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Abstract: Deep neural networks in the area of information security are facing a severe threat from
adversarial examples (AEs). Existing methods of AE generation use two optimization models:
(1) taking the successful attack as the objective function and limiting perturbations as the constraint;
(2) taking the minimum of adversarial perturbations as the target and the successful attack as
the constraint. These all involve two fundamental problems of AEs: the minimum boundary of
constructing the AEs and whether that boundary is reachable. The reachability means whether the
AEs of successful attack models exist equal to that boundary. Previous optimization models have
no complete answer to the problems. Therefore, in this paper, for the first problem, we propose
the definition of the minimum AEs and give the theoretical lower bound of the amplitude of the
minimum AEs. For the second problem, we prove that solving the generation of the minimum
AEs is an NPC problem, and then based on its computational inaccessibility, we establish a new
third optimization model. This model is general and can adapt to any constraint. To verify the
model, we devise two specific methods for generating controllable AEs under the widely used
distance evaluation standard of adversarial perturbations, namely Lp constraint and SSIM constraint
(structural similarity). This model limits the amplitude of the AEs, reduces the solution space’s search
cost, and is further improved in efficiency. In theory, those AEs generated by the new model which
are closer to the actual minimum adversarial boundary overcome the blindness of the adversarial
amplitude setting of the existing methods and further improve the attack success rate. In addition,
this model can generate accurate AEs with controllable amplitude under different constraints, which
is suitable for different application scenarios. In addition, through extensive experiments, they
demonstrate a better attack ability under the same constraints as other baseline attacks. For all the
datasets we test in the experiment, compared with other baseline methods, the attack success rate of
our method is improved by approximately 10%.

Keywords: information security; minimum adversarial examples (AEs); controllable optimization of
AEs; Lp constraint; SSIM constraint

1. Introduction

With the wide applications of a system based on DNNs, the concerns of their security
become a focus. Recently, researchers have found that adding subtle perturbations to the
input of deep neural networks causes models to give a wrong output with high confidence.
Furthermore, they call the deliberately constructed inputs adversarial examples (AEs).
The attack of DNNs by AEs is called adversarial attacks. These low-cost adversarial
attacks can severely damage applications based on DNNs. Adding adversarial patches
onto traffic signs can lead to auto-driving system error [1]. Adding adversarial logos to
the surface of goods can impede automatic check-out in automated retail [2]. Generating
adversarial master prints can destroy deep fingerprint identification models [3]. In any of
the aforementioned scenarios, AEs can cause great inconvenience and harm people’s lives.
Therefore, AEs become an urgent issue in the area of AI security.

In the research on generating AEs, two fundamental problems exist: (1) What is the
minimum boundary of the amplitude of adversarial perturbations? All the models try to
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generate AEs with smaller adversarial perturbations. It is their objective to add as few
adversarial perturbations as necessary to the clean example to achieve the attack; (2) Is the
minimum boundary of adversarial amplitude reachable? The reachability refers to whether
examples with adversarial perturbations that are under a minimum bound of adversarial
amplitude can successfully attack as well as whether AEs exist under that boundary.

In order to answer those two problems, traditional AE generation can be devised into
two main optimization models: (1) Taking the successful attack as the objective function
and the limitation of perturbations as the constraint. This limitation is usually limited as
less than or equal to a value, as shown in Equation (1). For a neural network F, input
distribution ℵ ⊂ Rn, a point X0 ∈ ℵ, X ∈ Rn, X is the adversarial example of X0 under the
v constraint. D is the distance metric function:

F(X) 6= F(X0)

s.t. D(X, X0) ≤ v
(1)

(2) Taking the minimum of adversarial perturbations as the target and the success of the
attack as the constraint:

min D(X, X0)

s.t. F(X) 6= F(X0)
(2)

However, the above two models do not solve the two problems well: (1) for the first
model, when setting the limitation of AEs in the constraint, whether the model has a
solution depends on the limit value v. The model may have no solution when the limit
value v is too small. However, when the limit value is larger, the constraint on the AEs is too
relaxed, and thus the gap between the solution and the minimum AEs is larger; (2) For the
second model, when the limitation of adversarial perturbations is in the objective function,
the perturbations will decrease in the whole optimization process until it drops in the local
optimum of the whole objective function. This optimization model can easily fall into local
optimization so that the solution is not the minimum adversarial example. At the same
time, this paper also proves that finding the minimum AEs is an NPC problem, so it cannot
find the real minimum AEs.

Therefore, in this paper, we focus on answering the problems mentioned above. For
the first problem, we propose the concept of minimum AEs and give the theoretical lower
bound of the amplitude of minimum adversarial perturbations. For the second problem, we
prove that generating the minimum adversarial example is an NPC problem, which means
that the minimum boundary of adversarial amplitude is computationally unreachable.
Therefore, we generate the controllable approximation of the minimum AEs. We use
the certified lower bound of minimum adversarial distortion to constrain the adversarial
perturbations and transform the traditional optimization problem into another new model.
(3) Taking the successful attack as a target and the adversarial perturbations are equal to
the lower bound of the minimum adversarial distortion plus a controllable approximation,
as shown in Equation (3). εNNS is the lower bound of the minimum adversarial distortion
and δε is a constant of controllable approximation:

F(X) 6= F(X0)

s.t. D(X, X0) = εNNS + δε
(3)

This model has two advantages compared with the existing methods: (1) Better
attack success rate under the same amplitude of adversarial perturbations. Based on the
theoretical lower bound of the amplitude of the minimum perturbations, the AEs overcome
the blindness of the existing methods by controlling the increment in that amplitude and
improve the attack success rate of the AEs. (2) More precisely controlled amplitude of
adversarial perturbations under different constraints. The amplitude of the adversarial
perturbations will affect the visual quality of AEs. To go a step further, for different
scenarios of applications of the AEs, the requirements of visual quality are different. In
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some scenarios, they are very strict, while others are relaxed. There are two common
scenarios as follows: (1) collaborative evaluation of humans and machines. In that case,
AEs need to deceive both human oracles and the classifiers based on DNNs. For example,
in the scenario of auto-driving, if the patches too easily draw humans’ attention, these
adversarial signs would be moved and they would lose their adversarial effect. (2) Single
evaluation of machines. In that case, only the classifiers and models based on DNNs need to
be bypassed. In the scenario of massive electronic data filtering, they have a low probability
of human involvement. When filtering and testing the harmful data involving violence
and terrorism, it may heavily depend on the machines so that it has lower requirements for
visual quality. Therefore, in order to adapt the two entirely different scenarios, we need to
be able to controllably generate AEs.

Meanwhile, generating controllable AEs also brings additional benefits. There are two
different views with different implications: (1) Attackers can adaptively and dynamically
adjust the amplitude of perturbations. As the described above, the defense technologies
against adversarial attacks are mainly detection methods. From the attackers’ point of
view, when their target is a combined network or system with detectors in front of the
target classifier, as Figure 1 shows, they will expect to evaluate the successful probability of
attacking the combined network before implementing the attack. For example, supposing
that they know the probability of AEs with fixed perturbation bypassing the detector in
advance according to prior knowledge, then they can purposefully generate AEs with
bigger perturbations or more minor perturbations with a better visual quality to human
eyes. (2) Defenders can actively defend against the attacks with the help of the outputs of
controllable AEs. From the defenders’ point of view, controllable AEs can help evaluate
defenders’ abilities against the AEs of different modification amplitude. When inputting
different AEs with fixed adversarial perturbations to models, the defenders can evaluate
their anti-attack capabilities according to the outputs against the unclean examples and
then decide whether to add additional defense strategies with an emphasis on the current
setting. For the example mentioned in the last point, if the defender has prior knowledge
about the attackers’ average perturbation amplitude, they can select whether additional
defensive measures are necessary.

+
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Figure 1. Figure representing the framework of the settings. The top framework is the traditional
attack setting and the bottom is our attack setting. In the top setting, the target of the adversarial
attack is a single target classifier while our setting is a combined network including a target classifier
and a detector.
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In this paper, we first give the definitions of minimum adversarial perturbations and
AEs and the theorem of generating minimum AEs as an NPC problem and then propose
a new model of generating adversarial examples. Furthermore, we give two algorithms
for generating an approximation of AEs under Lp and SSIM constraints. We perform
experiments under widely used datasets and models for all the datasets tested in the
experiment; compared with other baseline methods, the attack success rate of our method
is improved by approximately 10%.

