor 1/n! in the n term of the power series expansion with
respect to the fugacity z. As an application, we briefly discuss the equations of the state for a gas of
free quons or the condensation phenomenon into the ground state, also occurring for the Bose-like
quons q ∈ (0, 1).

Keywords: thermodynamics of q-particles; quons; grand canonical ensemble; grand partition func-
tion; Bose Einstein Condensation

1. Introduction

Recently, the investigation of exotic models has been enormously increased with the
hope to find some progress in long-standing unsolved problems in the physics of complex
models and, in parallel to some other disciplines, relevant for concrete applications like the
theory of information.

Concerning the unsolved problems in physics, we certainly mention that, in order
to provide a satisfactory mathematical description of the quantum electrodynamics, the
latter has predictions obtained via the renormalisation technique, which are in surprisingly
perfect accordance with the experiments. For such purposes, the reader is referred to the
classical literature of the mathematical rigorous approach [1,2], and to [3–5] for a specific
description of quantum electrodynamics.

The models that aim to study and unify the strong interaction (i.e., quantum chro-
modynamics) are placed on the same line as the electroweak ones. All such models are
called standard and have the same strengths and weaknesses, that is these are in good
accordance with the experiments but are not satisfactory from the mathematical point of
view. The long-standing problem to unify these three fundamental forces present in nature
with the remaining one, that is the gravitation, was recently attached with the use of the
so-called noncommutative geometry, for example [6], is very far from being solved even in
a partial form.

Another direction, indeed connected with applications to the previous questions of
quantum field theory, and also involving applications which are certainly relevant for
the applied sciences, such as quantum information theory and quantum computing, is
the detailed study of the von Neumann entropy and the Araki relative entropy, see for
example [7–9] for the foundations and recent results.

It is also worth mentioning various other entropies (i.e., Tsallis entropy [10,11]), intro-
duced with the perspective of solving some open problem and to be fruitfully applied to
information theory.
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Among the studied models, there are certainly those associated to the so called q-
particles, or quons, q ∈ (−1, 0)

⋃
(0, 1), with the perspective of the extension to the so-

called anyons (see e.g., [12], see also [13] for a mathematical proposal to manage anyons)
corresponding to the case when the parameter q assumes values in some root of the unity,
and plektons.

To be more precise, the q-deformed particles seem to be related to quantum groups
and quantum algebras, which drew much attention decades ago. Such particles emerge
naturally from exactly solvable models in statistical mechanics which acquire the Yang–
Baxter equation. We also point out that the irreducible representations of q-deformed
particles are substantial extensions of the quantum algebra in connections to the braid
group statistics. For such interesting applications of these quons, the reader is referred to
the monograph [14].

Such exotic q-particles are naturally associated to the following commutation relations

aq( f )a†
q(g)− qa†

q(g)aq( f ) = 〈g, f 〉H IH , f , g ∈ H , (1)

H being the one-particle space equipped with the inner product 〈 · , · 〉H which is linear in
the first argument, enjoyed by the creators and annihilators acting on the corresponding
Fock spaces.

If H = `2(I) equipped with the canonical basis given by ei(j) = δi,j, i, j ∈ I, the
relations (1) assume the well-known form (cf. [15], Section 3)

aq,ia†
q,j − qa†

q,jaq,i = δi,j I`2(I) , i, j ∈ I . (2)

We also note that there are many other deformed commutation relations similar to (2)
describing q-particles (see e.g., [14]), limiting our analysis only to the mostly studied
commutation relations (1).

The quons can certainly be viewed as an interpolation between particles obeying the
Fermi statistics (i.e., q = −1) and those obeying the Bose statistics (i.e., q = 1), passing for
the value q = 0 describing the classical particles, and so obeying the Boltzmann statistics.

It appears clear that, for the applications to statistical mechanics, the case q = 0
would correspond to the classical framework as can easily be deduced from (3) below,
where nq(ε)

∣∣
q=0 = ze−βε corresponding to the occupation number of classical particles of

the energy level ε at inverse temperature β and activity z, the commutation relations (2)
for q = 0, aia†

j = δi,j I, have a crucial meaning in the so-called free probability, see for
example [16].

