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Abstract: In order to automatically recognize different kinds of objects from their backgrounds, a self-
adaptive segmentation algorithm that can effectively extract the targets from various surroundings
is of great importance. Image thresholding is widely adopted in this field because of its simplicity
and high efficiency. The entropy-based and variance-based algorithms are two main kinds of image
thresholding methods, and have been independently developed for different kinds of images over
the years. In this paper, their advantages are combined and a new algorithm is proposed to deal
with a more general scope of images, including the long-range correlations among the pixels that can
be determined by a nonextensive parameter. In comparison with the other famous entropy-based
and variance-based image thresholding algorithms, the new algorithm performs better in terms
of correctness and robustness, as quantitatively demonstrated by four quality indices, ME, RAE,
MHD, and PSNR. Furthermore, the whole process of the new algorithm has potential application in
self-adaptive object recognition.

Keywords: image thresholding; nonextensive entropy; Otsu-based algorithm; gray-level distribution;
self-adaptive algorithm

1. Introduction

One of the most important tasks in image segmentation is to precisely extract objects
from their backgrounds. Image thresholding has previously been widely adopted because
of its simplicity and efficiency [1–3]. For different types of images, a large number of
thresholding algorithms exist based on the characteristics of images. More specifically, the
gray-level distribution, i.e., the histogram of the gray-level image, plays an important role
in the image thresholding algorithms. It is obvious that different types of images will show
different histogram profiles, which contain information relating to both the objects and
their backgrounds. Therefore, it is desirable to identify characteristic functions that can
suggest proper thresholds to separate the objects and backgrounds.

The Otsu algorithm [4] is widely adopted to deal with images having a bimodal his-
togram distribution and can be easily extended to multi-level image segmentation [5–9].
The entropy-based algorithm [10–14] is another option for image segmentation since the
gray-level histogram can be considered as a kind of probability distribution, and maxi-
mization of the corresponding entropies is a nature-inspired means of finding the optimal
thresholds. In order to improve the robustness and anti-interference of the thresholding
algorithms, two-dimensional histogram distributions [15–17] are frequently used to detect
the edges and noise of the images, and thus achieve better segmentation results [18–20].
It is worth mentioning that, among these entropy-based algorithms, “Tsallis entropy-
based thresholding” introduces the concept of nonextensivity into the image segmentation
field [21,22]. The nonextensive entropy can be traced from the complex physical systems
that have long-range interactions and/or long-duration memories [23,24]. There is a nonex-
tensive parameter that measures the strength of the above mentioned non-local effects.

Entropy 2022, 24, 319. https://doi.org/10.3390/e24030319 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24030319
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-5684-0012
https://doi.org/10.3390/e24030319
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24030319?type=check_update&version=1


Entropy 2022, 24, 319 2 of 21

Therefore, it is reasonable to adopt the nonextensive parameter to illustrate the global
correlations among all pixels of an image. From the viewpoint of information theory,
the nonextensive parameter of an image can be determined by the maximization of the
redundancy of the gray-level distribution [25].

Since there are too many categories of images, a unique segmentation algorithm to
deal with all of them effectively does not exist. Nevertheless, a stable algorithm that can
correctly segment a wider variety of images is one of the important goals in computer vision
research [26–33]. The Otsu and Otsu-based algorithms tend to separate the foreground
and background equivalently, so they are not suitable for the extraction of tiny objects.
Conversely, the entropy-based algorithms are too sensitive to the perturbation in images,
and this instability restricts these algorithms from being applied in a more general scope.
In this study, based on the explicit mathematical interpretation and numerical evaluation,
it was found that the Otsu algorithm and the nonextensive entropy-based algorithm can
be properly combined. An effective objective function is thus proposed to overcome both
of the above-mentioned deficiencies. Moreover, the effective nonextensive parameter in
the proposed algorithm is automatically determined by the information redundancy of an
image [25]. Therefore, the proposes approach is a self-adaptive algorithm that can hopefully
be applied to a more general scope of scenes.

The remainder of this paper is organized as follow: in Section 2, the general properties of
the Otsu algorithm are illustrated, and the entropy-based algorithms are briefly introduced;
in Section 3, based on mathematical calculation and numerical evaluation, an effective
objective function is proposed for self-adaptive image thresholding; the detailed results and
analysis are illustrated in Section 4; and the conclusions are presented in Section 5.

2. Image Thresholding Algorithms

Assuming that the size of an image is M× N and the range of its gray-level is consid-
ered as i = 0, 1, . . . , L− 1, the probability of the i-th gray-level can be defined as:

pi =
hi

M× N
, pi ≥ 0, ∑L

i=1 pi = 1 (1)

where M× N is the total number of pixels in the image, hi represents the number of pixels
for which the gray-level value is equal to i. Therefore, the normalization of the probability
distribution is explicitly expressed as Equation (1).

2.1. Otsu Algorithm

Now suppose that the threshold of an image is t. The corresponding gray-level
histogram can be divided into two classes, Ca = (0, 1, . . . , t) and Cb = (t + 1, . . . , L− 1),
and the cumulative probability of the above two classes can be written as:

Pa =
t

∑
i=0

pi, Pb =
L−1

∑
i=t+1

pi (2)

The mean values of the gray-level of Ca and Cb are given by:
ωa =

1
Pa

t
∑

i=0
ipi

ωb = 1
Pb

L−1
∑

i=t+1
ipi

(3)

Using the same idea, the mean gray-level value of the image is:

ωG =
L−1

∑
i=0

ipi (4)
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Therefore, the variances of Ca, Cb, and the total histogram can be respectively written as:
σ2

a =
t

∑
i=0

(i−ωa)
pi
Pa

, σ2
b =

L−1
∑

i=t+1
(i−ωb)

pi
Pb

σ2
G =

L−1
∑

i=0
(i−ωG)pi

(5)

Based on Equation (5), the within-class variance and between-class variance are defined as [4]:{
σ2

W = ωaσ2
a + ωbσ2

b
σ2

B = Pa(ωa −ωG)
2 + Pb(ωb −ωG)

2 (6)

and the following relation holds:
σ2

B + σ2
W = σ2

G (7)

It can be easily seen that for the arbitrary threshold value t, the following relations always hold:{
Paωa + Pbωb = ωG
Pa + Pb = 1

(8)

The key point of the Otsu algorithm is to maximize the between-class variance by selecting
a proper threshold value t∗, i.e.,

t∗ = Arg max
{

σ2
B(t)

}
(9)

In fact, using Equation (8), the between-class variance can be rewritten as:

σ2
B = PaPb(ωb −ωa)

2 (10)

From Equation (10), it is shown that the between-class variance is dominated by two
factors, (ωb −ωa)

2 and PaPb. Maximizing the factor (ωb −ωa)
2 means that the gray-level

difference between Ca and Cb is tuned to the maximum by a proper threshold t1, which
coincides with the principle of image segmentation. However, maximizing the factor PaPb
requires finding another threshold t2 to satisfy Pa = Pb= 1/2, which means that the number
of pixels in the foreground is equal to that in the background. In general, for a given image,
t1 = t2. However, the optimal threshold t∗ represents the trade-off between t1 and t2.
Therefore, the Otsu algorithm always has a tendency to equally separate the pixels of an
image, demonstrating the deficiency when extracting tiny objects from the background.

