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Abstract: The vulnerability of deep neural network (DNN)-based systems makes them susceptible
to adversarial perturbation and may cause classification task failure. In this work, we propose an
adversarial attack model using the Artificial Bee Colony (ABC) algorithm to generate adversarial
samples without the need for a further gradient evaluation and training of the substitute model, which
can further improve the chance of task failure caused by adversarial perturbation. In untargeted
attacks, the proposed method obtained 100%, 98.6%, and 90.00% success rates on the MNIST, CIFAR-
10 and ImageNet datasets, respectively. The experimental results show that the proposed ABCAttack
can not only obtain a high attack success rate with fewer queries in the black-box setting, but also
break some existing defenses to a large extent, and is not limited by model structure or size, which
provides further research directions for deep learning evasion attacks and defenses.

Keywords: deep neural networks; adversarial examples; image classification; information security;
black-box attack

1. Introduction

In recent years, deep learning has developed rapidly and successfully applied to a
number of complex problems such as image classification [1] and traffic classification [2].
However many studies on adversarial examples [3,4] have proclaimed the vulnerability
of DNN models, which brings great security risks to the deployment of DNN models
in practical applications. Even in a DNN-based system with communication security
defenses [5], attackers can break it by adding adversarial perturbations to the transmitted
data in advance [6,7]. For example, when a DNN model is used for traffic sign recognition
in an automatic driving system, attackers can maliciously modify the captured road sign
image, causing the model to give false inference, which leads to the decision system making
wrong judgments. It greatly increases the probability of safety accidents. Therefore, the
security problems caused by adversarial samples in machine learning system cannot be
ignored.

The adversarial sample refers to a synthetic sample formed by adding subtle pertur-
bation to the original sample, and the visual difference between the adversarial sample
and the original sample is imperceptible to humans. The concept of adversarial samples
was first proposed by Szegedy et al. [4]. Adversarial samples have a significant research
space in the field of computer vision and images [8]. The methods of generating adversarial
samples can be divided into white-box and black-box. The white-box attacks require the
attacker to have full knowledge of the target model, such as parameters, structure, types,
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objective functions, etc. The clean sample can be modified by calculating the true gradi-
ent of the victim model to generate the adversarial image. The black-box attacks mean
that the attacker can only access the model input and feedback. In the real world, the
assumption of white-box attacks is difficult to satisfy. Therefore, researchers have explored
black-box attacks.

At present, the existing black-box attacks are to break the target model with adversarial
samples carefully crafted on the substitute model [9], gradient evaluation [10] or swarm
intelligence. However, generating adversarial examples on the substitute model to attack
the target model actually builds a remote hosting system, but requires access to the target
model to gather a dataset to train the substitute model. These attacks add extra overhead
for gathering data and training a substitute model. After that, the adversarial samples
generated by the white-box attacks on the substitute model are used to attack the victim
model which is based on the transferability of adversarial examples. However, the success
rate is relatively low, especially in targeted attacks, and evaluating the gradient using finite
difference requires a higher number of queries and computational cost. Attacks adopting
warm intelligence can perform in different DNN models because these do not rely on
model structure and other detailed information, and the crafted adversarial samples are
random, which can break some of the existing state-of-the-art defense strategies to a certain
extent [11,12].

Motivated by the above, we propose a black-box adversarial attack using Artificial
Bee Colony (ABC), called ABCAttack. It formalizes the adversarial sample generation
problem into an optimization problem, and uses the ABC algorithm to solve it. This
method needs no gradient information in the process of generating the adversarial samples,
so it is gradient-free. The performance of the algorithm is evaluated on MNIST, CIFAR-10
and ImageNet datasets. The results show that ABCAttack can obtain a better attack success
rate with fewer queries. In addition, we also found that classes with similar appearance
characteristics are more likely to be crafted to each other. Due to its gradient-free nature,
ABCAttack is robust to some defenses. We performed untargeted attacks on models which
have different structures and sizes, and it can still achieve a high success rate with fewer
queries. This is because the process of generating adversarial samples does not rely on
gradient calculation or gradient evaluation. Therefore, it has a strong applicability. The
main contributions are summarized as:

1. Aiming at reducing the reliance of white-box attacks on the attacker’s knowledge and
overcoming the shortcomings of black-box attacks that evaluate gradients and train a
substitute model to generate adversarial samples, a new black-box adversarial sample
generation method, ABCAttack, is proposed.

2. ABCAttack transforms adversarial sample generation into an optimization problem
by using an improved search strategy to continuously iterate to obtain the adversarial
image that is adversarial samples if successfully attacking the targeted model. Adver-
sarial samples can be generated only by accessing the input and softmax probability of
the model, without other detailed information, so gradient evaluation and training a
substitute model are avoided, which can effectively improve the generation efficiency
of adversarial samples.

3. We evaluated the proposed ABCAttack using existing datasets: MNIST, CIFAR-10
and ImageNet. The results demonstrate the effectiveness and efficiency under the
black-box setting, that is, in both targeted and untargeted attacks, ABCAttack uses
fewer queries and lower time consumption to generate adversarial samples, which
destroys the trained DNN models and greatly reduces its credibility.

4. We further highlight the effectiveness of ABCAttack in defenses, namely defence-
Gan, Stochastic Activation Pruning (SAP), Local Intrinsic Dimensionality (LID), non-
differentiable input transformations and others. Although these defenses claim to be
robust, our attack can still greatly reduce the accuracy of defense models. ABCAttack
is gradient-free, so it has wide applicability, which means that as long as we obtain
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the input and feedback, we can successfully craft adversarial examples without caring
about the specific details of the model.

In Section 2, we describes the work related to adversarial samples, and Section 3
introduces the standard ABC algorithm. Section 4 formalizes the description of adversarial
samples and discusses the specific details of our proposed algorithm. Section 5 presents
the experimental results and uses multiple indicators to evaluate the performance of the
algorithm. Section 6 discusses the effect of population size and the maximum amount of
change allowed by adversarial perturbation on attack performance. Finally, we summarize
the work of this paper and look forward to the future work in Section 7.

2. Related Work

The emergence of adversarial samples provides an alarm for the security of ML
systems and promotes research on both attacks and defenses. The difference between
white-box and black-box attacks is that in a white-box setting, the attacker has all the
knowledge of the target model.

Szegedy et al. [4] proposed L-BFGS, which uses box-constrained optimization to
generate adversarial examples, and pointed out that adversarial examples are transferable,
that is, in two models that perform the same task, the adversarial samples that affect one
model usually affect the other model, even if the two models have different architectures or
are trained on non-duplicate training sets. Goodfellow et al. [13] described the rationale
of adversarial samples, explaining that the high-dimensional linearity of deep neural
networks is the reason for the existence of adversarial samples, and proposed the Fast
Gradient Symbol Algorithm (FGSM). Kurakin et al. [7] proposed I-FGSM on the basis of
FGSM, and used a cell phone camera to take an image of a printed adversarial sample
as the input of the image classification neural network. As a result, most of the captured
images were still misclassified, which confirms the existence of adversarial samples in the
real world. Nguyen et al. [14] used evolutionary algorithms or gradient ascent algorithms
on a successfully trained CNN model to find special images that humans cannot recognize
but the DNN classifies with high confidence. Moosavi-Dezfooli et al. [15] proposed
an untargeted attack, DeepFool, which can calculate a smaller perturbation than FGSM.
JSMA [16], as a typical L0-norm white-box attack, introduced Saliency Map [17], which
seeks to minimize the number of pixels modified. C&W [18] is generally regarded as one of
the most powerful white-box attacks, supporting L0-norm, L2-norm and L∞-norm attacks,
which break the effectiveness of defensive distillation [19] for most attacks.

