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Abstract: A widely used clustering algorithm, density peak clustering (DPC), assigns different
attribute values to data points through the distance between data points, and then determines the
number and range of clustering by attribute values. However, DPC is inefficient when dealing with
scenes with a large amount of data, and the range of parameters is not easy to determine. To fix
these problems, we propose a quantum DPC (QDPC) algorithm based on a quantum DistCalc circuit
and a Grover circuit. The time complexity is reduced to O(log(N2) + 6N +

√
N), whereas that of

the traditional algorithm is O(N2). The space complexity is also decreased from O(N · dlog Ne) to
O(dlog Ne).

Keywords: quantum information; quantum computation; quantum algorithm

1. Introduction

Cluster analysis originated from taxonomy, as an ancient skill mastered by human
beings. In the past, people used to classify goods based on their experience and professional
knowledge. With the development of modern society, people have higher and higher re-
quirements for classification [1,2]. Classification based only on experience and professional
knowledge has been gradually eliminated, and computer technology is now used for cluster
analysis, using algorithms to address huge and complex cluster tasks [3,4]. Therefore, clus-
tering algorithms have been proposed for applications in various settings [5,6]. Moreover,
the world of massive data that we live in also makes the clustering process indispensable.
Many research fields are faced with the problem of a large amount of data [7,8]. If there
is no preprocessing such as clustering or data dimension reduction, it is difficult to carry
out subsequent analysis [9–11]. For example, in the area of machine learning, the original
entry of almost all important algorithms is a large amount of large-scale data. It is difficult
to use these data without clustering or a dimensionality reduction [12–14]. In the field of
quantum communication, quantum communication equipment is only supplied to few
large companies. Many parties in quantum communication may be classical. Clustering
algorithms can help communication parties to deal with the transmitted information more
conveniently [15–17]. In the area of data dimension reduction, we are familiar with the
principal component analysis algorithm (PCA) [18], multidimensional scaling (MDS), linear
discrimination (LDA), locally linear embedding (LLE), and so on [19–22]. However, the
dimension reduction algorithm will inevitably reduce the attribute value of the data. If the
operation is improper, the data will lose accuracy and the results will have deviated. A
clustering algorithm can be used to avoid such problems. Nowadays, clustering algorithms
can be divided in the following way.

Partition-based clustering algorithms include K-means [23], K-medians [24], and
kernel K-means algorithms [25]. Hierarchy-based clustering algorithms include BIRCH,
CURE, and the CHAMELEON algorithm [26]. Density-based clustering algorithms include
DBSCAN, mean-shift (MS) [27], and the density peak clustering algorithm (DPC) [28]. Each
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clustering algorithm has its own advantages and disadvantages, and each algorithm has its
own suitable scenarios [29]. The advantage of the DPC algorithm is that there is no need
to define the number of clusters, as in the K-means algorithm. Secondly, it can detect non-
spherical data, which has high application value in computer image processing. In addition,
it can automatically identify abnormal points, which is also a prominent advantage of many
clustering algorithms.

In 2014, Rodriguez and Laio proposed a DPC algorithm, which can automatically find
the cluster center and achieve efficient clustering of arbitrarily shaped data sets [30]. DPC
is a clustering algorithm based on density, and its input parameters are less than those of
the K-means algorithm [31,32] and the K-medians algorithm [33,34]. The process of DPC
clustering does not need to map data to vector space, which reduces the computational
complexity of the algorithm.

However, the DPC algorithm still has its drawbacks. When it deals with large amounts
of data, the speed of the algorithm is significantly reduced. The algorithm computes the
distance between the current data point and each data point in the set, so the complexity
of this operation is O(N2), whereas N represents the number of data points [35]. At the
same time, the process of the algorithm stores the distance between each data point and its
remaining data points, which requires a large amount of storage space.

Some years ago, quantum technology was introduced to speed up the classical al-
gorithms with large data volume, such as the Internet of Things industry and computer
vision [36–38]. Typical quantum algorithms include the quantum K-means algorithm [32]
and quantum principal component analysis [18]. They are not simple quantum version of
classical algorithms. The running speeds of these quantum algorithms are greatly reduced.
In this paper, we propose a QDPC algorithm, which applies a quantum DistCalc circuit to
speed up the DPC algorithm.

In Section 2, the principle and flow of the classical DPC algorithm are introduced in
detail. In Section 3, we propose the QDPC algorithm and its corresponding quantum circuit.
In Section 4, the simulation experiments are discussed. An analysis of complexity and our
conclusions are presented in Section 5.

2. Preliminary
2.1. Notation and Definitions

DPC is an algorithm that does not require iteration and can find the clustering center
in one run. Distance information is the most important form of information that one
must collect in the DPC algorithm. Based on the distance, one can compute the local
density value.