2.2. Otsu–Kapur Algorithm

The Otsu algorithm is a classical global thresholding technique based on the clustering
theorem. The idea of the entropy-based algorithm is quite different from Otsu’s, although
both of them start from the image’s histogram. Shannon entropy is widely adopted in
entropy-based image thresholding. It was first proposed by Pun [34] and improved by
Kapur in 1985 [35]. By using the a priori entropy of the foreground and background,
an objective function is obtained to indicate the optimal threshold under the Maximum
Entropy Principle.

Based on the gray-level histogram distribution of an image, Shannon entropy is given by:

Sk = −
L−1

∑
i=0

pi ln pi (11)
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Assuming that the histogram is separated into two parts (a and b) by threshold t,. the
corresponding entropies are:

S(a) = −
t

∑
i=0

pi
Pt

ln pi
Pt

= ln Pt +
St
Pt

S(b) = −
L−1
∑

i=t+1

pi
1−Pt

ln pi
1−Pt

= ln(1− Pt) +
Sk−St
1−Pt

Pt =
t

∑
i=0

pi, St = −
t

∑
i=0

pi ln pi
Pt

(12)

The objective function ϕ(t) is given by the sum of S(a) and S(b):

ϕ(t) = S(a) + S(b) (13)

and the optimal threshold of Kapur algorithm is determined by:

t∗ = Argmax{ϕ(t)} (14)

In practice, the Kapur algorithm has better performance than the Otsu algorithm in extract-
ing tiny targets from their background. However, this algorithm is quite sensitive to the
perturbation of pixels. For instance, the value of Equation (13) varies drastically with the
threshold t, which means that the optimal threshold can be easily disturbed by the variation
in gray-level distribution and lead to incorrect segmentation. This instability also restricts
the application of the Kapur algorithm to a more general scope. Taking the characteristics
of the Otsu algorithm into account, it is possible to increase the stability by combining the
Kapur and Otsu algorithms, without losing the accuracy of extracting tiny objects.

For a given image, the total gray-level variance σ2
G is fixed. From Equation (7), we

can see that maximizing the between-class variance p(x) is equivalent to minimizing the
within-class variance σ2

W . Therefore, Equations (5) and (14) yield the objective function:

Ne(t) = ln σW(t)2 − ϕ(t) (15)

The optimal threshold is obtained by the following algorithm:

t∗ = Argmin{Ne(t)} (16)

2.3. Two-Dimensional Entropic Algorithm

The above-mentioned thresholding algorithms are based on the one-dimensional(1D)
gray-level histogram. In order to improve the accuracy and robustness, Ahmed [36]
considered not only the pixel’s gray-level value, but also the spatial correlation of the
pixels in an image. Therefore, the mean gray-level value of neighboring pixels is relevant
and the one-dimensional (1D) histogram distribution is extended to the two-dimensional
(2D) distribution. If a pixel’s gray-level is equal to i and the average gray-level of its
neighborhood is j, the number of this kind of pixel among the image is fij.

The 2D probability distribution can be written as:

pij =
fij

M× N
(17)

The total entropy of the 2D histogram is defined as:

H(L) = −
L−1

∑
i=0

L−1

∑
j=0

pij ln pij (18)

If the two thresholds are located at s and t, the 2D gray-level histogram is divided into four
regions, as shown in Figure 1.
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Assume that the pixels are mainly distributed at two regions, a and b in Figure 1. The
cumulative probabilities a of and b are:

PA(s, t) =
s
∑

i=0

t
∑

j=0
pij

PB(s, t) =
L−1
∑

i=s+1

L−1
∑

j=t+1
pij

(19)

The corresponding entropies can be written as:
HA(s, t) = −

s
∑

i=0

t
∑

j=0

pij
PA(s,t) ln

pij
PA(s,t)

HB(s, t) = −
L−1
∑

i=s+1

L−1
∑

j=t+1

pij
PB(s,t) ln

pij
PB(s,t)

(20)

Based on the additivity of Shannon entropy, the total entropy is defined as:

Ψ(s, t) = HA(s, t) + HB(s, t) (21)

which is dependent on threshold (s, t). By the same idea of the 1D entropy-based algorithm,
maximizing the objective function, i.e., Equation (21), can yield the optimal thresholds:

(s∗, t∗) = Arg
{

max
0<s<L−1

{
max

0<t<L−1
Ψ(s, t)

}}
(22)

In practice, the above 2D entropic algorithm is effective for images with uneven illumina-
tion, noise, missing edges, poor contrast, and other interference from the environment [37].
It is reasonable to consider more correlations between the pixel and its neighborhood, and
the histogram distribution can be extended to higher dimensions. However, the increase in
the number of dimensions will lead to an exponential increment in computation.

2.4. Tsallis Entropy Algorithm

As mentioned above, Shannon entropy is additive and shows the property of extensiv-
ity in image processing. The concept of entropy was first proposed in thermodynamics to
describe the physical systems that have a huge number of microstates. Furthermore, the
extensivity of entropy is based on the assumption that the microstates among the system
are independent of each other. However, for some systems with long-range interactions,
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long-time memory and fractal-type structures, the extensivity may not hold anymore. Tsallis
introduces a kind of non-extensive entropy [23] to describe such systems, expressed as:

ST ≡
1−

L
∑

i=1
pq

i

q− 1
(23)

where q is a real number that describes the nonextensivity of the system. In the q→ 1
limit, Tsallis entropy is reduced to Shannon entropy and the extensivity of the system is
recovered. The nonextensive generalization of entropy also shed lights on the information
theory. In image segmentation, Tsallis entropy shows potential superiority and flexibility
in a more general scope of image class [21].