In the black-box setting, the attacker can only access the input and feedback. In view of
the transfer nature of adversarial samples, Papernot et al. trained a local model to substitute
for the target DNN, using synthetical inputs generated by an attacker and labeled by the
target DNN [9]. Then, they introduced reservoir sampling to greatly improve the accuracy
and reduce the computational cost of the substitute learning technique [20]. Chen et al. [10]
only accessed the model input and feedback information to evaluate the gradient using
the finite difference, but a lot of queries are required. Bhagoji et al. [21] also used the finite
difference to evaluate the gradient for black-box attacks, and Principal Component Analysis
(PCA) and random grouping were introduced to reduce queries. Narodytska et al. [22]
randomly selected a single pixel or a small number of pixels to add perturbation, and
then used the idea of greedy local search to craft a small group of pixels to improve the
attack efficiency. Brendel et al. [23] proposed a decision-based black-box attack, starting
with a large adversarial perturbation, and then sought to reduce the perturbation while
maintaining the adversarial nature. Ilyas et al. [24] defined three realistic threat models:
the query-limited setting, the partial information setting and the label-only setting, and
developed new attacks under these restrictive threat models, which demonstrates that ML
systems are still vulnerable to attacks even under limited queries and information.

In addition, Su et al. [25,26] merely modified a single pixel of the original image using
differential evolution to attack. GenAttack [11], AdversarialPSO [27,28] used genetic and
particle swarm optimization algorithms, respectively, to make adversarial samples. Both
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attacks greatly reduce the number of queries. In addition, Liu et al. [12] put forward a
method of crafting adversarial samples based on the population evolutionary algorithm,
which is resistant to defense distillation. It is found that the adversarial samples reproduce
the features of the data learned by the DNN model to a certain extent.

Recently, Moosavi-Dezfooli et al. [29] and Mopuri et al. [30] proved the existence of
universal adversarial perturbations, which are both network-agnostic and image-agnostic.
With the studies on adversarial samples, defense algorithms have also emerged, which
hope to improve the robustness of the model adversarial samples [31–34].

3. ABC

Artificial bee colony is a meta-heuristic swarm intelligence optimization algorithm
proposed by Professor Karaboga in 2005 [35]. It is inspired by the principles of a bee colony’s
foraging behavior through information sharing and communication. A bee colony collects
nectar efficiently and collaboratively. In the process, Employed Bees (EBs) collect the nectar
and return to the hive and share information with onlooker bees through dance. Onlooker
Bees (OBs) choose the nectar according to the observed dance. Under certain conditions,
the employed bee is transformed into a Scout Bee (SB), which randomly searches for new
nectar near the hive. This enables the entire bee colony to complete the work of collecting
honey in a collaborative manner efficiently. Inspired by this, the minimum search model for
a bee colony to realize swarm intelligence includes four elements: food source, employed
bees, onlooker bees and scout bees and, among them, OBs and SBs are called unemployed
bees. Each food source is a candidate solution to the optimization problem being solved.
If the number of food sources is SN, the numbers of EBs and OBs are both SN/2. Under
special circumstances, the individuals in the colony will transform into SBs to search for a
new food source. Suppose the dimension of the problem to be solved is d, and the position
of the food source i in the t iteration is Xt

i =
[
xt

i1, xt
i2, . . . , xt

id
]
. The main steps of the ABC

algorithm are as follows:
Step 1: Initialization. The ABC algorithm uses Equation (1) to initialize EN food

sources, and calculate the fitness for every food source.

xij = xmin
ij + rand(0, 1)×

(
xmax

ij − xmin
ij

)
(1)

where xij is the component of food source i in the j-th dimension, i ∈ {0, 1, 2, . . . , EN − 1},
j ∈ {0, 1, 2, . . . , d− 1}. xmin

ij and xmax
ij are lower limit and upper limit of the j-th component,

respectively. rand(0, 1) represents a floating-point random number obtained randomly in
the range of [0, 1].

Step 2: Sending EBs. Each EB exploits a new food source according to Equation (2),

xt+1
ij = xt

ij + ϕij

(
xt

ij − xt
kj

)
(2)

where i, k ∈ {0, 1, 2, . . . , EN − 1}, k 6= i, ϕij is a floating-point random number in the range
[−1, 1]. After that, the fitness value is calculated for the new food source, and each xt+1

i is
compared with the corresponding xt

i to keep the better one. It is judged whether to update
the feasible solution.

Step 3: Sending OBs. EBs share the information with OBs, and the OBs selectively
mine new food sources according to probability.

f itnesst+1
i =


1

1+gt+1
i

gt+1
i ≥ 0

1 +
∣∣∣gt+1

i

∣∣∣ gt+1
i < 0

(3)

Pt+1
i =

f itnesst+1
i

∑EN−1
i=0 f itnesst+1

i

(4)



Entropy 2022, 24, 412 5 of 23

In Equation (4), f itnesst+1
i is the fitness value of the food source in the generation t + 1,

Pt+1
i is probability of the i-th solution and gi is an objective function. The food sources to

be exploited are selected according to Pi, the search formula is the same as step 2. After
that, the remaining procedures are the same as sending EBs.

Step 4: Sending SBs. Assuming the quality of the food source has not improved after
reaching the limit evaluation, the corresponding EB becomes a SB, the current food source
is abandoned and a new food source is generated according to Equation (1).

The ABC algorithm is to continuously mine and explore the food sources by bees with
three different responsibilities, iteratively executing steps 2 to 4 to obtain the final solution.

4. Methodology
4.1. Adversarial Sample

The adversarial sample can be formally described as follows:

xadv = x + δ (5)

where x is the original image, and it can be classified as true label y by f . δ is the perturba-
tion, xadv is a carefully crafted adversarial sample.

The attacks can be divided into targeted and untargeted attacks according to whether
the attacker specifies the model’s prediction label for the adversarial sample. Given the
classifier f (x) and the original sample x, the goal of the untargeted attack is for xadv to
be classified by f (x) into any other label except y, that is, f (xadv) 6= f (x) = y. The
targeted attack is to specify the prediction label y∗ of the xadv before the algorithm runs, i.e.,
f (xadv) = y∗. In contrast, targeted attacks are more difficult. xadv is an adversarial sample
made by the attacker on the model f1(x). Typically, it still has an attack effect for another
model f2(x) that performs the same task as f1(x), which is called the transferability of
adversarial samples.