The main ideas of DPC are based on the following assumptions:

* The clustering center has a relatively high local density value and is surrounded by
data points with a low local density value.

* The clustering center is far away from any point with a higher local density value.

For each data point xi , the algorithm computes two attribute values of the data point:
its local density ρi and its distance δi from the nearest higher density point. Both attribute
values depend only on the distance dij between the current data point xi and the rest of the
data points xj.

The local density ρi of data point xi is defined as

ρi = ∑
j

χ(dij − dc), (1)

where dij is the distance between data point xi and xj, dc is the cutoff distance. The function
χ is defined as

χ(x) =

{
1 x < 0
0 otherwise,

(2)
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which indicates the number of data points with distance from the data point xi less than
the cutoff distance.

The distance from the higher density point of data point xi is defined as

δi = min
j,ρi<ρj

(dij), (3)

where δi records the nearest distance from data point xi to all data points with higher local
density. If δi is very small, there is a data point xj with a higher local density around this
data point xi. As for the data point with the highest local density, it cannot find a data
point with a higher local density, and its distance is δi = maxj(dij) conventionally. It can be
found that when the distance δi is relatively large, this data point is the clustering center.

Therefore, after the two attribute values ρi and δi of each data point are obtained, these
data points are divided according to the rules.

• If the value sof ρi and δi are both anomalously large, it is the clustering center;
• If the value of ρi is relatively large and δi is relatively small, it is the point in a cluster;
• If the value of ρi is relatively small and δi is relatively large, it is an outlier.

According to the above rules, the algorithm can accurately find every clustering center
of the cluster and cluster each data point.

2.2. The Workflow of the Classical DPC Algorithm

The main processes of the algorithm consist of calculating two attribute ρi and δi
values of each data point. Suppose we have a data set with large amounts of data points
D = {x1, x2, x3, · · · , xN}, and the dimension of each data point is d. The steps of the DPC
algorithm are as follows:

a. Calculate the local density ρi of each data point xi.
b. For each data point xi, the nearest distance of xi is found in all data points with higher

local density than xi, and record this distance as δi.
c. According to ρi and δi of each data point to determine the clustering center. If ρi and

δi of a data point are relatively large, it is the clustering center.
d. Assign each data point to the nearest clustering center.

It should be noted that if δi of a data point is large and ρi is small, then the point is an
exception. It does not need to be assigned to any cluster.

3. QDPC Algorithm

The classical algorithm takes the largest proportion of time to calculate the distance in
the whole algorithm, so quantum circuits are used to optimize this part [39,40]. In quantum
technology, fidelity is an important concept, which is similar to cosine similarity [41,42] in
the classical framework. Fidelity can measure the similarity between two quantum states.
If the value of fidelity is 1, the two quantum states are the same; if the value of fidelity is 0,
the two quantum states are orthogonal. Therefore, the distance between data points can be
calculated via fidelity only if the classical data are encoded into a quantum state.

The most commonly used quantum circuit to achieve fidelity is the SwapTest. This
quantum circuit was proposed by Aïmeur et al in [43]. By taking the inner product of two
quantum states |φ〉 and |ψ〉, the SwapTest circuit is used to calculate the fidelity of quantum
states, as shown in Figure 1.
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|φ〉
SWAP

|ψ〉

|ψ〉 |φ〉

(a)

|0〉 H • H ✌✌✌

|φ〉 × |ψ〉

|ψ〉 × |φ〉

(b)

Figure 1. (a) Quantum SwapTest circuit to obtain the similarity between two quantum states |φ〉 and
|ψ〉. (b) Details of quantum SwapTest circuit.

Based on the SwapTest circuit, the quantum DistCalc circuit [44] in Figure 2 can calculate
the distance between data points xi and xj. The distance is stored in the third register.

|i〉

DistCalc

|i〉

|j〉 |j〉

|b〉 |b+Dist(xi, xj)〉

Figure 2. Quantum DistCalc circuit for calculating the distance between xi and xj.

Procedure of the QDPC Algorithm

Consider a set with N data points D = {x1, x2, x3, · · · , xN}. The dimension of each
data point is d. Regardless of the number of clusters, QDPC will calculate two attribute
values ρi and δi for each data point. Then the clustering center is determined using these
two attribute values.

An overview of the circuit for solving the QDPC is shown in Figure 3.

|0〉⊗⌈logN⌉ H⊗⌈logN⌉

DistCalc

|i〉

Addr

|i〉

Grover

|0〉⊗⌈logN⌉

|0〉⊗⌈logN⌉ H⊗⌈logN⌉
|j〉 |j〉

|0〉⊗⌈logN⌉

|0〉⊗⌈n+log(n+d)⌉
|dij〉 |dij〉

|max d〉

|0〉
|aij〉 |aij〉

|0〉

|0〉
|0〉

Ry

|0〉⊗⌈logN⌉
|ρi〉

• |max ρi〉

Figure 3. Overview of the quantum circuit for the QDPC algorithm, where |dij〉 represents |d(xi, xj)〉.