Our contributions are as follows:

• We first prove that generating minimum AEs is an NPC problem. We then analyze the
existence of AEs with the help of the definition of the lower bound of the minimum
adversarial perturbations. According to the analysis, we propose a general framework
to generate an approximation of the minimum AEs.

• We propose the methods of generating AEs with a controllable amplitude of AEs
under the L2 and SSIM constraints. Additionally, we further improve the visual
quality in case of greater perturbations.

• The experiments demonstrate that our method has a better performance in terms of
attack success rate than other widely used methods at baseline under the same con-
straint. Meanwhile, its performance of precisely controlled amplitude of adversarial
perturbations under different constraints is also better.

The rest of this paper is organized as follows. In Section 2, we briefly review the
related work. In Section 3, we describe the basic definition, theorem and model of our
algorithm in detail and prove the theorem. In Section 4, we give the transformed model of
the basic model under two constraints and provide the efficient solution algorithm of the
two models, respectively, in the two subsections. In Section 6, we present our experimental
results and compare them with other baseline methods. Finally, we conclude our paper in
Section 7.

2. Related Work
2.1. Adversarial Attack

There are two main pursuits of AEs: one is the smaller perturbations of the AEs; and
the other is the successful attack. Previous works transform the two pursuits into two main
optimization models. One takes the successful attack as the objective function and the
limitation of perturbations as the constraint. These works include L-BFGS [4], C&W [5],
DF [6] and HCA [7]. The other takes the successful attack as the objective function and
the limitation of perturbations as the constraint. Such works include UAP [8], BPDA [9]
and SA [10]. Other works, including FGSM [11], JSMA [12], BIM [13] and PGD [14] do
not directly use the model of the optimization problem. However, these methods convert
the successful attack into a loss function, move it along the direction of the decrease or
increase in the loss function to find the AEs, and use a value at each step to constrain the
perturbations. They can be classified as the second optimization model from the point of
method-based view.

However, these works cannot really find the minimum AEs with the minimum am-
plitude of adversarial perturbations. For the first model, the model may have no solution
when the value is set as too small. Furthermore, for the second model, it is easy to fall into
local optimization.

Meanwhile, considering the constraint function of adversarial perturbations, the works
of adversarial example generation can be divided into two main classes. One AEs gen-
eration under Lp constraint, including L0 constraint [14,15], L2 constraint [14] and L∞
constraint [11,13,14], which is widely used. Furthermore, in addition to that Lp constraint,
there were other constraints in previous studies. In [16], the authors proposed that the
commonly used Lp constraint failed to completely capture the perceptual quality of AEs in
the field of image classification. This used the structural similarity index SSIM [17] measure
to replace that constraint. Moreover, the other two works [18,19] also used perceptual dis-
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tance measures to generate AEs. The work [18] used SSIM while [19] used the perceptual
color distance to achieve the same purpose.

However, the constraint of those works is not strict. For the AEs generation under the
Lp constraint, it is hard to control the amplitude of perturbations and there is a deviation of
AEs generated by those works. For the other constraints, they cannot strictly control the
perceptual visual quality: neither the SSIM value nor perceptual color distance.

Therefore, in this paper, we search for the minimum AEs with the minimum amplitude
of perturbations. Moreover, we prove that generating the minimum AEs is an NPC
problem. Furthermore, we transform that problem into the new optimization model that
generates the controllable approximation of the minimum AEs. We generate AEs with
a controllable amplitude of adversarial perturbations under the Lp constraint and SSIM
constraint, respectively.

2.2. Certified Robustness

The robustness of neural networks focuses on searching the lower bound and upper
bound of the robustness of neural networks. The lower bound of the robustness is that
there are no AEs when adding adversarial perturbations that are less than or equal to
that boundary. Moreover, the upper bound of the robustness adding AEs that are larger
than or equal to that bound can always acquire the AEs. The work CLEVER [20] and
CLEVER++ [21] were the first neural network robustness evaluation scores. They use
extreme value theory to estimate the Lipschitz constant based on sampling. However,
that estimation requires many samples to have a better value of estimation. Therefore, the
two methods only estimate the lower bound of the robustness of neural networks and
cannot provide certification. As follows, the works Fast-Lin and Fast-Lip [22], CROWN [23]
and CNN-Cert [24] are methods of certifying the robustness of the neural networks. The
Fast-Lin and Fast-Lip [22] can only be used for neural networks with the activation function
of ReLu. CROWN [23] can be further used for the networks with all general activation
functions. Furthermore, the CNN-Cert [24] can be used for the general convolutional neural
networks (CNNs). The basic idea is constructing linear functions to constrain the input and
then using the upper and lower bounds of the functions as the upper and lower bounds of
input, respectively. After that, it can constrain the whole network layer by layer. The whole
process is iterative.

However, the above algorithm does not indicate how to calculate the AEs according to
the calculated lower bound, and the reachability of AEs based on the lower bound remains
a problem. Therefore, in this paper, we calculate the approximation of the minimum AEs
based on the lower bound.

3. Basic Definition, Theorem and Modeling

Definition 1. (AEs, Adversarial Perturbations). Given a neural network F, a distribution ℵ ⊂ Rn,
a distance measurement D : Rn × Rn → R between X and X0, a point X0 ∈ ℵ and a point
X ∈ Rn, we say that X is an adversarial example of X0 under constraint ε0 if F(X) 6= F(X0) and
D(X, X0) = ε0.

Definition 2. (Minimum AEs, Minimum Adversarial Perturbations). Given a neural network
F, a distribution ℵ ⊂ Rn, a distance measurement D : Rn × Rn → R between X and X0, and a
point X0 ∈ ℵ, we say that X∗ ∈ Rn is a minimum adversarial example of X0 if X∗ is an adversarial
example of X0 under constraint ε∗ and ε∗ = min

X
ε0 such that there exists an adversarial example of

X0 under constraint ε0. ε∗ is the minimum adversarial perturbations of X0 under D constraint.

Theorem 1. Given a neural network F, a distribution ℵ ⊂ Rn, a distance measurement D :
Rn × Rn → R between X and X0 and a point X0 ∈ ℵ, searching for a minimum adversarial
example of X0 is an NPC problem.

Proof. The proof of Theorem 1 is shown in Appendix A.



Entropy 2022, 24, 396 6 of 26

Although it is an NPC problem, researchers calculate the non-trivial upper bounds of
the robustness of the neural network [23–25]. We can thus calculate the non-trivial lower
bounds of the minimum adversarial perturbations εNNS of X0 based on the exact meaning
of the two bounds.

We thus model the problem of calculating the non-trivial lower bounds of the mini-
mum adversarial perturbations εNNS of X0. For input distribution ℵ ⊂ Rn, a clean input
X0, perturbed input X of X0 under the ε constraint, X ∈ B(X0, ε), B = {X : D(X, X0) ≤ ε},
a neural network F : Rn → Rk, original label y of X0, F(X0) = y, target label y∗, y∗ 6= y,
and we define the non-trivial lower bounds of the minimum adversarial perturbations as
εNNS of X0, as shown in Equation (4):

εNNS = max
y∗ 6=y

ε∗y∗ (4)

and:

ε∗y∗ = min ε

s.t. γU
y (X)− γL

y∗(X) ≤ 0
(5)

In Equation (4), ε∗y∗ is the minimum of adversarial perturbations of X0 under the target
label y∗. In Equation (5), ε is the perturbation of X0 such that F(X) = y∗, γU

y (X) means the
upper bound of the network under label y of input X and γL

y∗ means the lower bound of
the network under another label y∗ of the input. They are calculated in [23–25].

Theorem 2. Given a neural network F, a distribution ℵ ⊂ Rn, a distance measurement D :
Rn × Rn → R between X and X0, a point X0 ∈ Rn, the non-trivial lower bounds εNNS ∈ R of
the minimum adversarial perturbations of X0, if X is the perturbed example of X0 under constraint
εNNS and X ∈ B(X0, εNNS), then F(X) ≡ F(X0).

Proof. According to the definition and meaning of the εNNS, we can obtain Theorem 2.

Definition 3. (N-order tensor [26]). In deep learning, a tensor extends from a vector or matrix to
a higher dimensional space. The tensor can be defined by a multi-dimensional array. The dimension
of a tensor is also called order, that is, N-dimensional tensor, also known as N-order tensor. For
example, when N = 0, the tensor is a 0-order tensor, which is one number. When N = 1, the tensor
is a 1-order tensor, which is a 1-dimensional array. When N = 2, the tensor is a 2-order tensor,
which is a matrix.