On the basis of a successfully attack, in order to ensure the information invariance of
the whole vision, that is, a human can correctly classify the adversarial samples, the attack
algorithms will limit the perturbations added. Generally, the following formula is used to
limit the perturbation:

Lp = ‖x− xadv‖p (6)

1. When p = 0, it is the L0-norm of the matrix, indicating the number of non-zero
elements in a vector. This constraint limits the dimension of the modified vector, but
there is no limit on the modification range of each dimension when the adversarial
sample is crafted.

2. When p = 2, it is the L2-norm of the matrix, representing the Euclidean distance
between the original image and the adversarial sample. This restriction allows the
algorithm to modify all dimensions, but limits the magnitude.

3. When p = ∞, it is the L∞-norm of the matrix, which represents the maximum
amount of modification between the original sample and adversarial sample, that
is, the maximum absolute value of the added perturbation, which can modify all
dimensions.

4.2. Problem Description

The essence of adversarial example generation is to find the adjacent images that
match the target within the clean image neighborhood. In this study, ABC is used to
continuously search for better candidate solutions in the search space by minimizing the
fitness function until an adversarial sample is found or termination condition is reached.

We consider the generation of adversarial examples in a black-box setting. The attacker
does not have any knowledge of the model and can only access input and softmax output.
Assuming that the target classification model f : Rd → [0, 1]k, where d is the input
dimension and k is the output dimension and is also the number of classes, and f returns
the probability of each label. Assuming that the original image x = {x1, x2, · · · , xd} can be
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correctly classified as true label y by the model f . The purpose of the attack is to find the
perturbed vector xadv, and the prediction label of the xadv is not y for untargeted attacks, or
equal to the pre-defined target label y∗ for targeted attacks. In addition, the attacker should
constrain the Lp distance between clean the adversarial samples as much as possible to
ensure that the visual difference between them is as imperceptible as possible. In this paper,
we limit the L∞ distance.

For untargeted attacks:

arg max
c∈{1,··· ,k}

f (xadv)c 6= y such that ‖x− xadv‖∞ ≤ δ (7)

For targeted attacks, set y∗ as the target label:

arg max
c∈{1,··· ,k}

f (xadv)c = y∗ such that ‖x− xadv‖∞ ≤ δ (8)

4.3. ABCAttack Algorithm

ABC is used in many fields to solve optimization problems. This paper introduces
ABCAttack that relies on ABC to solve the optimization problems of Equations (7) and (8)
to craft adversarial images. The process of ABC to solve the problem is mainly initializing,
exploiting EBs, calculating selection probability and exploiting OBs and SBs to iterate
continuously to find the adversarial image. Assuming that x and xadv are the clean image
and the corresponding adversarial image, respectively, x is correctly classified as the real
label y, and the target label pre-defined by the attacker is y∗. As shown in Figure 1,
ABCAttack takes the original image as the input. According to the input domain of the
target model, the clean image is first mapped to the input space of the model. It is assumed
that the input space range of the model is [−0.5, 0.5], therefore, we use x′ = (x/255.0− 0.5)
to complete the normalization, and add random disturbance to x′ to initialize the food
source. After that, we iteratively optimize to obtain the adversarial sample. After the attack
is successful, we then map it to the RGB space to observe the visual difference from the
clean image. The algorithm will terminate the loop in advance when the adversarial sample
is crafted successfully. The adversarial sample generation will fail if the maximum for
queries is reached.

XadvX

EN

X

Figure 1. The process of adversarial attacks using ABCAttack.

In order to further control the change range of the original image during the algorithm
iteration process, we define the maximum change δmax. ABCAttack crafts adversarial
samples under the L∞-norm. The L∞-norm is defined as the maximum change in xadv
relative to x, expressed as δmax = max(|x1 − x1

adv|, |x2 − x2
adv|, · · · , |xd − xd

adv|).
We use the clip operation to limit changes in each candidate solution. If we set δmax =

B, the upper and lower limits of the original image are UP and LP, respectively, and the next
candidate solution is xt+1 = clipByTensor(xt+1, clip(x− B, LP, UP), clip(x + B, LP, UP)),
where clip is the truncation function clip(vector, min, max), and its purpose is to assign min
to elements smaller than min in the vector, and assign max to elements larger than max.

For each image, we use Algorithm 1 to generate its adversarial sample. In ABCAttack,
we respectively define fitness functions for targeted and untargeted attacks. In untargeted
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attacks, the object function g(·) is the probability py
cand that the original image is predicted

as true label y. In targeted attacks, the object function g(·) is 1− py∗

cand, where py∗

cand is
the probability of the pre-defined target label y∗ of the current candidate solution. In
ABCAttack, the ranges of py

cand and 1− py∗

cand are both (0, 1), and there is no case where g(·)
is less than 0, so we choose the fitness function as:

calFitness(xcand) = g(xcand) =

{
py

cand, untargeted
1− py∗

cand, targeted
(9)

Algorithm 1 Adversarial attack-based ABCAttack.
Input: original image x, the true label y and its probability probori, target label y∗, number

of food source SN, Limit number l, max change δmax, the initialization amplitude limit
factor α, upper bounds UP and lower bounds LP.
Output: BestSolution
1: Poputions← []
2: BestSolution, bestFit← x, 100,000
3: aMin, aMax ← clip( x− δmax, LP, UP), clip( x + δmax, LP, UP)
4: EN ← SN/2

// Initializing
5: for i = 0 to EN − 1 do
6: Poputions[i]=x + U (−α× δmax, α× δmax)
7: Poputions[i]=clipByTensor(Poputions[i], aMin, aMax)
8: Poputions[i]. f itness = calFitness(Poputions[i])
9: updateBestSolution(Poputions[i], BestSolution)

// Optimization
10: while stopOption() do
11: for i = 0 to EN − 1 do
12: next = clipByTensor(searchStrategy(i, 1), aMin, aMax)
13: f itness = calFitness(next)
14: greedySelection()
15: updateBestSolution(next, BestSolution)

Poputions.p = selectProbabilities()
16: for i = 0 to EN − 1 do
17: if Poputions[i].p > rand(0, 1) then
18: next = clipByTensor(searchStrategy(i, 2), aMin, aMax)
19: f itness = calFitness(next)
20: greedySelection()
21: updateBestSolution(next, BestSolution)
22: sendScoutBees()
23: updateBestSolution(Poputions, BestSolution)

return BestSolution

Therefore, the fitness value for targeted and untargeted attacks decreases as the cycle
goes on, and the smaller the fitness, the better the current solution.

It can be seen from Algorithm 1 that ABCAttack consists of two main parts: initializa-
tion and optimization. The searchStrategy() is the implementation of search strategy. The
calFitness() function calculates the fitness of the candidate solution by Equation (9). The
updateBestSolution() updates the current optimal solution, and stopOption() is a function
that judges whether the current cycle is stopped according to the termination conditions.
The termination conditions include the successful generation of adversarial samples and
queries reaching the maximum. The specific details of the algorithm are as follows.