The procedure used to cluster xi includes the following seven steps:

(i). Prepare six registers in |0〉⊗dlog Ne ⊗ |0〉⊗dlog Ne ⊗ |0〉⊗dn+log(n+d)e ⊗ |0〉 ⊗ |0〉 ⊗ |0〉
⊗dlog Ne, and apply an H gate on each qubit in the first and second registers. The third
register records the quantum state of the distance from two data points xi and xj. The
fourth register stores the intermediate conversion value aij, which will be explained
in more detail later. The fifth register is an ancillary qubit. The last register, the sixth
register, records the attribute value ρi. By means of quantum DistCalc, the system
state is

|Ψ0〉 =
1
N

N

∑
i=1

N

∑
j=1

(
|i〉 ⊗ |j〉 ⊗ |d(xi, xj)〉

)
⊗ |0〉 ⊗ |0〉 ⊗ |0〉⊗dlog Ne + |G〉, (4)

where |G〉 is a garbage state.
(ii). Set a desired threshold as dmax and set aij ∈ {0, 1} to indicate whether two data points

xi and xj are close together. The value of aij is 1 if the distance of two data points
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d(xi, xj) ≤ dmax, otherwise 0. Then we can easily store this value aij in the fourth
register. The system state is

|Ψ1〉 =
1
N

N

∑
i=1

N

∑
j=1

(
|i〉 ⊗ |j〉 ⊗ |d(xi, xj)〉 ⊗ |aij〉

)
⊗ |0〉 ⊗ |0〉⊗dlog Ne + |G〉. (5)

(iii). Take a control-sum operation on the first, fourth, and sixth register. The first register
|i〉 is the control qubit, and the sixth register stores the sum of the values of aij, whereas
the index i is fixed. Since the local density property of the data point xi is ρi = ∑N

j=1 aij,
the value stored in the sixth register is |ρi〉. Now the system is

|Ψ2〉 =
1
N

N

∑
i=1

[
|i〉

N

∑
j=1

(
|j〉 ⊗ |d(xi, xj)〉 ⊗ |aij〉

)
⊗ |0〉 ⊗ |ρi〉

]
+ |G〉. (6)

(iv). Perform a control conditional rotation [45], where the first and the second registers
are control qubits, and the fifth ancillary register is the target. Set the fifth register to
|1〉, when ρj > ρi, otherwise set to |0〉. The whole system is divided into two parts, as
shown below

|Ψ3〉 =
1
N

N

∑
i=1

[
|i〉
(

∑
j,ρj>ρi

|j〉|d(xi, xj)〉|aij〉|1〉+ ∑
j,ρj≤ρi

|j〉|d(xi, xj)〉|aij〉|0〉
)
⊗ |ρi〉

]
+|G〉. (7)

(v). Apply a projection operation {|0〉〈0|, |1〉〈1|} on the fifth register, and keep the state
when the measurement result is |1〉〈1|. The system is

|Ψ4〉 = Γ|Ψ3〉 = α
N

∑
i=1

N

∑
j,ρi<ρj

|i〉|j〉|d(xi, xj)〉|aij〉|1〉|ρi〉+ |G〉, (8)

where α is the normalized parameter, and ∑ |α|2 = 1. The third register and the last
register store the attribute values δi and ρi of each data point xi, respectively.

(vi). Perform a bit flip operation [46] on the third register, and the value is changed from
d(xi, xj) to d(xi, xj). By doing this, the minimum value in the third register becomes
the maximum value. In order to make the following Grover algorithm run under
more convenient conditions, we change the target of the search to the maximum value
of the two attributes. Data points that meet these two requirements are the center of
clustering. Now the system is

|Ψ5〉 = α
N

∑
i=1

N

∑
j,ρi<ρj

|i〉|j〉|d(xi, xj)〉|aij〉|1〉|ρi〉+ |G〉. (9)

(vii). Apply the Grover algorithm [47] to find the index i of data point xi with maximum
ρi and the index j of the found data point xi with maximum δi with a full successful
probability. The index i that meets the requirements is the center of a cluster.

4. Simulation Results

We clustered three differently distributed (horizontally, circularly, and discrete) data
sets using our QDPC algorithm, implemented on Baidu’s quantum platform Paddle Quan-
tum. Limited to the lack of QRAM devices, thread concurrency was used to read out all the
data in a data set at one time. Data were generated by a random function with seed = 21,
and the number of data N was fixed as 20, 40, 80, 250, 500, and 1000. Table 1 gives the
common evaluation indicators purity, F-score and adjusted Rand index (ARI) of the two
algorithms on the circularly distributed data. In the table, all the values lie between 0.95
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and 1. When N = 20, 40, 80, the clustering results of the DPC algorithm are the same as
those of the QDPC algorithm. For N = 20, 40, 80, the values of QDPC are greater than those
of DPC, so the QDPC performs better than the DPC.