Therefore, in view of the potential applications outlined before, an intensive investiga-
tion of these particles was carried out, a consistent part of which regarded the thermody-
namics enjoyed by such particles. We mention just a sample [17–21] of such papers, and
refer the reader to the citations therein for further details.

On the other hand, quickly explained above, the mathematical investigation of the
structure and properties of algebras of operators associated to such q-models, mainly for
the Boltzmann case q = 0 (called “free” in the operator algebra setting, see e.g., [22]), was
carried out in an intensive way. As a sample of such papers, we also mention [16,23] for the
applications to quantum probability. The main object of such a mathematical investigation
is the full Fock space F(H) ≡ F0(H) for the free-Boltzmann case q = 0, and the deformed
versions of that, the q-deformed Fock spaces Fq(H).

By coming back to the thermodynamics of very huge systems made of particles of the
order of the Avogadro number NA ∼ 1023, the main ingredient is the computation of the
grand partition function by using the so-called 2nd quantisation method and the relative
Fock spaces, see for example [24,25].

If, on one hand, this is perfectly suited for the Bose and Fermi situation by using
symmetric and totally anti-symmetric Fock spaces, respectively, on the other hand, the
standard ingredient to use the full Fock space F0(H) for the Boltzmann case q = 0 and the
deformed versions Fq(H) of that for q ∈ (−1, 0)

⋃
(0, 1) fails as it is explained in [17].
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In fact, for q = 0 the computation of the grand partition function using the 2nd
quantized Hamiltonian K in (5) does not take into account the Gibbs paradox, (cf. [25]),
and thus produces the wrong result, the right one being (7), which is obtained from (6) by
correcting with the factor 1/n!, which takes into account the fact that particles must be
considered indistinguishable, see e.g., [26] (p. 680).

Equation (6) produces another wrong consequence, that is the grand partition function
would be defined only for the values of the activity z = eβµ < ζ−1 (µ and ζ being the
chemical potential and partition function, see (6)), whereas it is well known that, for
classical particles, the activity can assume all values 0 < z < +∞.

If instead q ∈ (−1, 0)
⋃
(0, 1), any Fq(H) is the deformed version of F0(H), and thus

the use of such Fock spaces to compute the grand partition functions produces the paradox-
ical result (cf. [17]) that all of those functions coincide with the grand partition function for
q = 0. This would mean that the thermodynamics of the q-particles, −1 < q < 1, provided
that such exotic particles really exist in nature, does not depend on q.

Summarizing, the use of the standard way to compute the gran partition function
through the corresponding Fock spaces Fq(H), q ∈ (−1, 1), is totally unusable.

However, while the computation of the grand partition function for the classical case
(q = 0) can be easily achieved by taking into account the Gibbs correction 1/n!,

+∞

∑
n=1

(
Tr e−βH)n

n!
zn, instead of

+∞

∑
n=1

(
Tr e−βH)nzn ,

the remaining case, q ∈ (−1, 0)
⋃
(0, 1) cannot be overcome with similar methods because

it is completely unknown what should be the, necessarily deformed, statistics to which the
quons obey.

Therefore, the method arising from the 2nd quantisation and using the deformed Fock
space introduced in [23] is doomed to fail.

Instead, by using a totally different analysis involving essentially only the commu-
tation relations (1), it was possible to compute, first in [27] and then in [26], the average
population n(ε) of any energy level ε of the model describing such q-particles, obtaining

n(ε) =
1

z−1eβε − q
, −1 ≤ q ≤ 1 (3)

where, for the sake of simplicity, we are supposing that the degeneracy g(ε) of the energy
of any level ε is 1.