Definition 4. (Hadamard product [26]). The Hadamard product is the element-wise matrix
product. Given the N-order tensorsA,B ∈ RI1×I2×...×IN , the Hadamard productA×B is denoted
as the product of elements corresponding to the same position of the tensor. The product C is a tensor
with the same order and size as A and B. That is:

C = A×B, Ci1,2̇,...,in = A1,i2,...,in ×Bi1,i2,...,in (6)

Definition 5. (+∗). For a real number λ ∈ R and N-order tensor X ∈ RI1×I2×...×IN , we define
λ +∗ X as the sum of X and the Hadamard product of λ and another tensor Ψ ∈ RI1×I2×...×IN .
That is:

D = λ +∗ X = λ×Ψ +X , Di1,i2,...,in = λ×Ψi1,i2,...,in +Xi1,i2,...,in (7)

D, Ψ and X have the same order. Specifically, in the field of the AEs, given a clean input X0 ∈ RN ,
and perturbations r ∈ R, the adversarial example is X = X0 +

∗ r = X0 + Ψ× r. The physical
meaning is the proportionality factor of r which adds on each feature X0i1,i2,...,in .

For example, λ = 2, X =

[
1 2
3 4

]
, Ψ =

[
2 3
5 6

]
,
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D = λ +∗ X = λ×Ψ +X = 2×
[

1 2
3 4

]
+

[
2 3
5 6

]
=

[
4 7
11 14

]
Definition 6. (ε ∼ τ approximation of minimum AEs, ε ∼ τ approximation of minimum ad-
versarial perturbations). Given a neural network F, a distribution ℵ ⊂ Rn, a point X0 ∈ ℵ, the
non-trivial lower bounds εNNS ∈ R of the minimum adversarial perturbations of X0, a constraint
ε∗τ and ε∗τ = εNNS + τ, τ > 0 is a constant, we say that X∗τ is the ε ∼ τ approximation of minimum
AEs of X0 and ε∗τ is the ε ∼ τ approximation of minimum adversarial perturbations such that
X∗τ = X0 +

∗ ε∗τ , F(X∗τ) = F(X0 +
∗ ε∗τ) 6= F(X0).

τ is a constant set by humans according to the actual statement. When generating an
adversarial example for a specific input, it has different requirements of the adversarial
perturbations for different settings, scenarios and samples.

(a) The more complex the scenario is, the smaller the constant τ is. In the extreme sce-
nario of digital AEs generation, it needs a clear filter of the AEs and has a strict requirement
of invisibility, and the τ should be small [15]. However, for most physical AEs generations,
it has the relaxed requirement of invisibility. Most of them only need to keep semantic
consistency. The τ can be set more considerably than the digital setting [27].

(b) The more simple the sample is, the smaller the constant τ is. When the sample is
simple, its information is single, and people would be more sensitive to the perturbations
than complex samples. It is easier for people to recognize the difference between clean
inputs and perturbed inputs. For example, the τ of the MNIST dataset [28] should be
smaller than the CIFAR-10 dataset [29].

We model the problem of generating AEs under D measure metrics as follows. For
a deep neural network F, input distribution ℵ ⊂ Rn, a point X0 ∈ ℵ and given the
distance value d under constraint D, the problem of generating controllable AEs of d can
be modeled as

F(X) 6= F(X0)
s.t. X ∈ B = {X : D(X, X0) = d} (8)

We discuss the problem under two settings. One is the constraint of the Lp norm, and
the other is that of perceptually constrained D measure metrics. We use the widely used
structural similarity (SSIM) as the perceptual constraint in a perceptually constrained AEs
generation. The two constraints will be discussed, respectively, in the following sections.

4. AEs Generation under Lp Constraint
4.1. Analysis of the Existence of AEs

According to Theorem 2, we reach the following conclusions concerning the existence
of AEs, as shown in Figure 2.

As Figure 2a shows, we have the following analysis. When adding adversarial pertur-
bations lower than εNNS, no AEs of X0 exist.

When adding adversarial perturbations larger than εNNS, AEs of X0 exist. The gray
shadow between the red circle and the blue line is the space where AEs exist. However,
whether AEs can be found depends on the direction of adding ε perturbations. As the
figure shows, the perturbations of XA and XB all equal ε, and they are all located on the
bound of the ball of ε; however, we can see that XA is inside the gray shadow while XB
is not.

Therefore, some conclusions that were previously well known hypotheses can be
proven. Different AEs generation methods generate AEs with varying accuracy. For a
clean input X0, when adding the same perturbations on it, method A can acquire the
adversarial input XA. In contrast, method B obtains XB located inside the blue line and can
still be correctly classified by the network. Hence, the key to generating AEs is finding the
direction of where AEs exist. As shown in Figure 2a, when it is along the path of X, the
added perturbations are the smallest.
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Meanwhile, for different clean samples, the added perturbations of generating AEs are
different. When a specific perturbation ε > εNNS is fixed, different clean samples will obtain
different perturbed examples after adding those perturbations. As shown in Figure 2b,
the blue boundary and the yellow boundary are the different classification boundaries of
two different samples, respectively. The perturbed examples acquired by adding the same
perturbations ε are within the yellow boundary but outside the blue border. Therefore, they
are the AEs of the blue boundary constraint samples which can be correctly classified by
the yellow boundary constraints. Thus, the adversarial example needs to be researched for
a specific sample.

(a)

A
XNNS

0
X

B
X

C
X



1X

(b)

Figure 2. Figure representing the spaces where AEs exist. The black circle indicates the ball of the
non-trivial lower bounds of the minimum adversarial perturbations of X0; the blue line indicates
the classification bound of the network when X0 is input; and the red circle means the ball of
adding perturbations ε on X0. When examples are inside the blue line, they can be classified as the
original label by the network. However, when they are outside the blue line, they are AEs. The gray
shadow indicates the space where AEs exist under the ball of the ε. The yellow boundary is another
classification border of X1.

Therefore, according to the analysis of the existence of AEs, we have the following
conclusions. In order to generate practical AEs, the added perturbations quantity needs to
meet the requirement ε > εNNS and it needs to be larger than the classification boundary in
this direction. At the same time, due to the limitation of invisibility of the AEs, it should
be as small as possible. Thus, the generation direction of the AEs should be closer to the
direction of minimum AEs.

According to Theorem 1, searching for the minimum AEs of sample X0 is an NPC
problem. In this paper, we try to generate the minimum AEs under a ε ∼ τ numerical
approximation as Definition 6.

According to Figure 2a, in order to generate an effective adversarial example, the
perturbations should be larger than the lower bound εNNS and the perturbations needed to
cross the boundary of the classifier. When fixing ε∗τ , it defines a ball with a center of X0 and
radius ε∗τ . As shown in Figure 2a, the points on the ball are not all AEs. Using the + method
is the same as selecting a random direction to generate perturbed examples that are highly
unlikely to be adversarial. Therefore, it is necessary to calculate the direction of adding ε∗τ
and make F(X∗τ) = F(X0 + Ψ× ε∗τ) 6= F(X0). Ψ is the direct tensor of effective AEs.
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4.2. Model of Lp Constraint

We model the problem of generating the ε ∼ τ approximation of minimum AEs. For
a neural network F, the input distribution ℵ ⊂ Rn, a point X0 ∈ ℵ and given the ε ∼ τ
approximation of minimum adversarial perturbations ε∗τ , the problem of generating the
ε ∼ τ approximation of the minimum adversarial example X∗τ can be modeled as

F(X∗τ) 6= F(X0)

s.t. X∗τ ∈ Bp =
{

X : ‖X− X0‖p = ε∗τ

} (9)

According to the analysis of the existence of AEs and Theorem 2, when the added
adversarial perturbations ε > εNNS, AEs certainly exist and the model must have a solution.

4.3. Framework of AE Generation under Lp Constraint

According to Definition 6, we transform the problem of calculating the ε ∼ τ approxi-
mation of minimum adversarial example X0

∗
τ into searching for the direct tensor Ψ.