Table 1. Evaluation indicators of circularly distributed data.

Seed = 21
DPC QDPC

Purity F-Score ARI Purity F-Score ARI

N = 20 1.0 1.0 1.0 1.0 1.0 1.0
N = 40 1.0 1.0 1.0 1.0 1.0 1.0
N = 80 1.0 1.0 1.0 1.0 1.0 1.0

N = 250 0.988000 0.976104 0.952385 1.0 1.0 1.0
N = 500 0.992000 0.984066 0.968192 0.996000 0.992000 0.984032

N = 1000 0.990000 0.980164 0.960360 0.998000 0.996000 0.992008

We also depict the clustering performance of two algorithms when N is fixed at 250 in
Figure 4. All the points are accompanied with their indexes. The points colored yellow are
the centers of the clusters. Other points colored the same are clustering together, so both
DPC and QPDC cluster the data into two groups. But DPC performs slightly worse than
QDPC, since the points with indexes 14, 58 and 33 are colored with green, which should
be purple.
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Figure 4. Experimental results of two algorithms when the data are circularly distributed and the
number N is fixed as 250. (a) Clustering performance of DPC algorithm; (b) clustering performance
of QDPC algorithm.

The experiment was repeated 10 times and the average running times are recorded in
Table 2. It can be seen that with increasing N, the running time of QDPC increases linearly,
and that of the DPC increases exponentially. When N is fixed at 250, 500, or 1000, QDPC
is faster than DPC, but when N is less than 80, DPC is faster than QDPC. The reason for
this may be the fact that we simulated these results on a classical computer. If we ran the
QDPC algorithm on a real quantum computer, the results may show an improvement.

Table 2. Comparison of the complexity of the two algorithms in simulation experiments.

Algorithms N = 20 N = 40 N = 80 N = 250 N = 500 N = 1000

DPC(/s) 0.00500488 0.01701570 0.06606030 0.65659642 2.54531145 10.08315921
QDPC(/s) 0.02302074 0.03603339 0.06806207 0.19617867 0.39135551 0.77470422

Difference(/s) −0.01801586 −0.0190176 −0.00200177 0.46041775 2.15395594 9.30845499
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5. Discussion and Conclusions

We now analyze the complexity of the QDPC algorithm step by step. In (i), a quantum
DistCalc circuit is applied to obtain the distance between two data points. The time
complexity of this step depending on the distance definition is log(N · N) [44]. In (ii) and
(iii), we convert the value d(xi, xj) into aij and add up aij. The time complexity of these
two steps can be measured by the number of register accesses and the quantum addition
circuit. Therefore, in general, the time complexity of this part is O(N + 5N) [48]. In (iv),
(v), and (vi), we perform the conditional rotation operation, the projection operation, and
the bit flip operation. The time complexity is relatively negligible compared with other
steps. Finally, step (vii) requires the application of the Grover algorithm, which introduces
a time complexity of O(

√
N) [49,50]. Thus, the time complexity of the whole algorithm is

O(log(N2) + 6N +
√

N). The space complexity is the space size of the quantum registers,
i.e., dlog Ne + dlog Ne + dn + log(n + d)e + 1 + 1 + dlog Ne = 3dlog Ne + dn + log(n +
d)e+ 2.

For the DPC algorithm, the most time-consuming step is to calculate the distance
between data points. It can be seen that the total distances of 1

2 N(N − 1) times need to
be calculated [51]. So the complexity of the classical DPC algorithm is O(N2). The space
complexity of DPC depends on the space stored, ρi and δi, for each point. The space
required is N · dlog Ne+ N · dn + log(n + d)e bits.

A corresponding comparison between classical and quantum algorithms is shown in
Table 3. Based on Table 3, the QDPC algorithm costs less than the DPC algorithm in terms
of both time and space complexities.

Table 3. Theoretical comparison of the complexity of the two algorithms.

Complexity DPC QDPC

time O(N2) O(log(N2) + 6N +
√

N)
space N · dlog Ne+ N · dn + log(n + d)e 3dlog Ne+ dn + log(n + d)e+ 2

In this paper, we have proposed a QDPC algorithm that is more efficient in both
time and space than the classical algorithm. We applied it to two key circuits, a quantum
DistCalc circuit and a Grover circuit. The quantum DistCalc circuit calculates the distance
between data points in the data set, from which two important attribute values, ρi and
δi, required by the QDPC algorithm are obtained. Then, the Grover algorithm is used to
search the index of clustering center points that meet the conditions from the data set. In
the future, we will investigate some possible application scenarios of the QDPC algorithm
and compare the efficiency of algorithms on different data set structures.
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