It is noteworthy that, for q = 1 (and z = 1 as it regards the quantum harmonic
oscillator), ε = h̄ω and β = 1/kBT, the above formula reduces to the celebrated formula
n = 1

e
h̄ω

kBT −1
, solving the long standing paradox concerning the black-body radiation, for

which M. Planck was awarded by the Nobel prize.
The formula (3), as well as (9) below, is standardly recovered for the Bose/Fermi case

from Tr(e−βK±1), where K±1 = dΓ±1(H)− µN and N the number operator, by using the
well-known formula

− 1
β

∂

∂ε
ln Tr

(
e−β(dΓ±1(H)−µN)

)
= n±1(ε) .

Concerning the remaining cases q ∈ (−1, 1), the previous recipe cannot be applied for the
consideration just listed above.

However, (3) and (9) are rigorously recovered, first in [27] and then in [26]. Indeed,
in Section 5 of [27], Equation (3) is demonstrated by using the continuous analogous of
the commutation relations (2) and imposing the Kubo–Martin–Schwinger (KMS for short)
condition. In [26] instead, (9) is proved by maximising the q-entropy functional, suitably
introduced there, by using the Lagrange multipliers method.
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Therefore, in the present paper, we start from (3) to compute the grand partition Zq

for all values q ∈ [−1, 1], by imposing that − 1
β

∂ ln Zq
∂ε = n(ε), as prescribed by the statistical

mechanics. Such grand partition functions are uniquely determined by an inessential mul-
tiplicative constant, and allow us to perform all standard thermodynamic computations.

A quite interesting fact is that the phenomenon of condensation of non negligible
amount of particles in the fundamental state indeed occurs also and only for q ∈ (0, 1].
This was demonstrated in a more general context involving the grand canonical ensemble,
in [27], Section 5, by using only (1) and imposing the KMS condition, in the mathematical
setting of the distributions.

This allows to call q-particles, q ∈ (0, 1), as Bose-like particles and Fermi-like particles for
q ∈ (−1, 0). The separation point q = 0 corresponds to the Boltzmann (i.e., classical) case,
where it is well known that the condensation does not occur.

Concerning the Fermi-like particles, we note that it seems to be totally meaningless
to argue about an analogous “Pauli exclusion principle”, simply because it is still unclear
what is the statistics to which the quons obey.

In view of possible applications, we recover the equation of state for the perfect gas
of q-particles, and discuss the occurrence of this condensation for Bose-like quons by
recovering in a different way the formula (21) that already appeared in [27], Equation (5.6).

2. The Grand Partition Function for Fermi, Bose and Boltzmann Models

We start from a system whose Hamiltonian H is a positive selfadjoint operator with
compact resolvent, acting on a separable Hilbert spaceH, called the one-particle space.

In such a situation, the spectrum σ(H) = {εi} is made by isolated points, accumulating
at +∞ if H is infinite dimensional. In addition, we denote by gi the (necessarily finite)
multiplicity, that is the degeneracy, of each eigenvalue εi. Summarising,

H = ∑
εi∈σ(H)

εiPεi , and gi := dim(Ran(Pεi )) < ∞ . (4)

We also suppose that at any inverse temperature β := 1/kBT, kB ≈ 1.3806488× 10−23 JK−1

being the Boltzmann constant, e−βH is trace-class and define the partition function
ζ := Tr

(
e−βH).

Concerning the grand partition function Z, it comes by considering open systems
in thermodynamic equilibrium at inverse temperature β and chemical potential µ. It is
computed as standard for Fermi and Bose particles with the use of the symmetric and
totally anti-symmetric (due to Pauli exclusion principle) Fock spaces F±(H), see [28],
Section 5.2.1. Indeed,

Z =

 e
−Tr ln

(
I − eβµe−βH

)
, µ < min σ(H) (Bose) ,

e
Tr ln

(
I + eβµe−βH

)
, µ ∈ R (Fermi) .

We indicate such grand partition functions as Z±1, where ±1 correspond to the Bose/Fermi
alternative.