In the Tsallis entropy algorithm, the cumulative probability of foreground a and
background b are:

Pa =
t

∑
i=1

pi, Pb =
L

∑
i=t+1

pi (24)

According to Equation (23), the entropy of each part can be defined as [21]:
Sa

T(t) =
1−

t
∑

i=1
(

pi
Pa )

q

q−1

Sb
T(t) =

1−
L
∑

i=t+1

(
pi
Pb

)q

q−1

(25)

Suppose that a and b are subsystems of the full image, due to the nonextensivity; the total
entropy of the image is expressed as:

Sa+b
q (t) = Sa

q(t) + Sb
q(t) + (1− q)Sa

q(t)S
b
q(t) (26)

where the third term on the right-hand side of Equation (26) shows the pseudo-additivity
of Tsallis entropy. Maximizing Sa+b

q yields the optimal threshold t∗, which is given by:

t∗ = argmax
{

Sa+b
q (t)

}
(27)

Obviously, the optimal result of Equation (27) depends on the nonextensive parameter q,
which describes the strength of internal correlation of the image. In other words, for an
arbitrary two pixels in the image, their gray-level values may have long-range correlations.
More specifically, for an image containing several objects, the pixels of objects will exhibit
similar gray-level values, even though they are not adjacent to each other. It is possible to
measure this kind of long-range correlation by nonextensive entropy [18,21], and this idea
inspired a new algorithm that is discussed below. Since the parameter q is an additional
index that can tune the optimal threshold, it is of great importance to determine the exact
value of q for a given image. Recently, Abdiel and coauthors introduce a methodology to
evaluate the nonextensive parameter q of an image [25]. Based on the information theory,
the generalized redundancy of an image that presents nonextensive properties can be
expressed as [25]:

R(q) = 1− ST
STmax

(28)

where STmax =
(
1− L1−q)/(q− 1) is the possible maximum q-entropy of the image that

can be achieved at pi = 1/L(0 ≤ i ≤ L− 1), i.e., equipartition of the gray-level probability.
Maximizing Equation (28) by a proper value of q means that the gray-level histogram of
the given image is renormalized to deviate from the equal probability case (containing
zero information) as far as possible. Therefore, the information contained in the image
histogram can be strengthened by a particular q, which is highly image category dependent.
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3. New Algorithm

As mentioned above, the nonextensive entropy algorithm is suitable for describing the
long-range correlations within an image. However, like other entropy-based algorithms, it
is still very sensitive to the perturbation of signals, so the scope of its application is limited.
By comparison, the Otsu algorithm is stable but not accurate for small target extraction.
Therefore, it is possible to combine the advantages of the two and develop a new algorithm
with a more general scope of application. It is worth mentioning that the nonextensive
parameter q in Tsallis entropy is now determined by information redundancy and cannot
be tuned arbitrarily.

Based on Equations (5), (7) and (26), a new objective function can be written as:

µ(t) = Sa+b
q − (σ2

W)
1−q

(29)

In order to retain the concavity of Tsallis entropy, q > 0 should be satisfied [23]. Alterna-
tively, q < 1 is called superextensivity, which will increase the total entropy of the system
in comparison with the extensive case (q = 1) [38]. In practice, almost all categories of
images exhibit the property of superextensivity [25]. Therefore, the proper range of the
nonextensive parameter can be 0 < q < 1. From Equations (9) and (27), we can see that both
of the two algorithms are aimed to maximize the objective functions. Taking Equation (7)
into account, it can be easily seen that the aim of Equation (29) is to maximize the objective
function, i.e.,

t∗ = Argmax{µ(t)} (30)

The optimal threshold is obtained from Equation (30) with the above-mentioned range of
q. For a synthetic image having a bimodal histogram distribution, as shown in Figure 2,
the profile of each peak is the normalized q-Gaussian distribution function [39]. From
Equations (9) and (27), we can see that both the Otsu algorithm and the Tsallis entropy
algorithm indicate the valley gray-level between the two peaks as the optimal threshold,
which exactly coincides with the result of Equation (30). For other natural pictures that
have an arbitrary histogram distribution, there is no evidence that the result of Equation
(9) coincides with that of Equation (27), whereas Equation (29) shows a trade-off between
them and Equation (30) may yield a proper suggestion. For the histogram of Figure 2,
it should be noted that the magnitude difference between Sa+b

q and σ2
W is very large. As

shown in Figure 3, both of them are functions of threshold t. However, the values of the
Tsallis entropy algorithm are totally suppressed by those of the Otsu algorithm for any
possible threshold t. Therefore, it is unsuitable to combine Sa+b

q and σ2
W directly.
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In order to avoid the impact of the magnitude difference, the q-exponential
function [40] can be adopted to revise the magnitude of σ2

W . By definition, Tsallis en-
tropy with a continuous probability distribution function can be expressed as:

ST =
1−

∫ 1
0 p(x)qdx
q− 1

(31)

where p(x) represents the probability density of the normalized gray-level value x. For a
system presenting nonextensive q-entropy, the corresponding probability distribution can
be written as the q-Gaussian function [39]:

p(x) =
1

Zq

[
1− (1− q)· x

2

σ2

] 1
1−q

(32)

where σ2 is the variance of x and Zq is the partition function to keep the probability
normalization condition, i.e.,

Zq =
∫ 1

0

[
1− (1− q)·

( x
σ

)2
] 1

1−q dx

= σ
√

π

2
√

1−q
·

Γ
(

1+ 1
1−q

)
Γ
(

3
2+

1
1−q

) (33)

where Γ(k) is the Gamma function and will reduce to factorial (k− 1)! if k is an integer.
Substituting p(x) into Equation (31) yields:

ST =
1−
∫ 1

0
1

Zq
q

[
1−(1−q)( x

σ )
2] q

1−q dx

q−1

=
1−ξ·(σ2)

1−q
2

q−1

(34)

where:

ξ =

[
π

4(1− q)

] 1−q
2
·

Γ
(

3
2 + 1

1−q

)
Γ
(

1 + 1
1−q

)
q

·
Γ
(

1
1−q

)
Γ
(

3−q
2(1−q)

) (35)
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is the integration constant for a given value of q. If pa and pb are two identical q-Gaussian
distribution functions, according to the nonextensivity of Tsallis entropy, the total entropy
can be written as:

ST(a + b) = ST(a) + ST(b) + (1− q)ST(a)ST(b)

= 1−ξa(σ2
a )

1−q
2

q−1 +
1−ξb(σ

2
b )

1−q
2

q−1 +

(1− q)· 1−ξa(σ2
a )

1−q
2

q−1 · 1−ξb(σ
2
b )

1−q
2

q−1

(36)

Substituting σ2
a = σ2

b = σ2
W into Equation (36) yields:

ST(a + b) =
ξaξb(σ

2
W)

1−q − 1
1− q

(37)

Therefore, the magnitude of (σ2
W)

1−q is comparable with ST(a + b) at the proper range of q,
and the rationality of Equation (29) is shown. The main steps of the present algorithm can
be seen in Figure 4:

Entropy 2022, 24, x FOR PEER REVIEW 10 of 25 
 

 

Therefore, the magnitude of 
12( ) q

W
 

is comparable with ( )
T

S a b  at the proper range of 

q, and the rationality of Equation (29) is shown. The main steps of the present algorithm 

can be seen in Figure 4: 

 

Figure 4. The procedure of the new algorithm. 

