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Abstract: We derive the lower bounds for a non-Gaussianity measure based on quantum relative
entropy (QRE). Our approach draws on the observation that the QRE-based non-Gaussianity measure
of a single-mode quantum state is lower bounded by a function of the negentropies for quadrature
distributions with maximum and minimum variances. We demonstrate that the lower bound
can outperform the previously proposed bound by the negentropy of a quadrature distribution.
Furthermore, we extend our method to establish lower bounds for the QRE-based non-Gaussianity
measure of a multimode quantum state that can be measured by homodyne detection, with or without
leveraging a Gaussian unitary operation. Finally, we explore how our lower bound finds application
in non-Gaussian entanglement detection.
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1. Introduction

Non-Gaussian quantum resources, such as non-Gaussian states and operations, are in-
dispensable in continuous-variable (CV) quantum information [1,2] because their Gaussian
counterparts have fundamental limitations in CV quantum information tasks. For instance,
there are Gaussian no-go theorems for quantum entanglement distillation [3–5], quantum
error correction [6], and quantum bit commitment [7]. Furthermore, non-Gaussian quan-
tum resources can be advantageous over Gaussian quantum resources. Non-Gaussian
states can be more noise-resilient than Gaussian states in optical nonclassicality [8] and
quantum entanglement [9–13]. Non-Gaussian operations can improve nonclassical proper-
ties including optical nonclassicality [14–16], quantum entanglement [17–26], and quantum
nonlocality [26–29]. Moreover, they can enhance the performance of CV quantum information
protocols, such as quantum teleportation [30–34], quantum linear amplification [35–37], quan-
tum dense coding [38], quantum key distribution [39], and quantum target detection [40].

Probing non-Gaussianity in CV quantum information, it is essential to obtain a faith-
ful quantifier for non-Gaussianity. Thus, non-Gaussianity measures for quantum states
have been proposed by employing the quantum Hilbert–Schmidt distance [41], quantum
relative entropy (QRE) [42], Wehrl entropy [43], quantum Rényi relative entropy [44],
Wigner–Yanase skew information [45], and Kullback–Leibler divergence (KLD) [46]. Fur-
thermore, quantum non-Gaussianity, i.e., a stronger form of non-Gaussianity, has been
introduced to distinguish genuinely non-Gaussian states from classical mixtures of Gaus-
sian states [47]. The quantum non-Gaussianity measures have been proposed by using
the Wigner logarithmic negativity [48,49], quantum relative entropy [50], stellar represen-
tation [51], and robustness [52]. Additionally, quantum non-Gaussianity witnesses have
been theoretically proposed [47,53–65] and experimentally demonstrated [62–67] to certify
quantum non-Gaussianity efficiently. Here, our main interest is in non-Gaussianity mea-
sures that characterize the difference between a quantum state and its reference Gaussian
state. Although the non-Gaussianity measures are helpful in characterizing non-Gaussian
quantum resources, resource-intensive quantum state tomography [68] is generally re-
quired to obtain the exact value of the measures in general. For the case of QRE-based
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non-Gaussianity measure, observable lower bounds have been developed to address this
issue by using the information of the covariance matrix in conjunction with the photon
number distribution [69] and the negentropy of a quadrature distribution [46]. The former,
i.e., the lower bound in [69], works better than the latter, i.e., the lower bound in [46],
especially for quantum states with rotational symmetry in phase space but demands two
measurement setups, i.e., homodyne detection and photon-number-resolving detection,
in general. If there is a priori information that the quantum state has rotational symmetry
in phase space, the lower bound in [69] can be deduced from a quadrature distribution.
By contrast, the latter requires only homodyne detection always. In addition, the latter can
be used to detect non-Gaussian entanglement in conjunction with partial transposition [46],
which may be impossible for the former. Here, we investigate whether an improved lower
bound can be obtained by exploiting the negentropy of more than one quadrature distri-
bution, which may open the way to detect non-Gaussian entanglement untestable by the
method proposed in [46].

In this study, we show that the sum of the negentropies for two quadrature dis-
tributions with the maximum and minimum variances provides a lower bound for the
QRE-based non-Gaussianity measure of a single-mode quantum state. We demonstrate
that our lower bound can be greater than the maximum negentropy of quadrature distri-
butions, i.e., the lower bound proposed in [46]. We also extend our method to estimate
the non-Gaussianity of multimode quantum states with or without the help of a Gaussian
unitary operation. We finally propose a method to detect non-Gaussian entangled states
beyond the Gaussian positive partial transposition (PPT) entanglement criteria with our
lower bound.