(1) Initialization
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In this paper, the initialization of the standard ABC algorithm (Equation (1)) is not
used, but the candidate solutions are initialized by uniform distribution, as shown in
Equation (10):

x0
i = x + U (−a× δmax, a× δmax)(i = 1, 2, · · · , EN) (10)

Define the number of EBs and OBs EN, the maximum modification δmax, that is,
L∞ = δmax, and the initialization amplitude limiting factor α.

(2) Optimization
Iteratively optimizing solving adversarial examples using ABCAttack can be divided

into the following stages: sending EBs, probability calculation, sending OBs and sending
SBs. In the basic ABC algorithm, the search strategies of the EBs and the SBs are the same,
both of which are Equation (2). In this paper, we improve the search strategy of the EBs
and OBs to enhance the optimization ability and convergence speed.

Sending EBs stage: According to the ratio of the fitness of the current optimal solution
to probability of the original image classified into the true label, the candidate solutions are
divided into two parts, S1 and S2, and different search strategies are used for generating
new candidate solutions. The specific division method is as follows:

N = max
(
(EN − 1)× bestFit

probori
− 1, 1

)
(11)

S1, S2 = S[: N], S[N :] (12)

The search method of the candidate solution subset S1 is the same as Equation (2), and
the candidate solution subset S2 is applied to Equation (13) to generate next generation
candidate solutions, which use the current optimal solution to guide optimization:

xnext
i = Sbest + ϕi

(
xt

i − xt
k
)
, (i ∈ N, · · · , EN, k 6= i) (13)

It can be seen that in the initial iteration of the algorithm, assuming that there is an
untargeted attack, and bestFit = probori, the number of EBs that use the original search
strategy in Equation (2) to exploit is EN − 2, and the number of EBs that use the current
optimal solution to guide the exploitation is 2. As the algorithm runs, bestFit gradually
decreases with the increase in iterations, the number of EBs using the original search
strategy in Equation (2) to exploit is gradually reduced and using optimal guided searches
will increase.

After generating the next generation candidate solution, the fitness is calculated and
the final next generation candidate solution based on greedy selection in Equation (14) is
determined. If the candidate solution is replaced, its trial is set to 1, otherwise it is trial
plus 1. This is the greedySelection() in Algorithm 1. Equation (15) is applied to update the
current optimal solution if the f itt+1

i is less than bestFit.

xt+1
i , trialt+1

i =

{
xt

i , trial t
i + 1, if f itnext

i > f itt
i

xnext
i , 1, if f itnext

i ≤ f itt
i

(14)

bestFit =
{

bestFit, if f itt+1
i > bestFit

f itt+1
i , if f itt+1

i ≤ bestFit
(15)

Probability calculation and sending OBs stage: Calculate the selection probability for
each candidate solution according to Equation (4), that is, the selectProbabilities() function
in Algorithm 1. Select the candidate solution that satisfies the rand(0, 1) < Popution[i].p
condition for further exploitation. First, randomly select (rated)/2 + 1 elements with the
probability rate for adaptive optimal guided local optimization. The rate can be obtained
from Equation (16):

rate = max
(

MaxEvaluation− evalCount
MaxEvaluation

, 0
)

(16)
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where MaxEvaluation is the maximum queries, evalCount represents queries currently
used. The rate shows a decreasing trend as the algorithm continues to iterate. Therefore,
when the current optimal solution is closer to the attack target, the number of modified
pixels should be reduced as much as possible to enhance the ability of local optimization.
Let Points be the selected elements indexes set, and use the following equation to search
new solutions for the sending OBs stage:

xnext
i [Points] =Sbest[Points] + ϕi×(

xt
i [Points]− xt

k[Points]
)
, i 6= k.

(17)

Then, calculating the corresponding fitness, carry out greedy selection according to
Equation (14), and update the current optimal solution as seen in Equation (15).

Sending SBs stage: The numbers of evaluations of all current candidate solutions
are checked. If the trial corresponding to a certain candidate solution is greater than the
limitTrial, the current candidate solution is discarded, and a new candidate solution is
generated by Equation (10).

The above steps are carried out iteratively until the adversarial sample is crafted or
the termination condition of the algorithm is reached. Equation (2) generates a new food
source near the randomly selected individuals, which has strong global search ability and
can maintain the diversity of the population, but the convergence speed is slow. In the
optimal solution guided search strategy, new food sources are generated near the optimal
individual, which has strong local search ability, but it easily falls into local optimization.
In the EB search stage, this paper adopts the combination of the original ABC search
strategy (Equation (2)) and the search strategy guided by the current optimal solution
(Equation (13)), which can ensure adjusting the population diversity and search ability
according to the current optimal solution. We also compare the hybrid search strategy in
this paper with the search strategy using only Equation (2) or Equation (13) on MNIST and
CIFAR-10 datasets. With the same parameters, whether an untargeted or targeted attack, we
prove that the algorithm can effectively improve the convergence speed, and the maximum
reduction in average queries is more than 300, although this is limited. However, for lack
of space, we will not show the specific experimental results in the experimental part.

5. Experimental Verification and Result Analysis
5.1. Experimental Dataset and Environment

We use MNIST [36], CIFAR-10 [37] and ImageNet [38] datasets to do comparative experi-
ments to verify the performance of ABCAttack in ZOO [10], C&W [18], AdversitiaoPSO [27],
GenAttack [11] and other methods. The models used by MNIST and CIFAR-10 are the
same as those used in ZOO, C&W, AdversitiaoPSO and GenAttack. The specific details
of the models can be found in [18], and their accuracies are 99.51% and 78.91% on the test
datasets for MNIST and CIFAR-10, respectively. ImageNet uses the InceptionV3 model as
the target attack model.

The experimental data used in this paper are the same as AdversitiaoPSO for MNIST
and CIFAR-10. Under untargeted attacks, the first 1000 correctly predicted test samples
in MNIST and CIFAR-10 are used to generate adversarial samples, while under targeted
attacks, the first 111 test samples with correct prediction are used to attack. For one image,
the pre-specified label of the targeted attack is set to all labels except the real label, and
nine targeted attacks are performed. Therefore, the total number of targeted attacks is
111× 9 = 999. The ImageNet dataset has 1000 classes. In this paper, 500 random samples
with correct classifications are selected for attack. The following experiments on the MNIST
and CIFAR-10 datasets were completed on a desktop computer with Intel Core i5-8400
@2.80 GHz CPU and 16 GB RAM, and for the experiments on the ImageNet, we completed
the experiments on a machine with Intel Core i7-7700 @3.60 GHz × 8 CPU and GeForce
CTX 1080Ti GPU.
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In order to evaluate the performance of the algorithm, this paper introduces several
metrics to measure the effectiveness of ABCAttack:

Attack success rate: ASR refers to the proportion of successful adversarial samples in
all samples.

Average queries: We record an image individually input into the model as a query.
The query count statistics are calculated only for successful attacks. The AvgQueries refers
to the sum of the queries required for each successful adversarial example divided by the
number of successful adversarial examples.

At the same time, we also calculated the L2-norm of the adversarial perturbation,
and also aimed to calculate the AvgL2 on the successful sample. However, we pay more
attention to the AvgQueries and the ASR.