The above procedure can also be applied to the segmentation of RGB or other color 

images. The intense distribution of each color channel can be considered as a gray-level 

distribution. Therefore, the threshold value of each channel can be obtained directly. It 

should be mentioned that the intense distributions may differ for different color channels, 

so the above algorithm cannot yield a unified value, in general. By comparison, both the 

Otsu algorithm and entropy-based algorithm can be independently adopted for multi-

level image thresholding. According to the idea of Equation (29), the advantages of these 

two kinds of typical thresholding algorithms can be combined by extending Equation (29) 

to the multi-level case. 

4. Analysis of Experimental Results 

In order to show the stability and feasibility of the proposed algorithm, we used four 

quality indices, namely, Misclassification Error (ME), Relative Foreground Area Error 

(RAE), Modified Hausdorff Distance (MHD), and Peak Signal-to-Noise Ratio (PSNR), to 

illustrate the performance of Equation (29) and make comparisons with the other algo-

rithms mentioned in Section 2. 

4.1. Misclassification Error (ME) 

Misclassification error expresses the percentage of wrongly assigned image pixels 

that represent the object and background images. For the single threshold segmentation, 

ME can be simply expressed as [41]: 

  
 


1

gt t gt t

gt gt

C C B B
ME

C B
 (38) 

Algorithm

Step 1:Input the image 
and obtain its gray-

level histogram 
distribution 

h(t),                   .

Step 2: For                   , 
use Equation (6) to 

calculate the within-
class variance of 
foreground and 

background
           . 

End

Step 3: For a given 
image, use Equation 
(28) to determine the 

value of q.

Step 4:For                   , 
use Equation (23) to 

calculate the total 
entropy of the gray-

level distribution
            . 

Step 5:Revise the 
magnitude of            

as:
                                   
 .

Step 6:Using 
Equation(29) to 

calculate the objective 
function:

                                 .

Step 7:
For                    , 

search max           to 
find the optimal 
threshold       .

2 ( )
W

t

( )a b

q
S t

12( ) ( ( )) , [0,255]q

W
t t t  
 

( ) ( )a b

q
t S t  

{ ( )}t

[0,255]t

[0,255]t

[0,255]t

[0,255]t

2 ( )
W

t

*t

Figure 4. The procedure of the new algorithm.

The above procedure can also be applied to the segmentation of RGB or other color
images. The intense distribution of each color channel can be considered as a gray-level
distribution. Therefore, the threshold value of each channel can be obtained directly. It
should be mentioned that the intense distributions may differ for different color channels,
so the above algorithm cannot yield a unified value, in general. By comparison, both the
Otsu algorithm and entropy-based algorithm can be independently adopted for multi-level
image thresholding. According to the idea of Equation (29), the advantages of these two
kinds of typical thresholding algorithms can be combined by extending Equation (29) to
the multi-level case.

4. Analysis of Experimental Results

In order to show the stability and feasibility of the proposed algorithm, we used
four quality indices, namely, Misclassification Error (ME), Relative Foreground Area Error
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(RAE), Modified Hausdorff Distance (MHD), and Peak Signal-to-Noise Ratio (PSNR), to
illustrate the performance of Equation (29) and make comparisons with the other algorithms
mentioned in Section 2.

4.1. Misclassification Error (ME)

Misclassification error expresses the percentage of wrongly assigned image pixels that
represent the object and background images. For the single threshold segmentation, ME
can be simply expressed as [41]:

ME = 1−
∣∣Cgt ∩ Ct

∣∣+ ∣∣Bgt ∩ Bt
∣∣∣∣Cgt

∣∣+ ∣∣Bgt
∣∣ (38)

where Cgt and Bgt represent the foreground and background of the ground-truth image, Ct
and Bt are the foreground and background pixels in the segmented image, and | . | is the
cardinality of the set. The value of ME is between 0 and 1. The lower the value of ME, the
better the segmentation result.

4.2. Relative Foreground Area Error (RAE)

RAE is a quality assessment parameter that calculates the area of difference between
the segmented image and the ground-truth image, which is defined as [42]:

RAE =

{
As−At

As
, i f At < As

At−As
At

, i f As < At
(39)

where As and At are the area of the ground-truth image and the segmented image, re-
spectively. Obviously, for an ideal segmentation in which At coincides with As, RAE is
zero.

4.3. Modified Hausdorff Distance (MHD)

Hausdorff distance is used to determine the degree of similarity between two objects
that are overlapped with each other. In order to maintain the symmetry form, the Modified
Hausdorff Distance (MHD) is more frequently used and is defined as [43]:

MHD(Rgt, Rt) = max(dMHD(Rgt, Rt), dMHD(Rt, Rgt)) (40)

dMHD(Rgt, Rt) =
1

Rgt
∑

rgt∈Rgt

min
rt∈Rt
‖rgt − rt‖ (41)

where rgt and rt represent objects belonging to the ground-truth image Rgt and the seg-
mented result Rt, respectively, and ‖rgt − rt‖ is the Hausdorff distance. This parameter can
objectively describe the distortion degree of the segmented image and the ground-truth
image. If Rt perfectly coincides with Rgt, then MHD is zero, by definition. Unlike ME and
RAE, MHD is not normalized. For failed segmentation, the value of MHD will be much
larger than 1.

4.4. Peak Signal-to-Noise Ratio (PSNR)

The Peak Signal-to-Noise Ratio is a measurement algorithm used in the image trans-
mission. First, the concept of Mean Square Error (MSE) is required, which is a measure of
the difference between two images. It is defined as [44]:

MSE =
1

M× N

M−1

∑
i=0

N−1

∑
j=0

[
Rgt(i, j)− Rt(i, j)

]2 (42)

where Rgt(i, j) and Rt(i, j) are pixels of the ground-truth image and segmented image,
respectively. It can be easily seen that MSE = 0 if Rgt(i, j) = Rt(i.j) for arbitrary coordinates
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(i, j). Therefore, lower MSE represents better quality of image segmentation. Accordingly,
PSNR is defined in terms of MSE:

PSNR = 10· log10

(
(L− 1)2

MSE

)
(43)

Equation (43) shows that, for ideal segmentation ( MSE→ 0), PSNR will tend to infinity.

4.5. Experimental Results

First, we applied the proposed algorithm to segment several well-known testing
images. The results of the four other algorithms mentioned above are also listed, as shown
in Figures 5–7.
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Figure 7. Baboon.

In Figure 5, compared to the results of the four other algorithms, i.e., Figure 5b–e, the
result of the proposed algorithm has more details and edge contours. In Figure 6, we can
see that both the 2D histogram algorithm and the Tsallis entropic algorithm failed to extract
the objects from the image. However, the result of the proposed algorithm, i.e., Figure 6f is
quite acceptable. We can see more detail information in it, in comparison with Figure 6b,c.
In Figure 7e, it is shown that the Tsallis entropic algorithm over segments the original image
and the detail of the baboon’s face is lost. However, the Otsu, Otsu–Kapur and Shannon
2D thresholds are also not appropriate. As shown in Figure 7b–d, the baboon’s eyes are
blurred by too many black pixels. In contrast, the proposed algorithm has a moderate
result, as shown in Figure 7f.