Proposition 1. For Z±1, we have the estimate

Z−1 ≤ eζeβµ
, µ ∈ R ,

Z1 ≤ e

(
ζeβµ

1− eβ(µ−min σ(H))

)
, µ < min σ(H) .

Proof. Those are nothing other than the proofs of [28], Proposition 5.2.22 (Fermi case) and
Proposition 5.2.27 (Bose case) respectively.
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Under our assumptions, it is easy to recognise that the partition function is a smooth
function of β and, once all the eigenvalues of H have been fixed but εio , it is also a smooth
function of each εio .

By Proposition 1, the grand partition functions are well defined whenever the chemical
potential µ is arbitrary (Fermi case), or strictly less than the first eigenvalue min σ(H) of
the Hamiltonian (Bose case). As for the partition functions, the grand partition functions
are smooth functions of the parameters β, µ and of the eigenvalues of H. Such smooth
dependences on parameters allow us to compute many thermodynamic functions, see
e.g., [25]. We often omit to indicate such dependences for the sake of simplicity.

The Boltzmann case is very particular because, in the Boltzmann statistics, the Gibbs
paradox (e.g., [25]) naturally emerges, and thus we should suitably correct the statistical
weights wεi , e.g., [26] (p. 680).

In this situation, it might be natural to use the the so-called full Fock space F(H) and
the grand canonical Hamiltonian K := dΓ(H)− µN, being dΓ(H) the second quantized of the
operator H and N the number operator, as for the computation of Z±1 in the Bose and Fermi
cases, see e.g., [28], Section 5.2.1. This computation is precisely what was done in [17],
Formula (11), obtaining

Tr
(

e−βK
)
=

1
1− ζeβµ

, (5)

holding true again for µ < min σ(H).
As we have already explained, such a formula is unrealistic for several reasons, the

main one being that the grand partition function for the Boltzmann statistics should be
defined for any value of the chemical potential. However, as we will show below (see
also [25], Section 7.3), the correct formula should be Z0 = eζeβµ

.
We would like to note that, defining the fugacity, or activity, by z := eβµ > 0, we

have that

Tr
(

e−βK
)
=

+∞

∑
n=0

ζnzn , ζz < 1 . (6)

It is interestingly seen that, if one corrects (6) with the weight n! in the denominator of
all addenda of the series to avoid the Gibbs paradox, we obtain

+∞

∑
n=0

ζn

n!
zn = eζz = Z0 . (7)

It is also customary to express the grand partition function in terms of the fugacity
z, obtaining 

Z1 = e
−Tr ln

(
I − ze−βH

)
, z < eβ min σ(H) (Bose) ,

Z0 = e
zTr
(

e−βH
)

, z > 0 (Boltzmann) ,

Z−1 = e
Tr ln

(
I + ze−βH

)
, z > 0 (Fermi) .

(8)

Now, another incongruence immediately emerges concerning the computation of the
grand partition function for the Boltzmann case. Indeed, suppose for simplicity thatH is
finite dimensional, so all involved traces are finite sums.

If one approximates the 1st and the 3rd lines of (8) for z→ 0, that is in the low-density
regime, we correctly obtain Z1 ≈ Z0 ≈ Z−1 because the Bose and Fermi distributions
should coincide with the Boltzmann one for z ≈ 0. Therefore, the grand partition function
for q = 0 cannot have the form (5).
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3. The Grand Partition Function of Quons: One-Mode

To discover what the grand partition function for quons should be, we first note that
the computations in [17] provide the wrong result for q = 0. In addition, if one uses the
grand canonical Hamiltonian K = dΓ(H)− µN acting on the q-deformed Fock space Fq(H)
(e.g., [23]), one obtains again (5), independently of q ∈ (−1, 1).