5.2. Parameter Analysis

This attack first determines the number of food sources SN. We set the number of
food sources to start from 10, with a step size of 2 to 30, perform untargeted attacks on the
MNIST, CIFAR-10 and ImageNet datasets and observe the AvgQueries. We first describe
the attack success rate, that when SN = 10 and SN = 12, respectively, the attack success
rate is small, 92.9% and 99.5% on MNIST(α = 1.0), 94.7% and 98.5% on CIFAR-10 (α = 1.0),
76.67% and 84.67% on ImageNet. When SN ≥ 14, the attack success rate of the algorithm
tends to be stable. After that, the accuracy will fluctuate slightly as a result of some random
factors in the algorithm. This is a normal phenomenon, because the algorithm contains
randomness, but the change in accuracy is very slight. For example, the success rate on
MNIST is between 99.9% and 100%. Figure 2 shows the relationship between SN and
AvgQueries on MNIST, CIFAR-10 and ImageNet datasets.

Figure 2. The relationship between the number of food sources and average queries.

It can be seen from the Figure 2 that, at the beginning, the AvgQueries decrease with
the increase in SN. However, when it increases to a certain value, the AvgQueries increase
slowly. When α = 1.0, the optimal number of food sources is 30, 16 and 12 and the ASR is
99.9% 98.5% and 84.67% and, when α = 0.5, they are 28, 24 and 16 and the ASR is 100%,
98.4% and 86.67%, respectively on MNIST, CIFAR-10 and ImageNet. However, with the
increase in SN, the average L2-norm also increases, even if it does not increase significantly
(α = 1.0, the average L2-norms of MNIST and CIFAR-10 increase by 0.2526 and 0.0545.
For α = 0.5, the difference is 0.3605 and 0.1547, respectively). The trend of AvgQueries
on ImageNet is not obvious, because when SN = 22, the AvgQueries have a significant
increase, and the other points are relatively stable after removing this point. Although the
AvgQueries at this point have increased, the ASR has not changed much. Considering the
ASR, AvgQueries and computing load, we finally choose SN as 20.
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Equation (10) is used to initialize the candidate solution, where α is closely related to
the L2-norm of the initial candidate solution. According to the above experimental results
of SN, we fixed SN at 20, and increased α from 0.1 to 1.0 in steps of 0.1. Figure 3 shows the
results of untargeted attacks on MNIST, CIFAR-10 and ImageNet datasets, including the
AvgQueries and AvgL2 under different α. In MNIST and CIFAR-10 dataset experiments,
we first show that while α changes, the ASR does not fluctuate much. When α = 0.8 and
α = 0.9, the ASR of MNIST is 99.9%, and in other cases it is 100%. The ASR of CIFAR-10
is maintained at 98.3–98.5%. It can be seen from Figure 3 that the AvgQueries decrease
monotonically with the increase in α, while the average L2-norm increases monotonously.
The following conclusions can be drawn: the L2-norm of the initial candidate solution
is directly proportional to the final adversarial perturbation L2-norm, and is inversely
proportional to AvgQueries used for successful attacks. The smaller the L2-norm of the
initial candidate solution is, the smaller the L2-norm of the final adversarial perturbation
that will be crafted, but the AvgQueries used for successful attack will also increase. On the
contrary, the larger the L2-norm of the initial candidate solution is, the AvgQueries used
for successful attack are correspondingly lower.

Figure 3. The relationship between α and average queries and L2-norm of adversarial perturbation.

However, the experimental results for the ImageNet dataset are not obvious. When
α = 0.3 and α = 1.0, the AvgQueries decrease because the ASR of these two data points
decreases, which is 83.33% and 84.67%, respectively. Compared with other points, the ASR
of 89.33–92.00% is lower, resulting in low AvgQueries. However, unlike the MNIST and
CIFAR-10, the AvgQueries and AvgL2 have no particularly obvious trend on ImageNet.
The AvgL2 shows a downward trend from 0.1–0.5. However, the AvgL2 shows a downward
trend from 0.6–0.9, and the downward trend is not continuous. We think this is partly
due to the increase in AvgQueries, because, in general, the more iterations, the more the
L2-norm will also increase. Considering ASR, AvgQueries and AvgL2, we can see that
α = 0.5 is a better choice in the ImageNet dataset.

Parameter setting: In black-box attacks, the L2-norm of perturbation cannot be bal-
anced with the query cost. We can only try to trade off between them. Therefore, according
to the above experimental results, we set SN = 20, α = 0.5, so the number of EBs and OBs
is 10, and limitTrial = 10. In MNIST and CIFAR-10, the MaxEvaluation is set to 10,000,
and for ImageNet, the MaxEvaluation is set to 30,000. The image size of the MNIST is
28× 28, the maximum change δmax = 0.3, the image size is 32× 32× 3 in CIFAR-10 and
299× 299× 3 in ImageNet and the maximum change in these is δmax = 0.05 When the
model input range is [0, 1] or [−0.5, 0.5], and if the model input range is [0, 255], the
δmax = 0.05× 255 = 12.
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5.3. Comparison and Analysis of Experimental Results
5.3.1. Attack on MNIST, CIFAR-10 Classification Models

As can be seen in Table 1, ABCAttack uses 629 and 1695 average queries in both
untargeted and targeted attacks on the MNIST dataset, achieving 100% and 94.89% attack
success rates, uses 330 and 851 average queries on the CIFAR-10 dataset, achieving 98.6%
and 82.3% attack success rates, respectively. Compared with ZOO that uses 384,000 average
queries, the average queries of untargeted attacks are reduced by about 609 times, and the
average queries of targeted attacks are reduced by about 255 times in ABCAttack on the
MNIST dataset. Compared with C&W that uses 4650 average queries, the average queries
of ABCAttack are reduced by 6.3 times in untargeted attacks, and the average queries
are reduced by about 1.74 times in targeted attacks. It is obvious from the table that this
phenomenon is the same in the CIFAR-10 dataset. The average queries used by ZOO and
C&W are several times that of ABCAttack, whether it is an untargeted or targeted attack.

Table 1. Result comparison in MNIST and CIFAR-10. The experimental results of ZOO attack are
black-box (ZOO-ADAM), and in the experimental results of C&W, the average time is calculated as
the total time for training the surrogate model and generating adversarial samples. The bolded item
indicates the best result.