In order to show the advantages of the proposed algorithm more convincingly, we
choose 50 test images from VOC-2012, BSD300, and Ref. [45] to compare the performance of
these five algorithms. These images have totally different gray-level histograms. Accordingly,
their nonextensive parameters are also very different from each other, as shown in Table 1.
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Table 1. The values of q of 50 test images.

Test q Test q Test q

1 0.6971 18 0.4908 35 0.5385
2 0.3891 19 0.3971 36 0.5217
3 0.6992 20 0.6089 37 0.5613
4 0.4067 21 0.5240 38 0.4409
5 0.6424 22 0.4844 39 0.5170
6 0.4933 23 0.4003 40 0.5139
7 0.4472 24 0.5079 41 0.5189
8 0.4706 25 0.4895 42 0.4960
9 0.4846 26 0.4724 43 0.5670
10 0.4990 27 0.5000 44 0.5107
11 0.5218 28 0.5730 45 0.5304
12 0.5159 29 0.5602 46 0.4680
13 0.4993 30 0.4379 47 0.4757
14 0.4572 31 0.5881 48 0.5823
15 0.6161 32 0.5557 49 0.5716
16 0.5976 33 0.4936 50 0.4884
17 0.5276 34 0.5479

In order to further illustrate the segmentation results visually, we chose pictures 1–5
of Table 1 as examples, as shown in Figures 8–12.
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In Figure 8, the ground-truth image shows that the number of pixels in the foreground
is comparable to that of background. Therefore, both the Otsu algorithm and the proposed
algorithm achieve acceptable results. However, the entropy-based algorithms cannot yield
good results, as shown in Figure 8e,f. In Figure 9, the infrared object is tiny in comparison
with the full image size. The Otsu-based algorithm failed to determine the correct results
as expected, as shown in Figure 9c,d. By comparison, the infrared image may have a
long-range correlation among the pixels, so the Shannon entropy-based algorithm also
failed, as shown in Figure 9e. The results of Figure 9f,g are very close to the ground-
truth image, which indicates that the value of the nonextensive parameter q can correctly
evaluate the long-range correlation in an image. In addition, the value of q is automatically
generated by maximizing Equation (27), so the new algorithm is self-adaptive. The results of
Figures 10 and 12 are quite similar to that of Figure 8, since there is a large amount of noise
in the background and the entropy-based algorithms are very unstable to perturbation,
in spite of the increasing dimension of the histogram. However, the new algorithm can
still correctly segment the images, which shows the potential application in a more general
scope, including tiny object recognition (Figures 9 and 11), background noise suppression
(Figures 10 and 12), and detection of long-range correlation.

From Figure 8e to Figure 12e, we can see that the 2-D Shannon algorithm, as a well-
known entropic thresholding procedure, does not have stable outputs. However, the idea
of extending the dimension of the histogram using the correlation of the neighboring pixels
is still heuristic. It is of great interest to extend Equation (29) into two, or even higher,
dimensions of the histogram because the development of optimization algorithms [15],
refs. [19,20] can effectively reduce the computational cost.

For each image from the testing set, it should be mentioned that the new algorithm and
the Tsallis entropy algorithm share the same value of q, which is determined by maximizing
the information redundancy. However, the Tsallis entropy algorithm is very unstable if the
image is subject to noise interference, even with a proper value of q. In comparison, the new
algorithm is always stable. By comparison, Otsu algorithm is robust but cannot effectively
recognize tiny objects. The new algorithm extracts the advantages of both the Otsu and
entropy-based algorithms in a proper manner, and this point can be further shown using
the detailed quality indices.

For 50 images in the testing set, Tables 2–5 list the above-mentioned four quality
indices of the results generated by the five different algorithms, respectively. Due to the
variety in the testing set, the new algorithm cannot always ensure the best performance for
all images, but its results are still acceptable. Furthermore, the statistical results of Tables 2–5
clearly show the universality of the proposed algorithm for different kinds of images.



Entropy 2022, 24, 319 14 of 21

Table 2. The values of ME of 50 testing images segmented by 5 different algorithms.