On the other hand, it was discovered, first in [27], Section 5, for the grand canonical
ensemble, and then in [26], Section 2, using the microcanonical ensemble, that the gener-
alisation to q ∈ (−1, 1) of the Planck distribution of the occupation numbers at inverse
temperature β and fugacity z is

nq(ε) = g(ε)
1

z−1eβε − q
, q ∈ [−1, 1] , ε ∈ σ(H) . (9)

Here, g(ε) is the degeneracy of the level ε. For the cases treated in Section 5, where the
Hamiltonian is proportional to the opposite of the Laplacian −∆ acting on L2(Rd), the
degeneracy g(ε) is absorbed in an appropriate integral after passing to the continuum.

The simplest way to try to compute such a grand partition function is to consider the
so-called one-mode model and, since it is connected with the so-called q-oscillator (e.g., [29]),
we have H = C and H = h̄ω. It should be noticed that (9) also appeared in [30], (A.5),
apparently computed by using the q-numbers [n]q (see also e.g., [23]). Unfortunately, it
is unclear how (A.5) in [30] is derived and, in addition, any computation of the q-grand
partition function using the [n]q numbers does not reproduce (9).

Our approach in computing the grand partition function in one-mode model proceeds
as follows, by taking into account that the degeneracy is obviously 1. We start with the well-
known formula in the one-mode, holding for values of the fugacity previously determined,

n = z
∂ ln Zq

∂z
. (10)

Combining (9) and (10), we obtain

∂ ln Zq

∂z
=


e−βh̄ω, z > 0 q = 0 ,

1
eβh̄ω − qz

, z > 0 −1 < q < 0 ,

1
eβh̄ω − qz

, 0 < z < eβh̄ω

q 0 < q < 1 .

(11)

Integrating both members of (11), and neglecting the inessential multiplicative con-
stant, we obtain Z0 and Z±1 in (8). The general case (i.e., the multi-mode case) involving
the computation of Zq will be handled in the forthcoming section, obtaining (12).

4. The Grand Partition Function of Quons

The present section is devoted to the general case of the multi-mode model (i.e.,
dim(H) > 1) described by the Hamiltonian in (4), by following the previous suggestions.

Indeed, for q ∈ (−1, 1)r {0}, define

Zq := e
−

Tr ln
(

I − zqe−βH
)

q ,


0 < z < eβ min σ(H)

q 0 < q < 1 ,

z > 0 −1 < q < 0 .

(12)

We note that:

Zq(z) :=

{
(Z1(zq))

1
q , 0 < q < 1 ,

(Z−1(z|q|))
1
|q| , −1 < q < 0 ,
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and thus all such grand partition functions are well defined in their own domain involving
the activity z, and we have the following estimate for the Zq.

Theorem 2. For Zq, q ∈ [−1, 1], we have the estimate

Zq ≤ eζz , 0 < z q ∈ [−1, 0] ,

Zq ≤ e

(
ζzq

1− zqe−β min σ(H)

)
, 0 < z < eβ min σ(H)

q q ∈ (0, 1] .

Proof. For q = 0, the first inequality saturates to the Boltzmann case. For the negative
cases q ∈ [−1, 0), we use the 2nd line in (12) and Proposition 1 (or take advantage of the
easy inequality ln(1 + x) ≤ x), obtaining the 1st row. For the case q ∈ (0, 1], we use the 1st
line in (12), obtaining the 2nd row with the bound for the activity z by taking into account
Proposition 1.

The definition of Zq in (12) is justified by the following

Proposition 3. For each ε ∈ σ(H) fixed, Zq with q ∈ [−1, 1], is derivable w.r.t. ε and we have

− 1
β

∂ ln Zq

∂ε
= nq(ε) ,

where the nq(ε) are the occupation numbers in (9).

Proof. For q = 0, it is enough to show that the partition function ζ admits partial derivatives
w.r.t. any ε ∈ σ(H) in a suitable neighbourhood.

Indeed, for εo ∈ σ(H), and for x in the non empty open interval Iεo centered in εo,
such that Iεo

⋂ (
σ(H)r {εo}

)
= ∅, which always exists as σ(H) is discrete, define

Hε(x) := xPεo + Hεo = xPεo + ∑
ε 6=εo

εPε .