For a neural network F, input distribution ℵ ⊂ Rn, a point X0 ∈ ℵ and given the ε ∼ τ
approximation of minimum adversarial perturbations ε∗τ , according to Definition 5, the
ε ∼ τ approximation of the minimum adversarial example is X∗τ , and X∗τ = X0 +

∗ ε∗τ =
X0 + ε∗τ ×Ψ, which means:

‖X0 + ε∗τ ×Ψ− X0‖p = ε∗τ (10)

F(X0 + ε∗τ ×Ψ) 6= F(X0) (11)
This model must have solutions, and we can consider a special solution. We set one

element of Ψ ∈ RI1×I2×...×IN as 1 and the others are 0, fulfilling Equation (10). When
the clean input is an image, it means modifying one channel of one pixel of the image,
as proposed in [15]. However, this attack only has a 20.61% success rate on VGG-16 [30] of
cifar-10 [29]. Furthermore, the perturbations of this pixel are too large to be set as τ.

It is difficult to directly calculate Ψ; thus, to solve Equation (10), we decompose
ε∗τ × Ψ into the two tensors δ×Λ and δ, Λ ∈ RI1×I2×...×IN , and each element of δ and Λ
are defined as δi1,i2,...,in and Λi1,i2,...,in , respectively. The n-order tensor δ determines the
location of the added perturbations and the importance of the target label while the n-order
tensor Λ determines the size of the added perturbations, that is, the percentage of the
total perturbations.

According to Equation (10), we obtain the following derivation:

‖X0 + ε∗τ ×Ψ− X0
∥∥p =

∥∥ε∗τ ×Ψ‖p

= p
√
(ε∗τ ×Ψ)p

= p
√
(δ×Λ)p

= p

√√√√ I1

∑
i

I2

∑
i2

. . .
In

∑
i.

δ
p
i1i2 ...in ×Λp

i1i2 ...in

= ε∗τ

(12)

Therefore:
I1

∑
i

I2

∑
i2

. . .
In

∑
i.

δ
p
i1i2 ...in ×Λp

i1i2 ...in = ε∗τ
p (13)
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However, in Equation (13), the two tensors are all unknown and all of them have
n elements, so it is a multivariate n-order equation and still unsolvable. Although it is
unsolvable, we can certify it as a trivial solution. We can certify when:

Λp
i1i2 ...in = ε∗τ

p/
I1

∑
i1

I2

∑
i2

. . .
In

∑
in

δ
p
i1i2 ...in (14)

Equation (14) is workable. The proof is shown as follows.

Proof.

I1

∑
i1

I2

∑
i2

. . .
In

∑
in

δ
p
i1i2 ...in ×Λp

i1i2 ...in

= δ
p
11...1 ×Λp

11...1 + δ
p
11...2 ×Λp

11...2 + . . . + δ
p
I1×I2×...×IN

×Λp
I1×I2×...×IN

=
ε∗τ

p × δ
p
11...1

∑I1
i1 ∑I2

i2
. . . ∑In

in δ
p
i1i2 ...in

+
ε∗τ

p × δ
p
11...2

∑I1
i1 ∑I2

i2
. . . ∑In

in δ
p
i1i2 ...in

+ . . . +
ε∗τ

p × δ
p
I1×I2×...×IN

∑I1
i1 ∑I2

i2
. . . ∑In

in δ
p
i1i2 ...in

= ε∗τ
p

(15)

We only need to search for one solution of the model (9). That is, we only need to
generate one ε ∼ τ approximation of a minimum adversarial example corresponding to
the requirements (9). The trivial solution Equation (14) is therefore the result.

Therefore, the problem of generating the ε ∼ τ approximation of minimum AEs is
transformed into generating the tensor Ψ by Definition 6 and it is then transformed into
calculating the two tensors δ, Λ by Equation (13). Moreover, it is finally transformed into
calculating the tensor δ. However, it is still an unsolvable question. Although the only
thing we need to do is calculate the tensor δ, it is an n-order tensor in the real world so
that there are n elements that remain unknown and need to be calculated. According to
Equation (13), when tensor δ is known, the problem of solving the multivariate n-order
equation is turned into a multivariate 1-order equation. If we want to solve the multivariate
1-order equation, we need n equations. However, we only have one equation, which is
Equation (13). Therefore, this paper proposes the solution framework for generating the
ε ∼ τ approximation of minimum AEs and a heuristic method to solve the problem.

4.4. Method of Generating Controllable AEs under Lp Constraint

According to the definition of the AEs, we decompose the tensor δ into v + αξ,
v, ξ ∈ RI1×I2×...×IN . Each element of v and ξ are defined as vi1,i2,...,in and ξi1,i2,...,in , respectively.

δi1,i2,...,in = vi1,i2,...,in + αξi1,i2,...,in (16)

Because the N-order tensor determines the position of adding perturbations and the
importance of the position to the target label, it contains two factors that restrict the value
of the AEs. One is to improve the invisibility of the AEs so that added perturbations should
be insensitive to human eyes. Another is to improve the effectiveness of the AEs so that the
added perturbations should be able to push the sample away from the original classification
boundary (in the case of non-target attack) or close to the target classification boundary (in
the case of target attack. Obtaining a balance between the two factors is a key problem in
the study of AEs. Therefore, we decompose the δ into v and ξ.
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Importantly, v is the tensor to determine the effectiveness of AEs and ξ is the tensor
to determine the invisibility of AEs. According to Equation (13), we have:

ε∗ξ i1,i2,...in
×Ψi1,i2,...,in

=
(
α1vi1,i2,...,in + α2ξi1,i2,...,in

)
× ε∗ξ

p/
I1

∑
i1

I2

∑
i2

. . .
In

∑
in

δ
p
i1i2 ...in

=
(
α1vi1,i2,...,in + α2ξi1,i2,...,in

) ε∗ξ
p

∑I1
i1 ∑I2

i2
. . . ∑In

in δ
p
i1i2 ...in

(17)

Therefore, the perturbations added on each element are:

Xi1,i2,...in
= X0i1,i2,...in +

(
α1vi1,i2,...,in + α2ξi1,i2,...,in

)
εp

∑
I1
i1

∑
I2
i2

... ∑In
in

(
α1vĥ1 i2,...,in

+α2ξ ḣ1,i2,...,in

)p (18)

According to the above analysis, we transform the ε ∼ τ approximation of minimum
AEs generation into calculating the v and ξ.

4.4.1. Calculating v

According to the analysis of Equation (5), when γU
y (X) is lower than γL

y∗(X), the input
X is an adversarial example. This means that the upper bound of the network under the
original label of input X is lower than the lower bound of the network under other labels.
Therefore, we let:

vi1,i2,...,in = −∇X h̄(X)
h̄(X) = γU

y (X)− γL
y∗(X)

(19)

In the initial update step, the perturbed examples are not in the shadow space so that they
are still correctly recognized by the model and γU

y (X)− γL
y∗(X) > 0. At this time, we need

to make the examples as close as possible to reducing the h̄(X), so the update direction
is opposite to the gradient. When the h̄(X) value is less than 0, the absolute value of the
h̄(X) needs to be larger, but the real h̄(X) value still needs to decrease so that the update
direction remains the opposite of the gradient direction.

4.4.2. Calculating ξ

According to the definition of ξ, ξ is the tensor to determine the invisibility of AEs.
DCT transformation [31] can transform the data from host space to frequency domain space,
and the data in the time-domain or space-domain can be transformed into a frequency-
domain that is easy to analyze and process. When data are image data, after transformation,
much crucial visual information about the images is concentrated in a small part of the
coefficient of DCT transformation. The high-frequency signal corresponds to the non-
smooth region in the image, while the low-frequency signal corresponds to the smoother
region in the image.

According to the human visual system (HVS) [17], (1) human eyes are more sensitive
to the noise of the smooth area of the image than the noise of the non-smooth area or the
texture area; (2) human eyes are more sensitive to the edge information of the image and
the information is easily affected by external noise.

Therefore, according to the definition of DCT, we can distinguish the features of each
region of the image and selectively add perturbations. Given that the N-order tensor input
data X0 ∈ RI1×I2×...×IN can be seen as a superposition of I1× I2× . . .× IN/Ii× Ij two-order
tensor XΠ

0 ∈ RIi×Ij :

DCT
(

XΠ
0

)
k,l

=
2√
iiij

c(k)c(l)
ii−1

∑
m=0

ij−1

∑
n=0

XΠ
0 ii ,ij cos

(2m + 1)kπ

2ii
cos

(
(2n + 1)lπ

2ij

)
(20)
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and m, k ∈ {0, 1, . . . , ii − 1}, n, l ∈
{

0, 1, . . . , ij − 1
}

.

c(k) =
{

1/
√

2 k = 0
1 k = 1, 2, . . . , ii − 1

, c(l) =

{
1/
√

2 l = 0
1 l = 1, 2, . . . , ij − 1

(21)

In this paper, according to the definition of the tensor of ξ:

ξi1,i2,...,in = DCT
(

XΠ
0

)
k,l

(22)

Above all, we give the algorithm that generates the ε ∼ τ approximation of minimum
AEs under the Lp constraint in Algorithm 1.