Images Otsu Otsu-Kapur Shannon2D Tsallis Proposed

1 3.628 × 10−3 8.611 × 10−3 1.213 × 10−1 2.205 × 10−1 4.408 × 10−2

2 5.453 × 10−1 5.366 × 10−1 4.563 × 10−1 1.487 × 10−3 1.416 × 10−3

3 2.946 × 10−3 2.188 × 10−3 8.968 × 10−1 8.965 × 10−1 3.899 × 10−3

4 6.011 × 10−1 6.169 × 10−1 6.639 × 10−3 1.514 × 10−3 2.614 × 10−3

5 1.083 × 10−2 9.282 × 10−3 9.399 × 10−1 9.401 × 10−1 4.328 × 10−3

6 3.580 × 10−1 3.136 × 10−1 1.053 × 10−2 1.247 × 10−2 2.623 × 10−2

7 4.384 × 10−1 1.006 × 10−3 1.006 × 10−3 1.822 × 10−3 1.388 × 10−3

8 2.930 × 10−1 5.017 × 10−3 1.941 × 10−2 5.503 × 10−3 5.017 × 10−3

9 1.168 × 10−3 1.917 × 10−3 3.372 × 10−3 3.196 × 10−3 2.799 × 10−3

10 7.516 × 10−3 1.917 × 10−3 9.763 × 10−3 9.532 × 10−3 7.789 × 10−3

11 2.305 × 10−2 3.689 × 10−2 5.975 × 10−2 3.689 × 10−2 3.689 × 10−2

12 2.034 × 10−2 3.025 × 10−2 5.327 × 10−2 3.943 × 10−2 3.943 × 10−2

13 1.950 × 10−2 6.446 × 10−3 5.553 × 10−2 8.635 × 10−1 1.950 × 10−2

14 3.745 × 10−1 1.221 × 10−2 2.893 × 10−2 1.317 × 10−2 1.221 × 10−2

15 1.002 × 10−2 1.122 × 10−2 3.156 × 10−2 2.614 × 10−2 1.685 × 10−2

16 4.359 × 10−3 4.359 × 10−3 2.533 × 10−2 1.671 × 10−2 6.512 × 10−3

17 2.238 × 10−2 2.651 × 10−2 5.562 × 10−2 2.866 × 10−2 2.651 × 10−2

18 4.041 × 10−1 3.276 × 10−2 5.220 × 10−2 2.166 × 10−2 3.276 × 10−2

19 4.014 × 10−1 4.014 × 10−1 5.303 × 10−4 3.409 × 10−4 2.272 × 10−4

20 2.714 × 10−1 6.770 × 10−4 8.680 × 10−4 7.118 × 10−2 6.770 × 10−4

21 1.126 × 10−2 1.126 × 10−2 1.119 × 10−2 1.126 × 10−2 9.982 × 10−3

22 5.111 × 10−1 2.359 × 10−2 4.783 × 10−2 2.476 × 10−2 2.359 × 10−2

23 5.150 × 10−1 5.150 × 10−1 3.889 × 10−1 8.214 × 10−3 4.829 × 10−3

24 4.171 × 10−1 4.278 × 10−2 4.346 × 10−2 4.391 × 10−2 4.278 × 10−2

25 5.128 × 10−1 3.313 × 10−3 7.931 × 10−3 3.313 × 10−3 3.313 × 10−3

26 1.737 × 10−3 6.830 × 10−4 6.803 × 10−3 2.590 × 10−3 2.590 × 10−3

27 1.998 × 10−2 2.161 × 10−2 1.662 × 10−2 1.998 × 10−2 2.161 × 10−2

28 4.378 × 10−2 5.334 × 10−2 1.167 × 10−1 6.683 × 10−2 5.843 × 10−2

29 3.967 × 10−1 2.186 × 10−2 3.360 × 10−2 1.654 × 10−2 2.186 × 10−2

30 4.126 × 10−1 6.240 × 10−4 9.885 × 10−1 8.053 × 10−4 1.888 × 10−3

31 9.050 × 10−3 1.214 × 10−2 1.954 × 10−2 2.059 × 10−2 1.749 × 10−2

32 1.881 × 10−1 1.928 × 10−1 8.684 × 10−1 2.020 × 10−1 1.975 × 10−1

33 2.676 × 10−1 2.789 × 10−1 2.642 × 10−1 2.921 × 10−1 2.882 × 10−1

34 5.120 × 10−3 5.020 × 10−3 9.320 × 10−1 7.235 × 10−3 6.085 × 10−3

35 3.980 × 10−2 8.950 × 10−3 1.796 × 10−2 9.851 × 10−3 9.851 × 10−3

36 9.672 × 10−2 8.409 × 10−2 8.336 × 10−2 8.409 × 10−2 8.409 × 10−2

37 1.425 × 10−2 1.195 × 10−2 9.081 × 10−1 7.309 × 10−3 6.360 × 10−3

38 2.487 × 10−1 3.413 × 10−4 9.976 × 10−1 2.453 × 10−4 3.413 × 10−4

39 7.105 × 10−3 4.132 × 10−3 9.818 × 10−1 3.855 × 10−3 3.855 × 10−3

40 2.120 × 10−1 1.879 × 10−1 5.034 × 10−1 5.036 × 10−1 1.434 × 10−1

41 1.169 × 10−1 1.243 × 10−1 2.059 × 10−1 1.661 × 10−1 1.462 × 10−1

42 5.753 × 10−3 2.372 × 10−3 9.867 × 10−1 2.372 × 10−3 3.891 × 10−3

43 1.121 × 10−1 1.172 × 10−1 1.540 × 10−1 1.158 × 10−1 1.172 × 10−1

44 1.081 × 10−4 2.012 × 10−3 7.158 × 10−1 2.792 × 10−3 3.765 × 10−3

45 6.593 × 10−2 7.443 × 10−2 7.850 × 10−2 7.610 × 10−2 7.747 × 10−2

46 4.632 × 10−1 2.564 × 10−3 8.158 × 10−3 2.913 × 10−3 2.564 × 10−3

47 1.810 × 10−1 1.621 × 10−1 1.746 × 10−1 1.447 × 10−1 1.563 × 10−1

48 1.727 × 10−2 1.940 × 10−2 2.483 × 10−1 3.504 × 10−2 2.738 × 10−2

49 6.357 × 10−3 4.805 × 10−3 4.645 × 10−3 1.680 × 10−3 1.226 × 10−3

50 1.773 × 10−1 1.574 × 10−3 1.504 × 10−3 1.875 × 10−3 1.574 × 10−3
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Table 3. The value of RAE of 50 testing images segmented by 5 different algorithms.