2. Non-Gaussianity Measures

Here, we briefly discuss the non-Gaussianity measures based on QRE [42] and
KLD [46].

The non-Gaussianity measure of a quantum state ρ using QRE was introduced
in [42] as

N (ρ) = S(ρ||ρG) = S(ρG)− S(ρ), (1)

where S(ω||ω′) = tr(ω ln ω) − tr(ω ln ω′) denotes the quantum relative entropy of ω
with respect to ω′, S(ω) = −tr(ω ln ω) denotes the von Neumann entropy of ω, and ρG
denotes the reference Gaussian state of ρ with the same first- and second-order quadrature
moments. The first order quadrature moments of an N-mode quantum state ρ are given by
the expectation value of 2N quadrature operators as 〈Q̂〉 = {〈q̂1〉, 〈 p̂1〉, . . . , 〈q̂N〉, 〈 p̂N〉}T

with q̂j =
1√
2
(âj + â†

j ) and p̂j =
i√
2
(âj − â†

j ) being the position and momentum operators,
respectively, for the jth mode. The covariance matrix Γ of the N-mode quantum state ρ
is a 2N × 2N matrix with elements described by the first- and second-order quadrature
moments as follows:

Γjk =
1
2
〈Q̂jQ̂k + Q̂kQ̂j〉 − 〈Q̂j〉〈Q̂k〉, (2)

with j, k ∈ {1, 2, . . . , 2N− 1, 2N}. Note that an N-mode Gaussian state ρG is uniquely deter-
mined by its first-order quadrature moments and the covariance matrix [2]. Furthermore,
the von Neumann entropy of the Gaussian state ρG is obtained as follows:

S(ρG) =
N

∑
j=1

g(Λj), (3)

where Λj is the jth symplectic eigenvalue of the covariance matrix Γ and the function g(x)
is given by g(x) = (x + 1

2 ) ln(x + 1
2 )− (x− 1

2 ) ln(x− 1
2 ) [2]. We also note that Equation (3)

can be simplified as
S(ρG) = g(

√
det Γ), (4)

when ρG is a single-mode Gaussian state.
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The non-Gaussianity measure of a quantum state ρ by KLD was developed in [46] as

NKL(ρ) = max
Θ,Φ

Jρ(QΘ,Φ), (5)

where Jρ(QΘ,Φ) denotes the negentropy [70] of the probability distribution for an N-mode
quadrature operator Q̂Θ,Φ = ∑N

j=1 cj q̂j,φj . Here, q̂j,φj = q̂j cos φj + p̂j sin φj is a rotated
quadrature operator for the jth mode, Φ = (φ1, φ2, . . . , φN)

T is the set of rotation angles φj,
and Θ = (θ1, θ2, . . . , θN−1)

T is the set of angular coordinates that determines the superposi-
tion coefficient cj as

cj =


cos θ1 for j = 1,

cos θj ∏
j−1
k=1 sin θk for 1 < j < N,

∏N−1
k=1 sin θk for j = N.

(6)

Furthermore, the negentropy J(X) of a probability distribution X is given by

J(X) = DKL(X||XG), (7)

where DKL(X||Y) =
∫

dµX(µ)[ln X(µ) − ln Y(µ)] is the KLD between two probability
distributions X and Y [71], and XG is the reference Gaussian distribution of X with the
same first- and second-order moments as X. Equation (7) can be rewritten as follows:

J(X) = H(XG)− H(X), (8)

where H(X) = −
∫

dµX(µ) ln X(µ) denotes the differential entropy of the probability
distribution X [71].