Algorithm 1: Algorithm of the generating ε ∼ τ approximation of minimum
AEs under Lp constraint.

Input: a point X0 ∈ RI1×I2×...×IN , ε ∼ τ approximation of minimum adversarial
perturbations ε∗τ , a neural network F, the non-trivial lower bounds εNNS of the
minimum adversarial perturbations of X0

Input: Parameters: number of iterations n, α
Output: X∗τ

1: for e in n do
2: if e = 0 then
3: X = X0
4: M ε = εNNS
5: end if
6: vi1,i2,...,iN = −∇X h̄(X)

7: ξi1,i2,...,iN = DCT
(
XΠ)

k,l
8: Ψ = vi1,i2,...,iN + αξi1,i2,...,iN
9: M ε = (ε∗τ − εNNS)/(n− 1)

10: X = X + Ψ× M ε
11: end for
12: return X∗τ

5. AEs Generation under SSIM Constraint

We model the problem of generating AEs under SSIM [17] measure metrics as follows.
We use SSIM to replace the D measure metrics in Equation (8). For a neural network F,
input distribution ℵ ⊂ Rn, a point X0 ∈ ℵ, the problem of generating controllable AEs of
SSIM can be modeled as

F(X∗τ) 6= F(X0)
s.t. X∗τ ∈ Hp = {X : SSIM(X∗τ , X0) = ε∗τ}

(23)

According to the definition of the similarity measurement SSIM, for gray-scale images
x, y ∈ Rn as

SSIM(x, y) = [l(x, y)]ς · [c(x, y)]θ · [s(x, y)]ι (24)

where l(x, y) = 2µxµy+C1
µ2

x+µ2
y+C1

defines the luminance, c(x, y) = 2σxσy+C2

σ2
x+σ2

y+C2
defines the contrast

comparison function, and s(x, y) = σxy+C3
σxσy+C3

defines the structure comparison function. Fur-
thermore, µx, µy define the mean value of inputs x, y, respectively, σx, σy define the standard
deviation of x, y, respectively, and σxy is the covariance between x and y. C1, C2, C3 > 0
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and ς, θ, ι > 0 are constants. According to [17], when setting ς = θ = ι = 1 and C3 = C2/2,
Equation (24) can be simplified as,

SSIM(x, y) =

(
2µxµy + C1

)(
2σxy + C2

)(
µ2

x + µ2
y + C1

)(
σ2

x + σ2
y + C2

) (25)

Furthermore, according to Lagrangian constraint, we formulate Equation (26) as

L(X∗τ , $) = loss(F(X∗τ), t)2 + $(SSIM(X∗τ , X0)− ε∗τ)
2 (26)

where $ is the Lagrangian valuable, t is the one-hot tensor of the target label and loss is the
cross-entropy loss function as shown in Equation (27).

Cross-entropy can measure the difference between two different probability distribu-
tions in the same random variable. In machine learning, it is expressed as the difference be-
tween the target probability distribution t and the predicted probability distribution F(X∗τ).

loss(F(X∗τ), t) = −1
k

k

∑
i=1

[ti log Fi(X∗τ) + (1− ti) log(1− Fi(X∗τ))] (27)

6. Experimental Results and Discussion

6.1. Experimental Setting

Dataset: In this work, we evaluate our methods under two widely used datasets.
MNIST is a handwriting digit recognition dataset from 0 to 9, including 70,000 gray images
and 60,000 for training and 10,000 for testing. CIFAR-10 [32] has 60,000 images of ten
classes, including airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck.

Threat model: In our paper, we generate the AEs of trained threat models. Due to
limited computational resources, we train a feed-forward network with p layers and q
neurons per layer. For all the networks, we use the ReLU activation function. We denote
the networks as p × [q]. For the MNIST dataset, we train the 3× (1024) network as a
threat model. For the CIFAR-10 dataset, we train 6× (1024), 7× (1024) and 6× [2048] as
threat models.

Baseline attack: For comparing our method with other adversarial attacks, we gen-
erate AEs by different attack methods. Our method can adapt to different Lp constraint
measurements. In this part, due to limited computational resources, we adopt the L2-
constrained measurement. Therefore, we use other the L2-constrained attack methods
as the baseline, including SA-L2 [10], FGSM-L2 [11], BIM-L2 [33], PGD-L2 [14] and DF-
L2 [6]. We compare the performance of those attacks with our method under different
ε∗τ constraint.

6.2. Evaluation Results
6.2.1. Results of Attack Ability

We calculate the success rates of the attacks to compare the attack ability. Due to the
uncontrollable ability of the perturbations of other baseline attack, we first set the ε∗τ as 0.4,
0.8 and 1.2 for the MNIST dataset and 20, 25, 30 and 37 for the CIFAR-10 dataset, and we
obtain the average perturbations of the baseline attacks under the L2 constraint, as shown
in Tables 1 and 2, and then we use their average perturbations as the ε∗τ of our method
under the same constraint and make a comparison of the success rates.

The criteria for selecting the values for the baseline for each dataset is that the value is
sufficiently adequate for the baseline attack. This means that under that value, the baseline
attack will not jump out of the circulation of attack in advance due to an excessively large
value, which leads to the measured average perturbations not having enough correlation
with that value. Meanwhile, that value will not lead to the low success rate of the baseline
attack due to it being too small. Specifically, because the baseline attack cannot control
the average perturbations, we first take the way of binary search that the range is (0, 100]
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and the value interval is five and test the attack success rate and average perturbations
of the baseline attack under different values. We then remove the points where either the
difference between the average perturbations and that value is too large or the success rate
is too low, that is, the points where that value overflows or is insufficient.

Due to the same average perturbations of the PGD-L2 and BIM-L2 attacks, we show
their results in one table, namely Table 3 for MNIST and Table 4 for CIFAR. Furthermore,
the comparison of the FGSM-L2 attack and our method is shown in Table 5 for MNIST and
Table 6 for CIFAR. As the four tables show, under the same L2(ε

∗
τ) constraint, our attack has

a better attacking performance than other PGD-L2(ε∗τ), BIM-L2(ε∗τ) and FGSM-L2(ε∗τ) attacks.

Table 1. Table of the average perturbations of different attack methods under MNIST. We compare
our method with PGD-L2, FGSM-L2, BIM-L2 attacks. We denote the feed-forward networks as p× [q]
and p denotes the number of layers and q is the number of neurons per layer.

Model Attack
ε∗τ 0.400 0.800 1.200 1.400

MNIST 3 × (1024)
PGD-L2 0.399 0.799 1.199 1.399
BIM-L2 0.399 0.799 1.199 1.399

FGSM-L2 0.399 0.494 1.018 1.191

Table 2. Table of the average perturbations of different attack methods under CIFAR. We compare
our method with PGD-L2, FGSM-L2, BIM-L2 attacks. We denote the feed-forward networks as p× [q]
and p denotes the number of layers and q is the number of neurons per layer.

Model Attack
ε∗τ 20.000 25.000 30.000 37.000

CIFAR 6 × (1024)
PGD-L2 19.573 24.062 28.070 32.630
BIM-L2 19.573 24.062 28.070 32.630

FGSM-L2 19.568 24.065 28.058 32.619

CIFAR 7 × (1024)
PGD-L2 19.703 24.130 28.002 32.636
BIM-L2 19.703 24.130 28.002 32.636

FGSM-L2 19.703 24.123 27.993 32.624

CIFAR 6 × (2048)
PGD-L2 19.776 24.347 28.598 33.613
BIM-L2 19.776 24.347 28.598 33.613

FGSM-L2 19.774 24.345 28.593 33.604

Table 3. Table of the success rate of PGD-L2, BIM-L2 and our L2 attacks under MNIST. We denote
the feed-forward networks as p× [q] whilst p denotes the number of layers and q is the number of
neurons per layer.