MNIST

Untargeted Targeted

Attack ASR AvgL2 AvgTime AvgQueries ASR AvgL2 AvgTime AvgQueries

ZOO 100% 1.4955 1.38 min 384,000 98.90% 1.987068 1.62 min 384,000

Black-box (Substitute Model + FGSM) 40.6% − 0.002 s (+6.16 min) − 7.48% − 0.002 s (+6.16 min) −
Black-box (Substitute Model + C&W) 33.3% 3.6111 0.76 min (+6.16 min) 4650 26.74% 5.272 0.80 min (+6.16 min) 4650

GenAttack − − − − 94.45% 5.1911 − 1801
AdversarialPSO 96.30% 4.1431 0.068 min 593 72.57% 4.778 0.238 min 1882

ABCAttack (α = 0.5) 100% 4.01033 0.018 min 629 94.89% 4.7682 0.048 min 1695

SWISS 100% 3.4298 0.087 min 3043 19.41% 3.5916 0.345 min 20,026

ABCAttack (α = 0.1) 100% 3.34524 0.045 min 1228 94.99% 4.5617 0.051 min 2066

CIFAR-10

Untargeted Targeted

Attack ASR AvgL2 AvgTime AvgQueries ASR AvgL2 AvgTime AvgQueries

ZOO 100% 0.19973 3.43 min 128,000 96.80% 0.39879 3.95 min 128,000

Black-box (Substitute Model + FGSM) 76.1% − 0.005 s (+7.81 min) − 11.48% − 0.005 s (+7.81 min) −
Black-box (Substitute Model + C&W) 25.3% 2.9708 0.47 min (+7.81 min) 4650 5.3% 5.7439 0.49 min (+7.81 min) 4650

GenAttack − − − − 98.09% 1.3651 − 1360

AdversarialPSO 99.60% 1.414 0.139 min 1224 71.97% 2.925 0.6816 min 6512

ABCAttack (α = 0.5) 98.60% 1.64319 0.0233 min 330 82.3% 1.910103 0.0615 min 851

SWISS 99.80% 2.3248 0.1264 min 2457 31.93% 2.9972 1.623 min 45,308

ABCAttack (α = 0.1) 98.40% 1.24167 0.031 min 481 80.88% 1.644 0.0654 min 1102

In the experiment with MNIST, although the AvgQueries of ABCAttack are slightly
lower than those of AdversarialPSO (ABCAttack: 629, AdversarialPSO: 593), the ASR of
ABCAttack is better than that of AdversarialPSO. In targeted attacks, ABCAttack achieves
a 94.89% attack success rate, and the average queries used are lower. In the experiment
with CIFAR-10, only the ASR and AvgL2 of untargeted attacks are slightly lower than the
AvgL2 (ABCAttack: 98.6%, 1.64319, AdversarialPSO: 99.6%, 1.4140). When α = 0.1, in
the MNIST experiment, the success rates of both SWISS and ABCAttack are 100%, and
the AvgL2 is comparable, but the average queries used by SWISS are about 2.47 times
those of ABCAttack. However, in the targeted attack, the AvgL2 of the adversarial samples
generated by ABCAttack is 1 larger than that of SWISS. ABCAttack has more advantages
in attack success rate and average queries. When α = 0.1, in the CIFAR-10 dataset, only
ABCAttack’s ASR (98.4%) is lower than that of SWISS (99.6%), and the rest are the best.
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Secondly, in MNIST and CIFAR-10 experiments, Substitute+FGSM and Substitute+C&W
both use white-box attacks to generate adversarial samples on the trained substitute models
to attack the target model. It can be seen from Table 1 that the ASR needs to be improved.
In the MNIST dataset, transferability reaches 84.24% for the first substitute DNN and
78.72% for the second, with input variations of δmax = 0.3 [9]. The ASR of transfer-based
attacks depends on similarity between the model generating adversarial samples and the
target model. With the same model structure, the more possibilities there are for successful
transfer. However, the ASR with different structures is lower, especially in targeted attacks,
because the decision boundaries of different models may be quite different, which cannot
guarantee the success of target attacks. How to improve the transferability of adversarial
samples is also a hot issue in current research.

Table 1 shows that only the AvgL2 between the adversarial samples generated by
ZOO and the original samples is the smallest, but the AvgQueries used are the largest.
ABCAttack has more advantages in running time and queries.

5.3.2. Attacks on Large-Scale Image Dataset ImageNet

The attack results of the large-scale ImageNet dataset are shown in Table 2. The target
models of ZOO, AdversarialPSO and SWISS are all InceptionV3. Our attack algorithm
also takes VGG-16 and VGG-19 as the target model to facilitate comparison with the UAP
algorithm. The input of the InceptionV3 model is 299× 299× 3 or 224× 224× 3, and the
input of VGG-16, VGG-19 and MobileNet is 224× 224× 3. In this experiment, we do not
use dimension reduction or hierarchical attack to improve the attack efficiency. Therefore,
the perturbation dimension is the same size as the image size. Parameters SN and α are still
set to 20 and 0.5, and the maximum for queries is limited to 30,000. The first 500 randomly
selected images predicted correctly by InceptionV3 in the ImageNet dataset are used as
the original images to be input into the ABCAttack algorithm. The ASR and AvgQueries
are 90.00% and 2759, respectively. In contrast, ZOO used 1,280,000 to produce adversarial
samples with AvgL2 of 1.19916 on the ImageNet dataset, and the ASR was as high as 88.9%,
while the AdversarialPSO only used 2833 average queries, but the ASR was 82.00%. The
L2-norm in ABCAttack is much larger than that of ZOO and AdversarialPSO. However,
the difference between the adversarial samples generated by this attack algorithm and the
original samples cannot be perceived by human eyes, as shown in Figure 4. The main reason
for the larger L2-norm of the adversarial samples generated by ABCAttack is the larger
perturbation dimension. ABCAttack used 2759 AvgQueries to achieve 90.00% ASR, while
ZOO used 1,280,000 average queries, which is an order of magnitude difference. Compared
with AdversarialPSO, our algorithm is about 70 fewer queries than that of AdversarialPSO,
but has higher success rate, and the difference in AvgQueries is not significant, which is
also related to the experimental samples.

Since different models have inconsistent processing schemes for input images, we
set δmax according to the model input. When the model input is between [0, 1], we set
δmax = 0.05, and when the model input is in the [−1, 1] range, we set δmax to 0.1, but when
the model input is [0, 255], we set it to 12, but this is basically consistent for the maximum
change in the image in RGB space.

The UAP algorithm generates a universal perturbation without generating for each
image. The accuracies of UAP [29] on VGG-16 and VGG-19 models are 78.3% and 77.8%.
Some of the training images are used to craft universal perturbations, and [30] shows that
universal perturbations can be crafted with non-training set images, which removes the
limitation of knowing part of the training set data for universal perturbation generation,
but as a cost, ASR decreases significantly. Tran-TAP and Tran-UAP [39] adopt transfer-
based attacks. It can be seen that the ASR from VGG-16 to Inc-V3 is 76.1% and 68.8%.
Although UAP is still transferable, its ASR is reduced. The ASR is only 34.3% when
adversarial samples generated by Inc-V3-FGSM transfer to ResNet-V2. The difference in
model structure is the bottleneck to improve the ASR of transfer-based attacks.
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In this study, our ABCAttack (a = 0.5) could obtain 99.6%, 99.0% and 100% success
rates in VGG-16, VGG-19 and MobileNet, respectively, with average queries of 1839, 1501
and 568 when the maximum query MaxEvaluation is set to 30000. The attack success rate
is significantly higher than that of the UAP algorithm.

Table 2. Result comparison in ImageNet dataset.