We have shown in [46] that NKL(ρ) in Equation (5) provides a lower bound for N (ρ)
in Equation (1) as

N (ρ) ≥ NKL(ρ), (9)

which allows us to estimate N (ρ) by measuring a quadrature distribution:

N (ρ) ≥ NKL(ρ) ≥ Jρ(QΘ,Φ). (10)

3. A Lower Bound for Single-Mode Non-Gaussianity

Here, we show that a function of the negentropies for two quadrature distributions
provides a lower bound of the non-Gaussianity N (ρ) for a single-mode quantum state ρ as

N (ρ) ≥ NLB(ρ) ≡ Jρ(QφS) + Jρ(QφS+
π
2
) + ln

2
e

, (11)

where φS and φS + π
2 are the phase angles minimizing and maximizing the variance

of the quadrature distributions, i.e., minφ〈∆q̂2
φ〉 = 〈∆q̂2

φS
〉 and maxφ〈∆q̂2

φ〉 = 〈∆q̂2
φS+

π
2
〉,

respectively, with 〈∆q̂2
φ〉 = 〈q̂2

φ〉 − 〈q̂φ〉2.
To this aim, we first show that

HρG(QφS) + HρG(QφS+
π
2
) = ln(πe) + S2(ρG), (12)

where Sα(ρ) =
1

1−α ln(trρα) is the quantum Rényi-α entropy of a quantum state ρ, which
becomes the von Neumann entropy S(ρ) in the limit of α→ 1. Every single-mode Gaussian
state can be described as a displaced squeezed thermal state:

σ = D̂(β)Ŝ(r, ϕ)τn̄Ŝ†(r, ϕ)D̂†(β), (13)

where τn̄ = ∑∞
n=0

n̄n

(n̄+1)n+1 |n〉〈n| is the thermal state with mean photon number n̄,

D̂(β) = exp(βâ† − β∗ â) is the displacement operator with complex amplitude β, and
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Ŝ(r, ϕ) = exp[− r
2{e2iϕ(â†)2 − e−2iϕ â2}] is the squeezing operator with squeezing strength

r and squeezing direction ϕ. The elements of the covariance matrix for the state σ are
given by

Γ11 = (n̄ +
1
2
)(cosh 2r− sinh 2r cos 2ϕ),

Γ22 = (n̄ +
1
2
)(cosh 2r + sinh 2r cos 2ϕ),

Γ12 = Γ21 = −(n̄ +
1
2
) sinh 2r sin 2ϕ. (14)

In this case, the variance of the quadrature distribution with the phase angle φ is given by

〈∆q̂2
φ〉 = Γ11 cos2 φ + Γ22 sin2 φ + 2Γ12 sin φ cos φ

= (n̄ +
1
2
){cosh 2r− sinh 2r cos 2(φ− ϕ)}, (15)

which is minimized and maximized at φ = ϕ and φ = ϕ + π
2 , respectively. Since the differ-

ential entropy of a Gaussian distribution with the variance v is expressed as 1
2 ln(2πev) [71]

and the quantum Rényi-2 entropy of the single-mode Gaussian state σ in Equation (13) is
determined by S2(σ) = ln(1 + 2n̄) [72], we obtain

Hσ(QφS) + Hσ(QφS+
π
2
) = ln(πe) + S2(σ). (16)

Using the ordering property of the quantum Rényi-α entropy S1(ρ) ≥ S2(ρ) and the
entropic quantum uncertainty relation Hρ(Qφ) + Hρ(Qφ+ π

2
) ≥ ln(2π) + S1(ρ) [73] in

conjunction with Equation (12), we finally have

NLB(ρ) = Jρ(QφS) + Jρ(QφS+
π
2
) + ln

2
e

≤ S2(ρG)− S1(ρ)

≤ S1(ρG)− S1(ρ)

= N (ρ), (17)

which proves Equation (11).
It should be noted that NLB(ρ) can fail to be positive because of the negative constant,

i.e., ln 2
e ≈ −0.307. For a single-mode quantum state ρ withNKL(ρ) < ln e

2 ≈ 0.307,NKL(ρ)
is always greater than NLB(ρ). Therefore, it is necessary to determine whether NLB(ρ) can
outperform NKL(ρ) or not. Some examples are presented in the following subsections.

3.1. Fock States

The quadrature distribution for a Fock state |n〉 is expressed by

Q|n〉〈n|(qφ) =
1

2nn!
√

π
e−q2

φ Hn(qφ)
2, (18)

where Hn(x) is a Hermite polynomial of the order n [74]. The covariance matrix of the
Fock state is given by a 2× 2 diagonal matrix, i.e., Γ = diag( 1

2 + n, 1
2 + n), which yields

N (|n〉〈n|) = (n + 1) ln(n + 1)− n ln n.
In Figure 1, we plotN (ρ),NKL(ρ), andNLB(ρ) as black diamonds, red circles, and blue

triangles, respectively, for the Fock states ρ = |n〉〈n|. It is straightforward to obtain the
values of NKL(ρ) and NLB(ρ), because the Fock states are rotationally symmetric in the
phase space. We observe that NLB(ρ) exceeds NKL(ρ) for n ≥ 2.
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Figure 1. The non-Gaussianity measure based on QRE N (ρ) (black diamond), the maximum negen-
tropy of quadrature distributions NKL(ρ) (red circle), and our lower bound NLB(ρ) (blue triangle)
for Fock states against the mean photon number E = tr(ρâ† â).