Model Attack
ε∗τ 0.399 0.799 1.199 1.399

MNIST 3 × (1024)
PGD-L2 10.27 22.48 77.31 86.26
BIM-L2 10.27 39.36 77.51 86.57
Our L2 22.40 72.96 91.62 95.01
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Table 4. Table of the success rate of PGD-L2, BIM-L2 and our L2 attacks under CIFAR. We compare
our method with PGD-L2, FGSM-L2, BIM-L2 attacks. We denote the feed-forward networks as p× [q]
and p denotes the number of layers and q is the number of neurons per layer.

Model Attack
ε∗τ 19.573 24.062 28.070 32.630

CIFAR 6 × (1024)
PGD-L2 17.36 24.86 31.99 38.39
BIM-L2 17.36 24.86 31.99 38.39
Our L2 66.80 69.20 72.80 79.00

CIFAR 7 × (1024)
PGD-L2 22.28 28.10 32.40 39.22
BIM-L2 22.28 28.17 32.41 39.22
Our L2 83.60 88.00 94.00 90.20

CIFAR 6 × (2048)
PGD-L2 18.19 27.38 34.45 41.34
BIM-L2 18.19 27.38 34.45 41.34
Our L2 73.60 78.00 81.60 86.80

Table 5. Table of the success rate of FGSM-L2 and our L2 attacks under MNIST. We denote the
feed-forward networks as p× [q] and p denotes the number of layers and q is the number of neurons
per layer.

Model Attack
ε∗τ 0.399 0.494 1.018 1.191

MNIST 3 × (1024) FGSM-L2 7.12 39.60 49.54 61.85
Our L2 22.00 40.26 90.00 91.62

Table 6. Table of the success rate of PGD-L2, BIM-L2 and our L2 attacks under CIFAR. We compare
our method with PGD-L2, FGSM-L2, BIM-L2 attacks. We denote the feed-forward networks as p× [q]
and p denotes the number of layers and q is the number of neurons per layer.

Model Attack
ε∗τ 19.568 24.065 28.058 32.619

CIFAR 6 × (1024) FGSM-L2 17.36 25.04 31.99 38.39
Our L2 66.80 69.30 72.80 79.00

Model Attack
ε∗τ 19.703 24.123 27.993 32.624

CIFAR 7 × (1024) FGSM-L2 22.28 28.10 32.40 39.22
Our L2 83.60 88.00 94.00 90.20

Model Attack
ε∗τ 19.774 24.345 28.593 33.604

CIFAR 6 × (2048) FGSM-L2 18.19 27.38 34.45 41.34
Our L2 73.60 78.00 81.60 86.80

In addition to the attacks that have a fixed ε∗τ , we also compare the attacks without a
value to constrain the perturbations including the SA-L2 and DF attacks. We also calculate
the average perturbations of those attacks. Furthermore, then we use the same average
perturbations as the ε∗τ of our method and make a comparison in Tables 7 and 8. For MNIST,
our method has a better performance than the DF and SA attacks.

Table 7. Table of the success rate of different attack methods under MNIST. We compare our method
with SA-L2 and DF attacks. We denote the feed-forward networks as p × [q] and p denotes the
number of layers and q is the number of neurons per layer.

Model
Metrics

Attacks
SA-L2 Our L2 DF Our L2

MNIST 3 × (1024) Average Perturbations 6.020 6.020 14.935 14.935
Success Rate 99.89 100.00 100.00 100.00
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Table 8. Table of the success rate of different attack methods under CIFAR. We compare our method
with SA-L2 and DF attacks. We denote the feed-forward networks as p × [q] and p denotes the
number of layers and q is the number of neurons per layer.

Model
Metrics

Attacks
SA-L2 Our L2 DF Our L2

CIFAR 6 × (1024) Average Perturbations 41.424 41.424 41.942 41.942
Success Rate 80.80 85.28 95.61 95.90

CIFAR 7 × (1024) Average Perturbations 47.846 47.846 60.050 60.050
Success Rate 82.83 85.57 94.29 95.00

CIFAR 6 × (2048] Average Perturbations 41.356 41.356 41.717 41.717
Success Rate 81.45 85.00 96.81 97.28

In addition to the above two small-sized datasets, the experiment also evaluates the
performance of the algorithm on the larger and more complex dataset that is TinyImagenet.
The dataset has 200 classes, each class has 500 pictures and we extract 200 pictures as the
experimental data. For this dataset, we select the CNN model with seven layers that is
denoted by ’CNN-7layer’ [34] as the threat model. Furthermore, we set the ε∗τ as 1.0, 2.0, 4.0
and 6.0. The experiment first measures the average perturbation of the baseline attack
under the selected ε∗τ . Furthermore, it then sets the average perturbation as the ε∗τ to
compare the success rate of our algorithm and the baseline attack under that same value.
The average perturbation of the baseline attack is shown in Table 9 and the comparison of
the attack ability is shown in Table 10. As shown in Table 10, our algorithm has a better
performance than the FGSM attack under the same ε∗τ .

Table 9. Table of the average perturbations of different attack methods under TinyImagenet. We
compare our method with FGSM-L2 attack. We use the feed-forward network cnn-7layer as the
target model.

Model Attack
ε∗τ 1.000 2.000 4.000 6.000

cnn-7layer FGSM-L2 0.999 1.999 3.999 5.999

Table 10. Table of the success rate of FGSM-L2 and our L2 attacks under TinyImagenet. We use the
feed-forward network cnn-7layer as the target model.

Model Attack
ε∗τ 0.999 1.999 3.999 5.999

cnn-7layer FGSM-L2 50.40 64.50 75.50 79.30
Our L2 22.00 55.50 80.50 88.00

Furthermore, we also evaluate the attack ability of our algorithm on more complex
models. We select Wide-ResNet, ResNeXt, and DenseNet as the target models and train
them under the CIFAR dataset. The detail is the same as in [34]. The benchmark values
we selected are 1.0, 5.0, 10.0, 30.0, 60.0 and 80.0. Similarly, we first calculate the average
perturbations of the baseline attack under that values. Then, we evaluate the results of the
success rate of our algorithm and the baseline attack under the same ε∗tau of our algorithm
which is the same as the average perturbations calculated beforehand. Table 11 shows
the average perturbations. We make a comparison of the attack ability in Table 12 and
Due to Table 12, we find that under the benchmark values 5.0, 10.0, 30.0, 60.0 and 80.0,
our algorithm performs better than the FGSM attack. However, under the 1.0, in the
Wide-ResNet and ResNeXt, the FGSM attack performs better.
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Table 11. Table of the average perturbations of different attack methods under Cifar. We compare
our method with FGSM-L2 attack. We use the feed-forward networks Wide-ResNet, ResNeXt and
DenseNet as the target models.

Model Attack
ε∗τ 1.000 5.000 10.000 30.000 60.000 80.000

Wide-ResNet FGSM-L2 0.999 4.999 9.999 29.999 59.999 79.999
ResNeXt FGSM-L2 0.999 4.999 9.999 29.999 59.999 79.999

DenseNet FGSM-L2 0.999 4.999 9.999 29.999 59.999 79.999

Table 12. Table of the success rate of FGSM-L2 and our L2 attacks under Cifar. We use the feed-
forward networks Wide-ResNet, ResNeXt and DenseNet as the target models.

Model Attack
ε∗τ 0.999 4.999 9.999 29.999 59.999 79.999

Wide-ResNet FGSM-L2 28.50 44.50 51.00 68.00 87.50 87.00
Our L2 25.00 47.50 66.00 90.50 99.50 100.00

ResNeXt FGSM-L2 23.50 30.50 34.00 51.50 67.50 74.00
Our L2 21.50 41.00 51.50 87.50 93.50 90.00

DenseNet FGSM-L2 25.50 33.00 36.00 43.50 53.50 55.50
Our L2 30.00 38.50 51.00 70.00 77.00 77.00

6.2.2. Results of SSIM Constraint under Different ε∗τ
In this part, we evaluate our method described in Section 5. Due to there being

no work devised for the same purpose as our method, we only show the results of our
method without any comparison with others. We show the controllable ability under the
SSIM constraint of our method and record its success rate in Table 13. We also show the
adversarial images under different SSIM constraints in Figure 3.

Table 13. Table of the controllable ability and attack ability of our method under the SSIM constraint.
The perturbation coefficient of the attack is marked in brackets as SSIM-ε∗τ . We denote the feed-
forward networks as p× [q] and p denotes the number of layers and q is the number of neurons
per layer.