Images Otsu Otsu-Kapur Shannon2D Tsallis Proposed

1 1.031 × 10−2 2.776 × 10−2 4.025 × 10−1 7.316 × 10−1 1.462 × 10−1

2 9.964 × 10−1 9.963 × 10−1 9.957 × 10−1 3.640 × 10−1 3.428 × 10−1

3 1.988 × 10−3 9.748 × 10−4 9.758 × 10−1 9.753 × 10−1 3.780 × 10−3

4 2.897 × 10−1 2.653 × 10−1 9.690 × 10−1 9.694 × 10−1 2.158 × 10−1

5 6.043 × 10−1 6.202 × 10−1 6.624 × 10−3 1.380 × 10−3 2.511 × 10−3

6 3.668 × 10−1 4.187 × 10−1 1.045 × 10−2 1.459 × 10−2 3.068 × 10−2

7 9.851 × 10−1 2.551 × 10−2 2.051 × 10−2 1.415 × 10−1 8.173 × 10−2

8 9.622 × 10−1 3.009 × 10−1 6.280 × 10−1 3.210 × 10−1 3.009 × 10−1

9 3.699 × 10−2 8.886 × 10−2 1.464 × 10−1 1.398 × 10−1 1.246 × 10−1

10 1.569 × 10−2 8.886 × 10−2 1.352 × 10−2 9.160 × 10−3 3.171 × 10−3

11 2.542 × 10−2 4.068 × 10−2 6.589 × 10−2 4.068 × 10−2 4.068 × 10−2

12 2.290 × 10−2 3.416 × 10−2 6.015 × 10−2 4.452 × 10−2 4.452 × 10−2

13 8.167 × 10−2 2.120 × 10−1 4.338 × 10−1 9.225 × 10−1 2.120 × 10−1

14 9.742 × 10−1 5.519 × 10−1 7.448 × 10−1 5.705 × 10−1 5.519 × 10−1

15 1.710 × 10−2 3.738 × 10−2 1.961 × 10−1 1.609 × 10−1 9.227 × 10−2

16 1.156 × 10−2 1.156 × 10−2 6.296 × 10−2 4.434 × 10−2 1.727 × 10−2

17 1.011 × 10−1 1.175 × 10−1 2.184 × 10−1 1.258 × 10−1 1.175 × 10−1

18 4.710 × 10−1 2.131 × 10−2 4.327 × 10−2 7.205 × 10−3 2.131 × 10−2

19 9.948 × 10−1 9.948 × 10−1 2.029 × 10−1 1.129 × 10−1 6.779 × 10−2

20 9.675 × 10−1 2.416 × 10−2 3.314 × 10−2 3.136 × 10−2 2.416 × 10−2

21 4.315 × 10−1 4.315 × 10−1 4.300 × 10−1 4.315 × 10−1 4.021 × 10−1

22 9.552 × 10−1 4.787 × 10−1 6.642 × 10−1 4.938 × 10−1 4.787 × 10−1

23 9.762 × 10−1 9.762 × 10−1 9.687 × 10−1 3.959 × 10−1 2.781 × 10−1

24 8.857 × 10−1 4.430 × 10−1 4.469 × 10−1 4.494 × 10−1 4.430 × 10−1

25 9.551 × 10−1 1.143 × 10−1 2.476 × 10−1 1.208 × 10−1 1.143 × 10−1

26 1.790 × 10−3 1.692 × 10−5 6.459 × 10−3 2.008 × 10−3 2.008 × 10−3

27 1.010 × 10−2 1.261 × 10−2 6.825 × 10−3 1.010 × 10−2 1.261 × 10−2

28 3.615 × 10−2 1.110 × 10−1 3.536 × 10−1 1.782 × 10−1 1.395 × 10−1

29 4.042 × 10−1 2.227 × 10−2 3.423 × 10−2 1.685 × 10−2 2.227 × 10−2

30 4.145 × 10−1 4.988 × 10−4 9.944 × 10−1 2.199 × 10−4 9.230 × 10−4

31 1.719 × 10−2 1.781 × 10−2 9.285 × 10−2 8.773 × 10−2 6.442 × 10−2

32 1.937 × 10−1 1.988 × 10−1 9.007 × 10−1 2.088 × 10−1 2.038 × 10−1

33 2.787 × 10−1 2.904 × 10−1 2.752 × 10−1 3.042 × 10−1 3.001 × 10−1

34 3.808 × 10−3 2.893 × 10−3 9.977 × 10−1 3.324 × 10−3 1.986 × 10−3

35 1.867 × 10−1 4.910 × 10−2 6.479 × 10−2 2.067 × 10−2 2.067 × 10−2

36 2.157 × 10−1 1.399 × 10−1 9.805 × 10−2 1.399 × 10−1 1.399 × 10−1

37 1.514 × 10−2 1.264 × 10−2 9.946 × 10−1 2.725 × 10−3 5.820 × 10−3

38 2.491 × 10−1 3.419 × 10−4 9.995 × 10−1 2.457 × 10−4 3.419 × 10−4

39 7.191 × 10−3 4.195 × 10−3 9.986 × 10−1 2.747 × 10−3 2.747 × 10−3

40 1.141 × 10−2 9.791 × 10−3 9.979 × 10−1 9.987 × 10−1 4.589 × 10−3

41 1.679 × 10−1 1.796 × 10−1 3.030 × 10−1 2.432 × 10−1 2.133 × 10−1

42 5.796 × 10−3 1.452 × 10−3 9.996 × 10−1 1.452 × 10−3 4.138 × 10−4

43 1.128 × 10−1 1.190 × 10−1 1.599 × 10−1 1.174 × 10−1 1.190 × 10−1

44 1.108 × 10−4 2.063 × 10−3 7.342 × 10−1 2.864 × 10−3 3.862 × 10−3

45 5.195 × 10−2 6.429 × 10−2 7.306 × 10−2 6.650 × 10−2 6.842 × 10−2

46 9.915 × 10−1 3.928 × 10−1 6.730 × 10−1 4.237 × 10−1 3.928 × 10−1

47 2.117 × 10−1 1.897 × 10−1 2.042 × 10−1 1.693 × 10−1 1.829 × 10−1

48 4.399 × 10−2 2.698 × 10−2 5.420 × 10−1 1.175 × 10−1 8.164 × 10−2

49 6.647 × 10−3 4.985 × 10−3 4.885 × 10−3 1.077 × 10−3 3.077 × 10−4

50 8.989 × 10−1 6.968 × 10−2 4.994 × 10−2 1.045 × 10−2 6.968 × 10−2
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Table 4. The value of MHD of 50 testing images segmented by 5 different algorithms.

Images Otsu Otsu-Kapur Shannon2D Tsallis Proposed

1 0.7029 1.2836 4.9663 6.7715 3.1038
2 11.7156 11.6110 10.6244 0.1976 0.1890
3 0.5922 0.5024 18.4577 18.4577 0.6871
4 14.3347 14.6405 0.8646 0.3246 0.4621
5 1.2517 1.1626 21.3836 21.3640 0.7552
6 9.2300 10.2477 1.0750 0.9396 1.4021
7 9.4387 0.1241 0.1157 0.2332 0.1869
8 7.9342 0.5524 1.4978 0.5838 0.5524
9 0.1166 0.2286 0.3417 0.3543 0.3202
10 1.0453 1.0482 1.2970 1.3117 1.0921
11 1.3459 1.8848 2.5976 1.8848 1.8848
12 1.1320 1.5287 2.3010 1.9039 1.9039
13 0.3694 0.8507 1.6909 8.8287 0.8507
14 8.6337 1.3737 2.2707 1.4357 1.3737
15 0.8680 0.9532 1.6164 1.5651 1.2187
16 0.2710 0.2710 1.0297 0.7990 0.3800
17 1.2400 1.3689 2.0293 1.4668 1.3689
18 7.9769 1.9261 2.4025 1.5822 1.9261
19 6.9689 6.9689 0.0219 0.0339 0.0294
20 4.1651 0.1266 0.1433 0.1349 0.1266
21 0.8545 0.8545 0.8520 0.8545 0.7773
22 9.8265 1.6602 2.3906 1.6995 1.6602
23 11.2817 11.2817 9.7391 0.8620 0.5391
24 6.1740 1.8942 1.9034 1.9199 1.8942
25 9.1926 0.4914 1.0172 0.4914 0.4914
26 0.3106 0.1967 1.0152 0.5496 0.5496
27 1.8218 1.8572 1.6733 1.8218 1.8572
28 3.2017 3.4556 1.8630 3.4965 3.4838
29 4.6476 0.4281 0.5962 0.3106 0.4281
30 10.3385 0.1780 21.6996 0.2272 0.3698
31 1.2804 1.6457 2.2450 2.4751 2.1817
32 5.6362 5.7402 18.5767 5.9757 5.8568
33 5.5016 6.1290 5.3075 6.9198 6.7114
34 0.7113 0.7200 21.2428 1.2786 1.0295
35 3.6282 1.2932 2.0579 1.6302 1.6302
36 5.9186 5.4392 5.6658 5.4392 5.4392
37 1.8822 1.6910 20.8121 1.2489 1.0532
38 10.7641 0.0966 22.2088 0.0760 0.0966
39 0.6336 0.4747 21.8053 0.5334 0.5334
40 0.5525 0.2500 20.0422 0.7332 0.7332
41 4.2936 4.5829 6.5464 5.7988 5.2712
42 0.4311 0.3480 22.1219 0.3480 0.5231
43 7.3737 7.5572 8.7283 7.5083 7.5572
44 0.0488 0.4478 17.6588 0.5756 0.7164
45 4.3665 4.8212 4.9057 4.8945 4.9490
46 8.5651 0.2903 0.7585 0.3222 0.2903
47 8.3824 7.9125 7.8823 7.4598 7.7639
48 1.4807 1.8018 7.0569 2.4557 2.1798
49 0.6611 0.5477 0.8580 0.4113 0.3190
50 5.5122 0.1284 0.1600 0.2234 0.1284
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Table 5. The value of PSNR of 50 testing images segmented by 5 different algorithms.