3.2. Four-Headed Cat States

We now examine a four-headed cat state |ζγ〉 =
√
Nγ(|γ〉+ |iγ〉+ | − γ〉+ | − iγ〉) [75],

where |γ〉 = exp(− |γ|
2

2 )∑∞
n=0

γn
√

n!
|n〉 denotes a coherent state with complex amplitude γ and

the normalization factor Nγ is given by

Nγ =
exp(|γ|2)

8(cos |γ|2 + cosh |γ|2) . (19)

The quadrature distribution for the four-headed cat state is written by

Q|ζγ〉〈ζγ |(qφ) = Nγ

4

∑
j=1

4

∑
k=1

Q|γj〉〈γk |(qφ), (20)

where the expression Q|γj〉〈γk |(qφ) = 〈qφ|γj〉〈γk|qφ〉 with q̂φ|qφ〉 = qφ|qφ〉 [74] is given by

Q|γj〉〈γk |(qφ) =
1√
π

exp
[
−

(γ∗k eiφ + γje−iφ −
√

2qφ)2

2
−
|γj|2 + |γk|2

2
+ γjγ

∗
k

]
, (21)

where {γ1, γ2, γ3, γ4} = {γ, iγ,−γ,−iγ}.
The covariance matrix of the four-headed cat state is denoted by a 2× 2 diagonal

matrix, i.e., Γ = diag( 1
2 + m, 1

2 + m), with

m = |γ|2 sinh |γ|2 − sin |γ|2
cosh |γ|2 + cos |γ|2 , (22)

which yields N (|ζγ〉〈ζγ|) = (m + 1) ln(m + 1)−m ln m.
In Figure 2, we depict N (ρ), NKL(ρ), and NLB(ρ) as black solid, red dashed, and blue

dot-dashed curves, respectively, for the four-headed cat states ρ = |ζγ〉〈ζγ|. For the
blue dot-dashed curves, we have optimized the value of NLB(ρ) over the phase angle φ,
because the variance of the quadrature distribution is the same for all phase angles. We
observe that NLB(ρ) becomes greater than NKL(ρ) for E > 0.65 (γ > 1.21).
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Figure 2. The non-Gaussianity measure based on QRE N (ρ) (black solid), the maximum negentropy
of quadrature distributions NKL (red dashed), and our lower bound NLB(ρ) (blue dot-dashed) for
four-head cat states against the mean photon number E = tr(ρâ† â).

3.3. Mixture of Coherent States

We now examine a mixture of coherent states in the form of ρ = 1
4 (|γ〉〈γ|+ |iγ〉〈iγ|+

| − γ〉〈−γ|+ | − iγ〉〈−iγ|). Its quadrature distribution is given by

Qρ(qφ) =
1
4

3

∑
k=0

Q|ikγ〉〈ikγ|(qφ), (23)

and its covariance matrix is described by a 2×2 diagonal matrix, i.e., Γ = diag( 1
2 + |γ|2,

1
2 + |γ|2). The QRE-based non-Gaussianity measure N (ρ) is obtained by

N (ρ) = g(
1
2
+ |γ|2) +

4

∑
j=1

λj log λj, (24)

where λ1, λ2, λ3, and λ4 are the eigenvalues of ρ:

λ1 =
1
2

exp(−|γ|2)(cosh |γ|2 + cos |γ|2), (25)

λ2 =
1
2

exp(−|γ|2)(cosh |γ|2 − cos |γ|2), (26)

λ3 =
1
2

exp(−|γ|2)(sinh |γ|2 + sin |γ|2), (27)

λ4 =
1
2

exp(−|γ|2)(sinh |γ|2 − sin |γ|2). (28)

In Figure 3, we plot N (ρ), NKL(ρ), and NLB(ρ) as black solid, red dashed, and blue
dot-dashed curves, respectively, for the mixture of four coherent states. We observe that
NLB(ρ) becomes greater than NKL(ρ) for E > 3.06 (γ > 1.75).
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Figure 3. The non-Gaussianity measure based on QRE N (ρ) (black solid), the maximum negentropy
of quadrature distributions NKL (red dashed), and our lower bound NLB(ρ) (blue dot-dashed) for a
mixture of coherent states against the mean photon number E = tr(ρâ† â).