Attack
Dataset MNIST 3 × (1024) CIFAR 6 × (1024) CIFAR 7 × (1024) CIFAR 6 × (2048)

SSIM SR SSIM SR SSIM SR SSIM SR
Our SSIM (0.5) 0.500 100.00 0.500 100.00 0.500 100.00 0.500 100.00
Our SSIM (0.7) 0.700 96.60 0.700 100.00 0.700 100.00 0.700 100.00
Our SSIM (0.9) 0.900 42.00 0.900 31.00 0.900 36.50 0.900 36.00

Figure 3. Figure of the images of the AEs generated under the SSIM constraint with different ε∗τ . The
first line is the clean images and the second line shows the adversarial images under 0.5 constraint.
The third line is the adversarial images under 0.7 constraint. The last line is the adversarial images
under 0.9 constraint.
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6.2.3. Results of α 6= 0 under L2 Constraint

In this section, we discuss the results of our method under L2 with the α 6= 0 constraint.
Through the different α, we can not only generate the controllable AEs but also improve the
perceptual visual quality under the same ε∗τ constraint. When the ε∗τ under the L2 constraint
is large, the perceptual visual quality is poor. In order to adapt to this situation, our paper
devises α to improve the perceptual visual quality. However, there is a trade-off between
the visual quality of the AEs and their success rate. Figure 4 shows the SSIM value of
AEs under different ε∗τ with different α. As it shows, the SSIM value increases with the α
increasing under the same ε∗τ constraint. Furthermore, we can see that with the increasing
ε∗τ , the SSIM value has a trend of decreasing under the same α. This means that the visual
quality becomes poorer when more perturbations are added to the inputs, which is in line
with the intuition of the AEs. Meanwhile, the SSIM value rises rapidly before α = 1.0 under
the same ε∗τ constraint; after that, its trend tends to be flatter.

Figure 5 shows the success rate of AEs under different ε∗τ with different α. As it shows,
the success rate decreases with the α increasing under the same ε∗τ constraint. Moreover,
with the increasing ε∗τ , the success rate increases under the same α constraint. It is also
consistent with the general nature of the AEs that when more perturbations are added, the
probability of a successful attack becomes greater. Furthermore, the α = 1.0 still tends to
be a boundary that before α = 1.0, the success rate decreases slower and then it decreases
faster when ε∗τ = 3.00 and ε∗τ = 2.50. However, it has a nearly consistent trend of decreasing
with ε∗τ = 1.00, ε∗τ = 1.50 and ε∗τ = 2.00. It means that when the perturbations remain
small, excessive attention to visual quality will lead to a greater loss of attack success rate.
Therefore, it corresponds to the actual meaning of the parameter α that only needs to be set
to α 6= 0 when ε∗τ is large. We set α = 1 and compare the results between α = 0 and α = 1
in Table 14.

Figure 6 shows the time of generating AEs under different ε∗τ with different α. As it
shows, the time decreases with the α increasing under the same ε∗τ constraint. Moreover,
with the ε∗τ increasing, the time increases under the same α constraint.
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Figure 4. Figure of the SSIM value of AEs of MNIST under different ε∗τ with different α. The line with
different color means different ε∗τ .



Entropy 2022, 24, 396 19 of 26

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.50 3.00

SR

MNIST 3×1024
1.00

1.50

2.00

2.50

3.00

α

Figure 5. Figure of the success rate (SR) of AEs of MNIST under different ε∗τ with different α. The line
with a different color means different ε∗τ .
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Figure 6. Figure of time of generating AEs of MNIST under different ε∗τ with different α. The line
with a different color means different ε∗τ .

Table 14. Table for the AEs under α = 0 and α = 1 of the L2 constraint. We denote the feed-forward
networks as p× [q] and p denotes the number of layers and q is the number of neurons per layer. The
AP, SR, SSIM and Time denote the average perturbations, the success rate, the SSIM value between
the original image and adversarial image and the time taken to generate AEs, respectively.

Model Metrics
Attack ε∗τ = 0.50 ε∗τ = 1.00 ε∗τ = 1.20 ε∗τ = 2.40

α = 0 α = 1 α = 0 α = 1 α = 0 α = 1 α = 0 α = 1

MNIST 3 × (1024)

AP 0.50 0.50 1.00 1.00 1.20 1.20 2.40 2.40
SR 38.71 12.9 85.16 43.5 91.62 51.9 98.19 74.7

SSIM 0.77 0.82 0.61 0.67 0.57 0.62 0.42 0.52
Time 8.33 9.33 7.22 9.19 6.82 9.34 7.07 9.31
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7. Conclusions

Aiming at the two fundamental problems of generating the minimum AEs, we first
define the concept of the minimum AEs and prove that generating the minimum AEs is an
NPC problem. Based on this conclusion, we then establish a new third kind of optimization
model that takes the successful attack as the target and the adversarial perturbations equal
the lower bound of the minimum adversarial distortion plus a controllable approximation.
This model generates the controllable approximation of the minimum AEs. We give a
heuristic solution method of that model. From the theoretical analysis and experimental
verification, our model’s AEs have a better attack ability and can generate more accurate
and controllable AEs to adapt to different environmental settings. However, the method in
this paper of the model does not perfectly determine the solution of the model, which will
be the focus of future research.
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Appendix A

Appendix A.1. Proof of NPC of Calculating the Minimum Adversarial Perturbations

Definition A1. (3-SAT). Given a finite set of Boolean variables B = B1, B2, . . . Bn, |B| = n, each
variable takes 0 or 1, and a set of clauses C = C1, C2, . . . Ck, |C| = k, ψ = C1 ∧ C2 ∧ . . . ∧ Ck;
each Ci is a disjunctive normal form composed of three variables, that is, Z1 ∨ Z2 ∨ Z3. Question:
given a Boolean variable set X and clause set C, whether there is a true value assignment so that C
is true and then each clause is true.

Theorem A1. Given a neural network F, a distribution ℵ ⊂ Rn, and a distance measurement
D : Rn × Rn → R between X and X0, a point X0 ∈ Rn, searching for a minimum adversarial
example of X0 is an NPC problem.

Proof. We now prove Theorem A1. We first reduce the problem into a decision problem,
and then according to the definition of an NPC problem, we prove that the problem belongs
to the type of NP problem, and finally, we prove that a known NPC problem can be reduced
to the decision problem in polynomial time.

We first reduce the problem of finding the minimum AEs into a series of decision
problems. Though many important problems are not decision problems when they appear
in the most natural form, they can be reduced to a series of decision problems that are
easier to study, for example, the coloring problem of a graph. When coloring the vertices
of a graph, we need at least n colors to make any two adjacent vertices have different
colors. Then, it can be transformed into another question. Can we color the vertices of the
graph with no more than m colors, m ∈ N+? The first m value in the set that makes the
problem solvable is the optimal solution of the coloring problem. Similarly, we can also
transform the optimization problem of finding the minimum AEs into the following series
of decision problems: given the precision of perturbations δε, and initial perturbations
ε1, εi = εi−1 + δε, whether we can use the perturbations ε, ε ∈ ε1, ε2, ..., εi, ... to make the
inequality F(X0 +

∗ εi) 6= F(X0)) true, and the first value in the sequence that makes the
inequality true is the optimal solution of the optimization problem.
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The decision problem is reduced and formalized as follows. For the neural network
attribute, ϕ = ϕ1(X) ∧ ϕ2(Y), ϕ1 is the mapping from the AEs generated by the AEs
generation function to label 1, that is, ϕ1(X) : (X +∗ ε) → 1. ϕ2 is the mapping from the
AEs generated by the AEs generation function to 0, 1, that is, ϕ2(X) : (X +∗ ε) → 0, 1.
When F(X +∗ ε) 6= F(X), its value is 1. When F(X +∗ ε) = F(X), its value is 0. When
there is an assignment α(X) = X +∗ εi, ε ∈ ε1, ε2, ..., εi, ..., α(Y) is the output of the neural
network and determines whether the value of the attribute ϕ is true.

Obviously, it is an NP problem. In the guessing stage, given any perturbations ε,
assuming the ε is a candidate solution of the decision problem. Furthermore, then in the
verification stage, since the process of inputting perturbations ε and samples X0 to the
neural network and then outputting the results can be completed in polynomial time, it
is polynomial in the verification stage. Therefore, the solution to the decision problem is
an uncertain polynomial algorithm. Furthermore, according to the definition of the NP
problem, the decision problem is an NP problem.