It is clear that ζ = ζ(x) as a function of x around εo, is equal to

ζ(x) = g(εo)e−βx + Tr
(
e−βHεo

)
,

where the 2nd piece in the r.h.s. does not depend on x.
Therefore, ζ(x) is smooth in the neighbourhood Iεo and

∂ζ

∂εo
=

dζ(x)
dx

∣∣∣
x=εo

= −βg(εo)e−βεo .

We then get − 1
β

∂ ln Z0
∂ε = n0(ε).

The computation for the remaining q is similar. Indeed, suppose q 6= 0, then

ln Zq(x) = −
Tr
(

ln(I − zqe−βH)
)

q

= − g(εo)

q
ln(1− zqe−βx)− 1

q
Tr
(

ln(I − zqe−βHεo )
)

where, as before, the 2nd piece in the r.h.s. does not depend on x. Then

− 1
β

∂ ln Zq

∂εo
= − 1

β

d ln Zq(x)
dx

∣∣∣
x=εo

= nq(εo) .
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To conclude with the grand partition function of the q-particles, we get the following
result about the convergence of Zq ≡ Zq(β, z) to Z0(β, z).

Proposition 4. For the q-grand partition function Zq, we get

lim
q→0

Zq(β, z) = Z0(β, z) ,

where the convergence is uniform in the variables β, z in all closed strips [βo,+∞)× [0, δ], where
βo > 0 and δ < eβo min σ(H).

Proof. We start by noticing that, under the limitations on the variables β and z, the grand
partition functions are defined for all values of q ∈ [−1, 1]. It will be enough to man-
age the logarithm of the Zq(β, z). For such a purpose, we use the 2nd order Mc Laurin
expansion, obtaining

| ln Zq(β, z)− ln Z0(β, z)| =
∣∣∣∣Tr ln(I − zqe−βH)

q
+ zTre−βH

∣∣∣∣
≤ |q|

2
(
zTre−βH)2 ≤ |q|

2
(
δTre−βo H)2 .

In view of applications to thermodynamics, from the grand partition function we can
recover the Landau potential, called also grand potential

Ωq := − 1
β

ln Zq , q ∈ [−1, 1] .

It is well known that, from a thermodynamical point of view, Ωq can be expressed by
Ωq = −PV, where V is the volume occupied by a real physical system under consideration.
Therefore, we obtain

PV = −kBT
Tr
(

ln(I − zqe−βH)
)

q
, q ∈ [−1, 1]r {0} , (13)

which reduces to PV = kBTz Tr
(
e−βH) for q = 0.

On the other hand, it is well-known that the average number N of particles of such
systems is N = −z ∂Ωq

∂z , which immediately leads to the well-known equation of state
PV = NkBT for a gas of free classical particles.

For the remaining cases q ∈ [−1, 1]r {0}, it is no longer true that an equation of state
can be immediately obtained. In fact, also by considering directly (9), we have

N = −z
∂Ωq

∂z
= ∑

ε∈σ(H)

nq(ε)

= ∑
ε∈σ(H)

g(ε)
1

z−1eβε − q
= Tr

((
z−1eβH − q

)−1
)

,
(14)

and thus it is unclear how to compare (13) with (14) to obtain analogous equations of state
for quons, bosons and fermions included.

In the next section, we make such a discussion for the free gas of quons living in R3,
after passing to the continuum.
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5. The Free Gas of Quons

As a simple application of the grand partition function computed in Section 4, we
determine the equation of state for the free gas of quons. In order to do that, we first have
to perform the continuum limit to handle Hamiltonians with a continuous spectrum.

Indeed, we consider the one-particle Hamiltonian H := − ∆
2m , acting on L2(R3, d3x).

It is a selfadjoint operator with σ(H) = σac(H) = [0,+∞), where σac is the absolutely
continuous spectrum. In this way, the degeneracy factor g(ε), ε ∈ σ(H), appearing in the
computation of the canonical trace of B(H) in (13) and (14), is absorbed in the integration
on the whole spectrum.