Method
MaxEvaluation = 30,000 MaxEvaluation = 50,000

ASR AvgQueries AvgTime ASR AvgQueries AvgTime

UAP [29] (VGG-16) 78.3% - - - - -

UAP [29] (VGG-19) 77.8% - - - - -

UAP-Fast Feature Fool [30] (VGG-16) 47.10% - - - - -

UAP-Fast Feature Fool [30] (VGG-19) 43.62% - - - - -

Tran-TAP [39] VGG-16 to Inc-v3 76.1% - - - - -

Tran-TAP [39] Inc-v3 to VGG-16 70.6% - - - - -

Tran-UAP [39] VGG-16-UAP to Inc-v3 68.8% - - - - -

Tran-UAP [39] Inc-v3-UAP to VGG-16 60.2% - - - - -

ZOO 88.9% 1,280,000 8.031 min - - -

AdversarialPSO 82.00% 2833 3.181 min - - -

SWISS 70.66% 8429 5.014 min - - -

ABCAttack (VGG-16) 99.60% 1839 2.07 min 99.8% 1901 2.1276 min

ABCAttack (VGG-19) 99.00 1501 1.7298 min 99.6% 1698 1.8832 min

ABCAttack (MobileNet-v3) 100% 568 0.6714 min 100% 568 0.6714 min

ABCAttack (Inc-v3, image size is 299) 90.00% 2759 3.172 min 92.00% 2971 3.238 min

ABCAttack (Inc-v3, image size is 224) 98.4% 899 1.0086 min 98.4% 899 1.0086 min

In terms of attack cost time, ZOO needs to evaluate the gradient. For large-scale
datasets, multi-dimensional gradient evaluation is quite time-consuming even with dimen-
sionality reduction, so the attack time cost of the ZOO method is high. Compared with
AdversarialPSO on the ImageNet dataset, we have a slight advantage in its average queries
and average time spent, but we have an 8% increase in attack success rate, and regardless
of whether we use VGG-16, VGG19, MobileNet or InceptionV3, our attack success rate is
over 90.00%.

We conducted experiments with a greater query limit MaxEvaluation = 50,000. The
experimental results are shown in Table 2. From the perspective of attack success rate,
even if the maximum query MaxEvaluation is increased by 20,000, the increase in attack
success rate is only slight. When VGG-16 and VGG-19 are used as target models, when
the maximum query increases to 50,000, the attack success rate increases by 0.2% and 0.6%,
respectively. When taking InceptionV3 as the target model, the attack success rate did
not rise when the image size was 224. Even when the maximum query is increased to
70,000, a few samples still cannot obtain the corresponding adversarial samples. Compared
with the maximum limit change δmax, increasing the maximum limit query MaxEvaluation
will not significantly improve the attack success rate, and will lead to an increase in the
average queries. Similarly, we intentionally increased the MaxEvaluation when attacking
the defense strategy, and the results can be seen in Table 3 and are consistent with the
results on ImageNet.

However, we did not do any optimization in the ImageNet dataset, so the quality of
generated adversarial images is not high. Improving the quality of adversarial samples,
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reducing the dimensions of algorithm input and reducing the average queries in a large-
scale dataset in a black-box setting that does not rely on gradient calculations will be our
future focus.

(a) (b) (c)

(d) (e) (f)

Figure 4. Original samples (top) and their corresponding adversarial samples (bottom) in ImageNet
dataset. (a) Predicted label: sea snake. (b) Predicted label: soup bowl. (c) Predicted label: artichoke.
(d) Predicted label: Indian cobra. (e) Predicted label: red wine. (f) Predicted label: cardoon.

5.3.3. Targeted Attack Analysis

This experiment selects the first 12 images of each class in the MNIST and CIFAR-10
datasets to carry out a targeted attack, and each image uses the remaining class as the
pre-set label of the targeted attack. Therefore, 12× 10× 9 = 1080 attacks are executed. The
ASR is 93.98% and 83.24%, and the corresponding AvgQueries and AvgL2 are 1744 and
915, and 4.844 and 1.911, respectively. Figures 5 and 6 show the analysis of the experimental
results of a targeted attack on MNIST and CIFAR-10 datasets, respectively, where (a) is
the heat map of the number of successful attacks, and the total number of attacks for each
square is 12. Panel (b) shows the corresponding average queries. It can be seen from the
figure that the original images predicted as auto and truck in the CIFAR-10 dataset are
more difficult to be made into adversarial samples, while some samples are easier to be
crafted adversarial images to attack models.

(a) (b) (c)

Figure 5. Analysis of targeted attack results in MNIST dataset. The row label is true label and column
label is target label. (a) Heat map of the number of successful attacks in the MNIST. (b) The average
queries used by each different original–target class pairs in MNIST. (c) The original images in the
MNIST test set and the generated adversarial images by ABCAttack.

In the MNIST dataset, although the ASR is higher, when the pre-specified label is 0, the
AvgQueries used for successful attack is more, which means that, in comparison, the clean
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samples of any other class are more difficult to be made into adversarial samples predicted
to be 0. Compared with CIFAR-10, the AvgQueries used for successful attack in the MNIST
dataset are more, and the heap map of both of them has slight symmetry, which is more
obvious in CIFAR-10. In (c), the images on the main diagonal are the original images, and
the other images are the generated corresponding adversarial images. It can be seen that
there is a slight difference between the adversarial images generated by ABCAttack and the
original images. However, the model classifies 10 different images into 10 different classes
which can be correctly recognized as the same labels by a human. This further proves that
DNN models still have many vulnerabilities and defects.

(a) (b) (c)

Figure 6. Analysis of targeted attack results in CIFAR-10 dataset. The row label is true label and
column label is target label. (a) Heat map of the number of successful attacks in the CIFAR-10. (b) The
average queries used by each different original–target class pairs in CIFAT-10. (c) The original images
in the CIFAR-10 test set and the generated adversarial images by ABCAttack.

5.3.4. Untargeted Attack Analysis

We select the first 100 correct prediction samples in each class of MNIST and CIFAR-10,
and 10 × 100 = 1000 images are selected to craft untargeted adversarial images. The
AvgQueries using 664 and 295 can achieve 99.9% and 98.3% ASR. Figures 7 and 8 show
the statistics of untargeted attacks on MNIST and CIFAR-10 datasets, respectively. Panel
(a) is the relationship between the true labels of original images and predicted labels of
corresponding adversarial images in the untargeted attack. Each node in (a) represents a
class, and the node size indicates the number of adversarial samples that are predicted to
be in the class. The larger the node, the more crafted adversarial images are predicted to be
in the class, the color of the edge is consistent with the target node and the thickness of the
edge represents the number of original–predicted label of adversarial image pairs. More
detailed results can be seen in (b), which shows the relationship between the true class and
predicted labels of the adversarial samples.

From Figures 7a and 8a, it can be seen that on MNIST and CIFAR-10 datasets, the
ABCAttack more easily creates adversarial images that are recognized by the model as
the digit 3 and a cat. In the MNIST experiment, original images with class 3, 5, 7 and 8
are easily crafted into adversarial images recognized as 3. In the CIFAR-10 experiment,
the original images with class deer, dog and frog are more easily crafted into adversarial
images recognized as a cat. From Figures 7b and 8b, it can be seen that, similar to the
targeted attack, the heat map of original–predicted classes of adversarial sample pairs has
a symmetrical relationship, especially in the CIFAR-10 dataset.
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(a) (b)

Figure 7. Analysis of untargeted attack results in MNIST dataset. (a) The relationship between the
label of original images and predicted label of corresponding adversarial images in MNIST dataset.
(b) The number of successful crafted adversarial images for each class of MNIST dataset in untargeted
attacks.