3.4. Quantum Non-Gaussianity

The mixtures of coherent states are non-Gaussian states but in the convex hull of
Gaussian states. In contrast, the Fock states and four-headed cat states are quantum non-
Gaussian states, i.e., the states out of the convex hull of Gaussian states. One may ask
whether our lower bound NLB(ρ) can discriminate quantum non-Gaussian states from
classical mixtures of Gaussian states or not. Comparing Figures 2 and 3, it is apparent
that NLB(ρ) itself cannot serve as a quantum non-Gaussianity witness. However, we want
to point out that the dynamics of NLB(ρ) under a loss channel can be used for detecting
quantum non-Gaussianity. If the following condition is satisfied for a single-mode quantum
state ρ, it signifies that ρ is quantum non-Gaussian:

NLB(Lη ◦ R[ρ])−NLB(R[ρ]) < ln
1 + 2ηn̄
1 + 2n̄

, (29)

whereR denotes the phase-randomization, Lη represents the loss channels with the effec-
tive transmittance η, and n̄ is the mean photon number of ρ. We can derive Equation (29)
by reformulating the quantum non-Gaussianity condition in [58]:

HR[ρ](Q) < HLη◦R[ρ](Q). (30)

Starting from the fact that the reference Gaussian state of R[ρ] is a thermal state with
mean photon number n̄, it is straightforward to derive HR[ρG]

(Q) = 1
2 ln{πe(1 + 2n̄)} and

HLη◦R[ρG]
(Q) = 1

2 ln{πe(1 + 2ηn̄)}, which yields

NLB(Lη ◦ R[ρ])−NLB(R[ρ]) = 2{HLη◦R[ρG]
(Q)− HR[ρG]

(Q)} − 2{HLη◦R[ρ](Q)− HR[ρ](Q)}

< 2{HLη◦R[ρG]
(Q)− HR[ρG]

(Q)}

= ln
1 + 2ηn̄
1 + 2n̄

. (31)

It signifies that a sufficiently large decrease in NLB(R[ρ]) under a loss channel is only
possible for quantum non-Gaussian states.

4. Lower Bounds for Multimode Non-Gaussianity

For a multimode state, quantum state tomography becomes increasingly difficult as
the number of modes increases [68]. Thus, it is favorable to estimate the non-Gaussianity
of a global quantum state without multimode quantum state tomography.
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For an N-mode quantum state ρ, the total correlation of the quantum state [76] is
given by:

T [ρ] ≡ S(ρ1 ⊗ · · · ⊗ ρN ||ρ) =
N

∑
j=1

S(ρj)− S(ρ), (32)

where ρj represents the local quantum state of the jth mode. If the total correlation of an
N-mode quantum state ρ has a Gaussian extremality [77] as T [ρ] ≥ T [ρG], it allows us to
estimate the non-Gaussianity of the global state by measuring the non-Gaussianity of local
states as

N (ρ) ≥
N

∑
j=1
N (ρj). (33)

However, there are counterexamples for the Gaussian extremality, i.e., T [ρ] < T [ρG] [78].
Therefore, we establish two lower bounds for the non-Gaussianity of a multimode

quantum state ρ:
N (ρ) ≥ L(ρ) ≡ max

j
N (ρj), (34)

and

N (ρ) ≥ L̃(ρ) ≡
N

∑
j=1
N (ρ̃j), (35)

where ρ̃i denotes the local quantum state for the jth mode of ρ̃ = ÛSρÛ†
S , and ÛS represents

a symplectic transformation that diagonalizes the covariance matrix of the global quan-
tum state ρ. Note that such a transformation always exists because of the Williamson’s
theorem [79].