Images Otsu Otsu-Kapur Shannon2D Tsallis Proposed

1 24.4028 20.6494 9.1613 6.5658 13.5576
2 2.6335 2.7034 3.4067 28.2768 28.4887
3 25.3066 26.5994 0.4728 0.4745 25.0903
4 2.2099 2.0973 21.7790 28.1972 25.8268
5 19.6514 20.3235 0.2688 0.2679 23.6369
6 19.4818 19.4818 19.5086 19.4818 20.0075
7 3.5809 29.9699 29.9699 27.3923 28.5733
8 5.3313 22.9952 17.1198 22.5936 22.9952
9 29.3248 27.1724 24.7207 24.9539 25.5296
10 21.2398 21.2398 20.1041 20.2081 21.0849
11 16.3721 14.3309 12.2365 14.3309 14.3309
12 16.9161 15.1918 12.7347 14.0417 14.0417
13 21.9069 17.0987 12.5542 0.6371 17.0987
14 4.2650 19.1309 15.3857 18.8041 19.1309
15 19.9912 19.4977 15.0084 15.8254 17.7334
16 23.6062 23.6062 15.9631 17.7682 21.8623
17 16.5001 15.7653 12.5471 15.4270 15.7653
18 3.9349 14.8456 12.8232 16.6430 14.8456
19 3.9638 3.9638 32.7548 34.6736 36.4345
20 5.6638 31.6936 30.6145 31.4764 31.6936
21 21.9069 17.0987 12.5542 0.6371 17.0987
22 2.9149 16.2726 13.2023 16.0618 16.2726
23 19.9912 19.4977 15.0084 15.8254 17.7334
24 23.6062 23.6062 15.9631 17.7682 21.8623
25 16.5001 15.7653 12.5471 15.4270 15.7653
26 27.6002 31.6554 21.6728 25.8667 25.8667
27 16.9925 16.6516 17.7922 16.9925 16.6516
28 13.5864 12.7288 9.3287 11.7501 12.3330
29 4.0145 16.6031 14.7356 17.8129 16.6031
30 3.8442 32.0482 0.0499 30.9402 27.2400
31 20.4332 19.1545 17.0905 16.8619 17.5713
32 7.2547 7.1474 0.6125 6.9447 7.0439
33 5.7238 5.5455 5.7792 5.3433 5.4028
34 22.9073 22.9930 0.3057 21.4056 22.1574
35 14.0006 20.4814 17.4554 20.0652 20.0652
36 10.1444 10.7521 10.7900 10.7521 10.7521
37 18.4612 19.2256 0.4183 21.3612 21.9652
38 6.0426 34.6682 0.0101 36.1024 34.6682
39 21.4843 23.8383 0.0797 24.1388 24.1388
40 6.7362 7.2601 2.9806 2.9789 8.4326
41 9.3201 9.0553 6.8620 7.7954 8.3483
42 22.4005 26.2482 0.0582 26.2482 24.0984
43 9.5023 9.3082 8.1233 9.3610 9.3082
44 39.6614 26.9637 1.4516 25.5396 24.2415
45 11.8090 11.2821 11.0510 11.1858 11.1083
46 3.3420 25.9106 20.8839 25.3555 25.9106
47 7.4230 7.9009 7.5796 8.3931 8.0586
48 17.6259 17.1214 6.0497 14.5537 15.6255
49 21.9673 23.1828 23.3298 27.7469 29.1127
50 7.5114 28.0297 28.2257 27.2700 28.0297

For 50 testing images, the segmented results and the corresponding ME of the different
thresholding algorithms may be very different. However, the performances of these
algorithms can be statistically evaluated. Figure 13 shows the average ME values of the
50 images yielded by the above-mentioned five algorithms, and Figure 14 represents the
average values of RAE. As shown, the average ME value of the proposed algorithm is the
lowest in comparison with those of the other algorithms. Furthermore, the variance in
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the ME value of the proposed algorithm is much less than those of the other algorithms.
Therefore, both accuracy (lower ME value) and stability (lower variance) of the new
algorithm are better than those of the algorithms, which means that this algorithm is
suitable and more robust for a more general category of images. By the same analysis,
we can see that the average value and variance in RAE of the new algorithm were both
the lowest among all the results, which indicates that the new algorithm is better than the
others in foreground area detection.
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As mentioned above, the values of MHD and PSNR are not normalized. For 50
segmented results of the testing set, the distributions of MHD and PSNR are not at [0, 1],
but at (0, ∞). Therefore, it is possible that their variances are larger than the averages.
Figure 15 shows the comparison of MHD among the five algorithms. As we can see, the
average MHD of the new algorithm again achieves the lowest value, and the corresponding
variance is less than that of the others. This means that the new algorithm can maintain the
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shape of the objects in a more correct and stable manner. Figure 16 shows the comparison
results of PSNR. Unlike the other three quality indices, the larger PSNR value means a
better quality of information transmission. Therefore, we can see that the new algorithm
still performs better than the others in this quality index (largest PSNR value), with a better
robustness (lowest variance).
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5. Conclusions

In the task of computer vision, it is of great importance to explore algorithms that
can correctly recognize the objects from different kinds of backgrounds in a stable way.
The Otsu algorithm is based on the variance in the gray-level distribution of an image. It
can yield stable thresholding results but has deficiencies in small target recognition. The
entropy-based algorithms are suitable for small target extraction and can even detect the
long-range correlation among pixels using a nonextensive parameter. However, the entropy-
based objective functions can be easily disturbed by noise. In the present paper, based
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on the rigorous mathematical and numerical results, we combine the advantages of the
Otsu algorithm and nonextensive entropy algorithm to develop a new algorithm that can
effectively segment the objects from various kinds of background in a more stable manner.
For 50 images chosen from different categories, the quality indices of ME, RAE, MHD, and
PSNR were adopted to evaluate the segmentation results. In comparison with the other
famous thresholding algorithms, the statistical results show that the proposed algorithm
has better performance than the others in each of the four quality indices. In addition, there
is no artificial intervention during the whole process. Therefore, the proposed algorithm is
an approach to automatic image thresholding that has potential application in self-adaptive
object recognition.
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