Finally, we prove that any problem in NP can be reduced to the decision problem
in polynomial time. Due to the transitivity of polynomial simplification, we can prove a
known NPC problem: the 3− SAT problem can be transformed into the decision problem
in polynomial time and then complete this proof.

NP

3-SAT

Decision Problem

Figure A1. Figure for the transitivity of polynomial simplification.

Since the 3− SAT problem is an NPC problem, according to the definition of an NPC
problem—that is, any problem in the set of NP problems that can be reduced to an 3− SAT
problem in polynomial time—if the 3− SAT problem can be reduced to the aforementioned
decision problem of searching for the AEs, according to transitivity, any problem in NP
can be reduced to that decision problem in polynomial time and it can be proven that the
decision problem is an NP-hard problem. We then prove how the 3− SAT problem is
Turing reduced to the decision problem.

According to the definition of an 3− SAT problem, given the Ternary satisfiability
formula ψ = C1 ∧ C2 ∧ . . . ∧ Ck on the variable set X = {x1, x2, . . . , xk}, each clause is
a disjunction of three terms: q1

i ∨ q2
i ∨ q3

i , where q1
i , q2

i and q3
i are variables from X or

their negative values. The problem is turned into that determining whether there is an
assignment α : X → {0, 1} to satisfy ψ, that is, whether there is an assignment α that makes
all clauses Ci valid at the same time.

To simplify, we first assume that the input node q1
i , q2

i and q3
i is a sub-statement

constructed when the discrete value is 0 or 1. Then, we will explain how to relax this
restriction so that the only restriction on the input nodes is that they are in the range
of [0, 1].

Firstly, we introduce the disjunctive tool, that is, given nodes q1, q2, q3 ∈ 0, 1 and
the output node is Yi. When q1 + q2 + q3 ≥ 1, Yi = 1, otherwise Yi = 0. The following
Figure A2 shows the situation when qi is the variable itself (that is, it is not the negative
value of the variable).
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Figure A2. Figure for the disjunctive gadget when qi are variables.

The disjunctive tool can be seen as the process of calculating Equation (A1):

Yi = 1−max

(
0, 1−

3

∑
j=1

qj
i

)
(A1)

If it has one variable of input which is at least 1, then Yi = 1. If all the variables of
input are 0, then Yi = 0. The key of the tool is that the ReLU function can ensure that the
output Yi remains exactly 1 even if multiple inputs are set to 1.

For processing any negative item qj
i = 1− xj ≡ ¬xj, we introduce a negative tool

before inputting the negative item into the disjunctive tool, as shown in Figure A3a.

jX

1

j
iq

-1

1

(a)

1Y

Y

1

1

nY

…

(b)

Figure A3. Figure for negative disjunction and conjunction gadgets. (a) Figure representing a negative
disjunction gadget. (b) Figure representing a conjunction gadget.

The tool that calculates 1− xj and then continues to calculate is the aforementioned
disjunctive tool. The last step involves a conjunction widget, as shown in Figure A3b.

Assuming that all nodes Y1, . . . , Yn are in the range of 0, 1, we require node Y in the
range of [n, n]. Obviously, this requirement only holds if all nodes are 1.

Lastly, in order to check if all the clauses C1, . . . , Cn are satisfied at the same time,
we construct a conjunction gadget(using the negative value tool as input as needed) and
combine it with a conjunction gadget, as shown in Figure A4.
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Figure A4. Figure for the 3-SAT-DNN conjunction gadget.

The input variable is mapped to each ti node according to the definition of clause Ci,
that is, ti → Ci. According the above discussion, if the clause Ci is satisfied, then Yi = 1;
otherwise, Yi = 0. Therefore, the node Y is the range of [n, n] if and only if all the clauses are
satisfied at the same time. Thus, an assignment α : X → 0, 1 of input satisfies the constraint
between the input and the output of neural networks if and only if that assignment also
satisfies the original item ψ = C1 ∧ C2 ∧ . . . ∧ Cn.

The above construction is based on the assumption that the input node takes values
from discrete values 0, 1, that is, α : X → 0, 1. However, it does not accord with the
assumption that ψ1(X) is the conjunction of linear constraints. We will then prove how to
relax the restriction to make the original proposition true.

Letting ε is a very small number. We suppose that each variable Xi is in the range
of [0, 1] but ensure that any feasible solution satisfies X ∈ [0, ε] or X ∈ [1− ε, 1]. We add
an auxiliary gadget to each input variable Xi, that is, using the ReLU function node to
calculate Equation (A2) as follows:

max(0, ε− X) + max(0, X− 1 + ε) (A2)

Furthermore, the output node of Equation (A2) is required to be within the range [0, ε].
This expression can directly indicate that when X ∈ [0, ε] or X ∈ [1− ε, 1], it is true for
X ∈ [0, 1].

The disjunctive expression in our construction is Equation (A1). The value of its
disjunctive expression changes with the inputs. If all inputs are in [0, ε] or [1− ε, 1], then at
least one input is in [1− ε, ε] and then the end output node of each disjunctive gadget Yi
will no longer use discrete values [0, 1] but will be in [0, 3ε].

If at least one node of each input clause is in the range [1− ε, 1], then all Yi nodes will
be in [1− ε, 1] and Y will be in [n(1− ε), n]. However, if at least one clause does not have a
node in the range [1− ε, 1], Y will be less than n(1− ε) (when ε < 1

n+3 ). Therefore, keeping
the requirements Y ∈ [n(1− ε), n] true, if and only if ψ is satisfied, its input and output will
be satisfied, and the satisfied assignment can be constructed by making each Xi ∈ [0, ε] = 0
and each Xi ∈ [1− ε, 1] = 1.

Appendix A.2. Analysis of SSIM Constraint Method

We also try to directly calculate the adversarial perturbations as the Lp constraint of
our method. However, we find that it is difficult to perform the same operation under the
SSIM constraint. The analysis is as follows. According to Equation (25) and substituting
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its inputs x and y as X∗ε∗τ and X0, respectively, Equation (25) can be seen as the product of
two parts [35]. That is:

SSIM(X∗ε∗τ , X0) = S1(X∗ε∗τ , X0)S2(X∗ε∗τ , X0) (A3)

where:

S1(X∗ε∗τ , X0) =
2µX∗

ε∗τ
µX0 + C1

µ2
X∗

ε∗τ
+ µ2

X0
+ C1

= f (µX∗
ε∗τ

, µX0)

S2(X∗ε∗τ , X0) = c(X∗ε∗τ , X0)s(X∗ε∗τ , X0) =
2σX∗

ε∗τ
X0 + C2

σ2
X∗

ε∗τ
+ σ2

X0
+ C2

= g(X∗ε∗τ − µX∗
ε∗τ

, X0 − µX0)

(A4)

Therefore, the SSIM(X∗ε∗τ , X0) can be divided into the f function of µX∗
ε∗τ

and µX0 and the

g function of X∗ε∗τ − µX∗
ε∗τ

and X0 − µX0 . In order to solve the condition of Equation (23),

i.e., the product of the two functions needs to be a constant, we try to transform prime
factorization to decompose d into the product of two values. Furthermore, the input X0 is
given so a set of prime factorization can be seen as solving a X∗ε∗τ that meets the criteria of
Equation (A3).

However, the solutions X∗ε∗τ of the criteria of Equation (23) are not certain whether they
are the AEs of the model F. Moreover, the solution of prime factorization is limited and it
is a small set that meets the constraints, so it is more difficult to find AEs in that smaller set.

Appendix A.3. The Definition of the Lower and Upper Bound of a Network

We recall this definition from [23] as follows:

Definition A2. (lower boundγL
y , upper bound γU

y ). Given a neural network F, a distribution
ℵ ⊂ Rn, a point X0 ∈ Rn, a label y, and the output of the network under y label Fy, we say that
γL

y and γU
y are the lower bound and the upper bound of the network F under the label y such that

γL
y ≤ Fy(X0) ≤ γU

y .

According to Definition A2, we give a further explanation of Equation (5). Give a
point X0 and a perturbation ε when inputting the perturbed point X of X0 under ε, if the
upper bound of the network under the original label y is lower than the lower bound of the
network under the label y∗ 6= y, meaning that the output Fy(X) ≤ F∗y (X) so that X is an
adversarial example.
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