The first lower bound L(ρ) is a direct consequence of the monotonicity of the non-
Gaussianity N (ρ) under a partial trace [69]:

N (ρ) ≥ N (ρj). (36)

The second lower bound L̃(ρ) can be derived by using the invariance of the non-
Gaussianity under Gaussian unitary operations, i.e., N (ρ̃) = N (ρ), the non-negativity of
the total correlation, i.e., T (ρ) ≥ 0, and T (ρ̃G) = 0 as

N (ρ) = N (ρ̃) ≥
N

∑
j=1
N (ρ̃j). (37)

Using Equations (34) and (35) in conjunction with NKL(ρ) and NLB(ρ), we further
establish lower bounds as

L(ρ) ≥ LKL(ρ) ≡ max
j
NKL(ρj), (38)

L̃(ρ) ≥ L̃KL(ρ) ≡∑
j
NKL(ρ̃j), (39)

and

L(ρ) ≥ LLB(ρ) ≡ max
j
NLB(ρj), (40)

L̃(ρ) ≥ L̃LB(ρ) ≡∑
j
NLB(ρ̃j). (41)

These allow us to estimate the non-Gaussianity of a multimode quantum state using
quadrature measurements without extensive experimental efforts, i.e., multimode quantum
state tomography.
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Here, we investigate the CV Werner state [80,81] in the form of ρ = f |Ξr〉〈Ξr| +
(1− f )|0〉〈0|1 ⊗ |0〉〈0|2, where |Ξr〉 = sech r ∑∞

n=0 tanhn r|n〉1|n〉2 is a two-mode squeezed
vacuum with the squeezing parameter r. Its covariance matrix is given by

Γ =


a 0 b 0
0 a 0 −b
b 0 a 0
0 −b 0 a

, (42)

where a = f
2 cosh 2r + 1− f

2 and b = f
2 sinh 2r, which yields

N (ρ) = 2g(
1
2

√
1 + 4 f (1− f ) sinh2 r)− h(

1
2
{1−

√
1− 4 f (1− f ) tanh2 r}), (43)

where h(x) = −x ln x− (1− x) ln(1− x) and

N (ρi) =g(
1
2
+ f sinh2 r) + (1− f tanh2 r) ln(1− f tanh2 r)

+ f tanh2 r{ln( f sech2 r) + cosh2 r ln(tanh2 r)}, (44)

with i ∈ {1, 2}. Note that the eigenvalues of a classical mixture of two pure states, i.e., ρ =
f |Ψ〉〈Ψ|+ (1− f )|Φ〉〈Φ|, are given by

λ± =
1
2
{1±

√
1− 4 f (1− f )(1− |〈Ψ|Φ〉|2)}. (45)

The local quadrature distributions are given by

Qρi (xφ) = f G 1
2 cosh 2r(xφ) + (1− f )G 1

2
(xφ), (46)

where Gv(x) = 1√
2πv

exp(− x2

2v ) and i ∈ {1, 2}. The covariance matrix can be diagonalized
by using a 50:50 beamsplitter. It transforms the CV Werner state into ρ̃ = f |ξr〉〈ξr|1 ⊗
|ξr〉〈ξr|2 + (1− f )|0〉〈0|1 ⊗ |0〉〈0|2, where |ξr〉 =

√
sech r ∑∞

n=0(− tanh r)n
√

(2n)!
2nn! |2n〉 is a

single-mode squeezed vacuum with the squeezing parameter r. The covariance matrix of
the transformed state ρ̃ becomes diag(a− b, a+ b, a− b, a+ b) which yields

N (ρ̃i) = g(
1
2

√
1 + 4 f (1− f ) sinh2 r)− h(

1
2
{1−

√
1− 4 f (1− f )(1− sech r)}), (47)

with i ∈ {1, 2}. The local quadrature distributions are given by

Qρ̃i
(xφ) = f Gvφ(xφ) + (1− f )G 1

2
(xφ), (48)

where vφ = 1
2 (e
−2r cos2 φ + e2r sin2 φ) and i ∈ {1, 2}.

For the CV Werner states, we investigated the performance of the estimation methods
without and with the help of a Gaussian unitary operation, as shown in Figure 4a,b,
respectively. It is observed that LLB(ρ) > LKL(ρ) and L̃LB(ρ) > L̃KL(ρ) occur when
r > 2.43 and r > 2.08, respectively. In addition, the results clearly show that a Gaussian
unitary operation can significantly increase the values of the lower bounds.
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(b)

Figure 4. The non-Gaussianity measure based on QREN (ρ) (black solid curve) and its lower bounds
for the CV Werner state with f = 1

2 against the squeezing parameter r. We examine the cases without
and with the help of the Gaussian unitary operation in (a,b), respectively. The lower bounds based
on local non-Gaussianity measures, i.e., L(ρ) for (a) and L̃(ρ) for (b), the maximum negentropy
of quadrature distributions, i.e., LKL(ρ) ≡ maxjNKL(ρj) for (a) and L̃KL(ρ) = ∑jNKL(ρ̃j) for (b),
and our lower bound, i.e., LLB(ρ) ≡ maxjNLB(ρj) for (a) and L̃LB(ρ) = ∑jNLB(ρ̃j) for (b), are
plotted as purple dotted, red dashed, and blue dot-dashed curves, respectively.