Summarising, the limit to the continuum is now obtained in the following standard
way, as explained, e.g., in the appendix of [26]: for a gas with N particles, we simply make
the replacements

∑
ε∈σ(H)

g(ε) = ∑
{n(ε)|ε∈σ(H)}

→ V
∫ d3p

h3 , (15)

h ≈ 6.626070040× 10−34 Js being the Planck constant, and V the volume of the physical
system under consideration.

Hence, we start with the relation (13) for the grand potential Zq, and to relay our result
to the standard equations of state for the Fermi or Bose particles, we distinguish between
the Fermi-like and the Bose-like cases. The limit to the continuum is simply achieved by
applying (15).

For the Fermi-like case, i.e., −1 ≤ q < 0, we obtain

P
kBT

=
1
|q|

4π

h3

∫ ∞

0
dp p2 ln

(
1 + z|q|e−β

p2
2m

)
=

1
|q|

1
λ3 f 5

2
(z|q|), (16)

where λ =
√

2πh2/mkBT is the thermal wavelength, and the function f 5
2

is a well-known
generalisation of the ζ-function, similarly to f 3

2
, g 5

2
and g 3

2
below.

The equation of state may be obtained considering the relative volume per particle, i.e.,
v := V/N, with N in (14), passing to the continuum limit as

1
v
=

N
V

=
1
|q|

4π

h3

∫ ∞

0
dp p2 1

(z|q|)−1e
βp2
2m + 1

=
1
|q|

1
λ3 f 3

2
(z|q|) . (17)

Collecting together (16) and (17), the equation of state of a free gas of Fermi-like quons
assumes the form

PV
kBT

= N
f 5

2
(z|q|)

f 3
2
(z|q|) . (18)

Notice that, for z ≈ 0, we get back to the equation of state of the classical (i.e.,
Boltzmann) perfect gas PV

kBT = N.
For the Bose-like case, that is 0 < q ≤ 1, we first note that the condensation of particles

into the ground state can occur as well, see [26,27]. Before passing to the continuum, it is
customary to separate the part corresponding to ε = 0 from the remaining one, obtaining

P
kBT

= −1
q

(
4π

h3

∫ ∞

0
dp p2 ln

(
1− zqe−

βp2
2m

)
+

a
V

ln(1− zq)
)

(19)

=
1
q

(
1

λ3 g 5
2
(zq)− a

V
ln(1− zq)

)
,
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1
v
=

1
q

4π

h3

∫ ∞

0
dp p2 1

(zq)−1e
βp2
2m − 1

+
a
V

zq
1− zq

 (20)

=
1
q

(
1

λ3 g 3
2
(zq) +

a
V

zq
1− zq

)
.

In the condensation regime, we deal with a multi-phase situation, and thus the portion
of the condensate, possibly also vanishing, can vary according to many a priori constrains,
such as the boundary conditions used to reach the thermodynamic limit, see e.g., [28],
Section 5.2.5, and [31]. Therefore, in (19) and consequently in (20), we introduced the
dimensionless multiplicative constant a ≥ 0.

It is worth noticing that, when the portion of the condensate in the system vanishes,
that is a = 0, we can obtain the equation of state similar to the Fermi-like case (18). Indeed,
collecting together (19) and (20) with a = 0, we obtain

PV
kBT

= N
g 5

2
(zq)

g 3
2
(zq)

,

which again reduces to the equation of state for the Boltzmann free gas for small fugacity.
We end by computing the critical density for Bose-like quons as in [25], Equation (12.51),

obtaining in (20) again with a = 0,

ρc(q) =
1

vc(q)
= lim

z↑(1/q)

g 3
2
(zq)

qλ3 =
1
q

g 3
2
(1)

λ3 =
ρc(1)

q
, (21)

which coincides with (5.6) in [27].

6. Conclusions

It is well known that the main ingredient to deal with the thermodynamics of macro-
scopic systems in terms of statistical mechanics is the grand partition function, which in
the Fermi/Bose cases can be computed by the standard techniques of second quantisation.