5. Application in Entanglement Detection

Here, we explore how our lower bound can be used to detect quantum entanglement.
Following Refs. [44,46], we first reformulate Equation (4) as follows:√

det Γρ = g−1(S(ρG)) = g−1(N (ρ) + S(ρ)). (49)

As g−1(x) is a monotonically increasing function of x, N (ρ) ≥ NLB(ρ), and S(ρ) ≥ 0,
we have √

det Γρ ≥ g−1(max[0,NLB(ρ)]), (50)

where we take the maximum between zero and NLB(ρ) by considering that NLB(ρ) can be
negative. Note that Equation (50) is an improved version of the Robertson–Schrödinger
(RS) uncertainty relation, i.e.,

√
det Γρ ≥ 1

2 :√
det Γρ ≥ g−1(max[0,NLB(ρ)]) ≥

1
2

. (51)

We now explain how Equation (50) can be used for entanglement detection. First,
we apply partial transposition to a multimode quantum state ρ. The partially transposed
state ρPT remains as a legitimate quantum state if ρ is separable. Therefore, if the partially
transposed state ρPT fails to be a legitimate quantum state, then it witnesses that ρ is entan-
gled. If we know the density matrix of ρ, it is straightforward to test the legitimacy of ρPT.
A negative eigenvalue of ρPT is enough to reveal that ρ is entangled. However, we need to
perform resource-intensive quantum state tomography to obtain the complete information
on ρ. Here, we are interested in resource-efficient certification of entanglement using uncer-
tainty relations. After partial transposition, we apply a symplectic transformation ÛS to
ρPT for diagonalizing the covariance matrix of ρPT. Following Williamson’s theorem [79],
such a transformation always exists. If there is a local mode of ρ = ÛSρPTÛ†

S violates the
RS uncertainty relation, i.e.,

√
det Γρj

< 1
2 , it shows that the entanglement of ρ is detectable

by the Gaussian PPT criteria. Here, we employ Equation (50) instead of the RS uncertainty
relation to detect non-Gaussian entanglement beyond the Gaussian PPT criteria. If there is
a local mode ρj fulfills the following condition,√

det Γρj
< g−1(max[0,NLB(ρj)]), (52)

it certifies the entanglement of ρ.
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Before going further, let us describe a standard procedure to test Equation (52) experi-
mentally. We first determine the covariance matrix Γρ of a multi-mode quantum state ρ by
homodyne detection [82]. As partial transposition on jth mode only flips the sign of the jth
momentum quadrature, we can deduce the covariance matrix ΓρPT of the partially trans-
posed state ρPT simply changing the sign of the relevant covariance matrix elements [83].
For instance, if we apply partial transposition on the second mode of a two-mode quantum
state ρ whose covariance matrix is given by

Γρ =


Γ11 Γ12 Γ13 Γ14
Γ21 Γ22 Γ23 Γ24
Γ31 Γ32 Γ33 Γ34
Γ41 Γ42 Γ43 Γ44

, (53)

we obtain the covariance matrix of the partially transposed state ρPT as

ΓρPT =


Γ11 Γ12 Γ13 −Γ14
Γ21 Γ22 Γ23 −Γ24
Γ31 Γ32 Γ33 −Γ34
−Γ41 −Γ42 −Γ43 Γ44

. (54)

We, then, determine the symplectic transformation ÛS that diagonalizes the covariance
matrix ΓρPT by using the algorithm in [84]. Examining the diagonalized covariance matrix,

we can calculate
√

det Γρj
, i.e., the left-hand side of Equation (52). The symplectic trans-

formation ÛS is a Gaussian unitary operation directly related to a linear transformation of
quadrature operators as Û†

S ˆqj,φÛS = ∑N
k=1 cjk q̂k,φk

[2]. We assume that partial transposition
is applied on the last mode without loss of generality. Then, we have

tr[ρq̂j,φ] = tr[ρPTÛ†
S ˆqj,φÛS]

= tr[ρPT
N

∑
k=1

cjk q̂k,φk
]

= tr[ρ(
N−1

∑
k=1

cjk q̂k,φk
+ cjN q̂N,−φN )], (55)

which indicates that we can measure the quadrature distributions for NLB(ρj), i.e., the
right-hand side of Equation (52), by using an adequately chosen Gaussian unitary operation
and homodyne detection. For instance, if the covariance matrix of a two-mode quantum
state has a symmetry, such as Equation (42), ÛS becomes a 50:50 beam-splitting operation.
In this case, we can obtain NLB(ρ1) by measuring the quadrature distributions for Q̂+ =

1√
2
(q̂1 + q̂2) and P̂− = 1√

2
( p̂1 − p̂2).

Here, we investigate the CV Werner states in the form of ρ = f |Ξr〉〈Ξr|+ (1− f )τn̄,1⊗
τn̄,2. Without loss of generality, we assume that the squeezing parameter r is positive.
By applying partial transposition and a 50:50 beam-splitting operation, we have ρ =
ÛBSρPTÛ†

BS = f τn̄− ,1 ⊗ τn̄+ ,2 + (1− f )τn̄,1 ⊗ τn̄,2 with n̄± = ±e±r sinh r. Note that n̄+ and
n̄− are positive and negative, respectively, for r > 0. Although ρ2 = f τn̄+ + (1− f )τn̄ is
always physical, ρ1 = f τn̄− + (1− f )τn̄ can be unphysical. The negativity in the photon
number distribution of ρ1 exhibits the entanglement of the CV Werner state. For instance,
ρ1 with f = 1

2 and n̄ = 1 becomes unphysical for r > 0.21.

In Figure 5, we plot g(
√

det Γρ1
), NKL(ρ1), and NLB(ρ1) as black solid, red dashed,

and blue dot-dashed curves, respectively, for the CV Werner states with f = 1
2 and n̄ = 1

whose entanglement is undetectable by the Gaussian PPT entanglement criteria. It is
noteworthy that g(

√
det Γρ1

) < NKL(ρ1) is the entanglement condition derived in [46].

We observe that NKL(ρ1) and NLB(ρ1) allow the detection of the entanglement of the CV
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Werner states when r > 2.45 and r > 2.03, respectively. The results indicate that our method
can detect non-Gaussian entangled states that cannot be detected by the method proposed
in [46].

0 1 2 3 4
r

1

2

(nats)

Figure 5. The entropic quantities g(
√

det Γρ1
), NKL(ρ1), and NLB(ρ1) for a CV Werner state ρ =

f |Ξr〉〈Ξr| + (1 − f )τn̄,1 ⊗ τn̄,2 with f = 1
2 and n̄ = 1 are plotted with respect to the squeezing

parameter r as black solid, red dashed, and blue dot-dashed curves, respectively. The shaded region
indicates that Equation (52) reveals the quantum entanglement of the CV Werner state ρ, which is
undetectable by using the Gaussian PPT criteria.

6. Concluding Remarks

We derived observable lower bounds for a non-Gaussianity measure based on QRE.
We first established a lower bound for a single-mode quantum state as a function of the
negentropies of quadrature distributions with the maximum and minimum variances,
and we showed that it could perform better than the previously proposed bound in [46].
We also formulated the strategies for estimating the QRE-based non-Gaussianity of a
multimode quantum state using local quantities with or without leveraging a Gaussian
unitary operation. Furthermore, we explored how our lower bound could be employed to
detect non-Gaussian entanglement beyond the Gaussian PPT entanglement criteria.

We hope that our contributions will facilitate efficient and experimentally friendly cer-
tification methods for CV quantum resources. Although we here employed the quadrature
distributions to address the non-Gaussianity of quantum states, there also exist other forms
of probability representation for quantum states [85]. It will be intriguing to find a quantita-
tive relation between the non-Gaussianity of the tomographic probability distributions and
other non-Gaussianity measures. In addition, it will be worthwhile to extend our estimation
method to more elaborate measures, such as the non-Gaussianity measure for quantum-
state correlation [78] and the measures for quantum non-Gaussianity [48–52], i.e., a more
robust form of non-Gaussianity. This topic will be investigated in future research.
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