As explained through the present paper, such a standard method fails, even in the case
of the free gas of classical particles, that is obeying to the Boltzmann statistics. However,
in the Boltzmann case it will be enough to take into account the Gibbs correction factor
1/n! to count in the right way the computations involving the level of n-particles in the full
Fock space.

For the remaining cases q ∈ (−1, 0)
⋃
(0, 1), there is no reasonable indication to

establish a similar ansatz. In other words, it is totally unknown how the reasonable
statistics for the q-particles should be (apart some attempts toward this direction have been
carried out by [32,33]), which produce a reasonable thermodynamical behaviour for such
exotic systems, supposing that these really exist in nature.

On the reverse side, just supposing that the quons might play some role for some ap-
plication in quantum physics, and also for example in quantum information and quantum
computing, several attempts have been made to produce a decent thermodynamics for
such particles, sometimes also reaching paradoxical conclusions.

In the present paper, we have computed the, unknown up to now, grand partition
function for all such q-particles, by finding out those of Fermi and Bose particles, and the
correct function for the Boltzmann situation, as particular cases.

As a simple application, we discussed the corresponding equations of the state, show-
ing that all those equations reduce themselves to that of the classical gas PV = NkBT
for small fugacity z ≈ 0. We also briefly discuss the condensation phenomena for Bose-
like quons (i.e., q ∈ (0, 1]) whose appearance is rigorously proved in [27], by finding the
formula for the critical density ρc(q) already obtained in the just mentioned paper with
different methods.
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It is then evident that the thermodynamics of quons can now be carried out, once
having computed the corresponding grand partition function, see e.g., [24,25]. In particular,
it would be desirable to investigate the thermodynamical properties enjoyed by Fermi-like
quons (i.e., q ∈ [−1, 0)), which are completely different from those of Bose-like quons.
This detailed analysis is out of the scope of the present paper and is left out for the
interested readers.

However, as shown in [26,27] in a rigorous way, the Bose-like quons share with bosons
the phenomenon of the condensation into the fundamental state. In view of theoretical and
concrete application of this interesting fact, it might be of interest to extend the investigation
of quons living in inhomogeneous networks following the lines of [31,34,35]. It is also of
interest to investigate the magnetic properties of systems of quons on lattices analogously
to the celebrated Ising and similar models, including the disordered ones, see e.g., [36–38]
and the literature cited therein. We leave out these interesting arguments, postponing these
for future investigation.

In view of possible applications, another direction is to start to investigate the thermo-
dynamics of other systems enjoying exotic commutation relations. Among them, we cite
the Boolean and monotone ones, see e.g., [39] and the literature cited therein.

Concerning these last two cases, the unique available method to compute the grand
partition function is the second quantisation one, involving the relative Fock space con-
struction. We briefly discuss the simpler Boolean case, leaving the monotone one for a
forthcoming work.

Indeed, for the Boolean case, the creators and annihilators satisfy the commutation relations

b( f )b†(g) + 〈g, f 〉∑
j∈J

b†(ej)b(ej) = 〈g, f 〉IH , f , g ∈ H . (22)

Here, {ej | j ∈ J} ⊂ H, card(J) coinciding with the Hilbertian dimension dim(H) of H,
is any orthonormal basis of H, and the possibly infinite sum in (22) is meant as in [39],
Proposition 3.2.

The associate Boolean Fock space is given as Fboole(H) = CΩ⊕H, Ω being the unit
vacuum vector, and thus we immediately compute the associated grand partition function
Zboole = 1 + zTr e−βH .

Concerning the average occupation numbers, we get

n(ε) = g(ε)
ze−βε

1 + zTr e−βH ≤ N =
zTr e−βH

1 + zTr e−βH < 1 ,

where the 1st inequality is always sharp, but in the trivial case dim(H) = 1.
The explanation of the physical interpretation of this result can be found in [40], in

which the Boolean statistics was first introduced in relation to the application to quan-
tum optics.
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