In MNIST, original images with true label 4 are easier to be crafted into adversarial
samples with predicted label 9, and original images with true label 3 are easier to be crafted
into adversarial samples with predicted label 5 in untargeted attacks, and vice versa. The
reason may be because the digit 4 is similar to the digit 9, and the digit 3 is similar to the
digit 5. However, this symmetry is not absolute. Among the 100 original images with
class 6, 81 adversarial samples produced in untargeted attacks are predicted to be 5, but
only six in the opposite case. Perhaps, in comparison, the handwritten digit 5 and the
handwritten digit 3 are more similar than the handwritten digit 6, which to a certain extent
shows that the DNN model has indeed learned the characteristics of each class. In the
CIFAR-10 dataset, there are cat–dog class pairs that exhibit the same properties, which is
consistent with the description in [26].

(a) (b)

Figure 8. Analysis of untargeted attack results in CIFAR-10 dataset. (a) The relationship between
the label of original images and predicted label of corresponding adversarial images in CIFAR-10
dataset. (b) The number of successful crafted adversarial images for each class of CIFAR-10 dataset
in untargeted attacks.

In untargeted attacks, even the same image can be crafted into adversarial images that
are predicted to be a different class to a certain extent. This is due to the randomness of
ABCAttack.
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5.4. Attacking Defenses

While multiple defenses already exist, researchers have been trying to study new
attacks that render defenses ineffective. Our proposed ABCAttack can also break some
existing defenses. The defense methods we use include adversarial training, input transfor-
mation and some overall defense. For all the following attacks against CIFAR-10, we have
followed the setting ε = 8.0 or ε = 0.031 and MaxEvaluation = 10,000, unless otherwise
stated. The experimental results can be seen in Table 3.

Athalye et al. [40] point out that although a “confusion gradient” can defeat some
attacks based on gradient optimization, the defense relying on this “confusion gradient”
can still be avoided. A BPDA white-box attack is proposed, which can break some defenses
based on a “confusion gradient”. We selected some of the mentioned defenses to evaluate
the effectiveness of our method for defense strategies.

We first evaluated our attack on defense-GAN [31] using the MNIST dataset and
adding L2-criteria to the fitness function, and we achieved a success rate of 62.4% and a
BPDA of 45%. Stochastic Activation Pruning (SAP) [32] introduces randomness into neural
networks to resist adversarial samples. The application of SAP will slightly reduce the
accuracy of cleaning classification, but increase the robustness. We evaluated ABCAttack’s
performance against SAP defense on the CIFAR-10 dataset. When setting parameters
ε = 0.031, MaxEvaluation = 20,000 and ε = 0.031, MaxEvaluation = 20,000 and ε = 0.05,
MaxEvaluation = 10,000, the success rate is 64.6%, 67.4% and 88.4%, respectively. Input
transformations [33] defend against the adversarial samples by converting inputs. We
evaluated the effectiveness of this defense on the ImageNet dataset, and our method
can still achieve a 78% success rate in this defense (JPEG and bit depth). Local Intrinsic
Dimensionality (LID) [41] is a general metric used to measure the distance from input to
adjacent input. The results of the attack on the CIFAR-10 dataset show that our ABCAttack
can still reduce the accuracy of the model to 0.01% under the LID defense strategy, and
ASR reaches 99.9%.

The focus of [42] is to analyze and evaluate some defenses against adversarial samples
in detail, and the study points out that defenses that are claimed to be robust to white-box
attacks can still be broken. No attack strategy is sufficient to deal with all defenses, that is,
to break a defense, its internal mechanism also needs to be carefully analyzed and adjusted.
We evaluated two of these defenses. In k-winners defense takes all in [42], we obtained
70.4% ASR in the adversarial training model, and the accuracy of the model was reduced
to 0.16% in the adversarial training model in [42]. Pang et al. [43] proposed to train an
ensemble of models with an additional regularization term that encourages diversity in
defense adversarial samples. We set the maximum L∞ distance δmax = 0.031 and δ∞ = 0.05
in the CIFAR-10 dataset, and obtained ASR of 71.4% and 96.3%, respectively, when limiting
the maximum number of queries to 10,000. When MaxEvaluation = 20,000 and δ∞ = 0.031,
the ASR is 98.3%.

As can be seen from Table 3, the black-box ABCAttack of this paper can break the above
defenses to a great extent, but the attack cost increases. All the above experiments were
performed with untargeted attacks. Compared with the attacks of [40,42], the proposed
ABCAttack has a lower attack success rate for the defense model, especially the model
of adversarial training. In the future, we will further enhance ABCAttack on the defense
model and reduce the attack cost.
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Table 3. Evaluating the effectiveness of ABCAttack on the existing defense strategy.

Defense Dataset Parameter Setting AvgQueries ASR

defense-GAN [31] MNIST δmax = 0.031
MaxEvaluation = 20,000 1066 62.40%

SAP [32] CIFAR-10 δmax = 0.031
MaxEvaluation = 10,000 986 64.60%

SAP [32] CIFAR-10 δmax = 0.031
MaxEvaluation = 20,000 1491 67.40%

SAP [32] CIFAR-10 δmax = 0.05
MaxEvaluation = 10,000 701 88.40%

JPEG and bit depth [33] ImageNet δmax = 0.05
MaxEvaluation = 30,000 4893 78.00%

LID [41] CIFAR-10 δmax = 0.031
MaxEvaluation = 10,000 362 99.90%

k-winners [42]
(adversarial training model) CIFAR-10 δmax = 0.031

MaxEvaluation = 10,000 937 70.40%

Ensemble train [43] CIFAR-10 δmax = 0.031
MaxEvaluation = 10,000 893 89.50%

Ensemble train [43] CIFAR-10 δmax = 0.05
MaxEvaluation = 10,000 448 96.30%

Ensemble train [43] CIFAR-10 δmax = 0.05
MaxEvaluatio = 20,000 744 98.30%

5.5. The Wide Applicability of ABCAttack to Various DNN Models

Following AdversarialPSO, we used HRNN and MLP as target models on the MNIST
dataset, which achieved 98.76% and 97.94% accuracy on the test set, respectively, and used
CNNCapsule (with data augmentation) and ResNet (ResNet20V1 with data augmentation),
which achieved test accuracy of 81.89% and 90.61%, respectively, as target models on the
CIFAR-10 dataset to perform untargeted attacks. The networks and training code can be
found at: https://github.com/rstudio/keras/tree/master/vignettes/examples (accessed
on 4 November 2020). The experimental results are shown in Table 4.

In addition to the target model in Table 4, we also implemented the proposed AB-
CAttack with different models as target models on MNIST and CIFAR-10 datasets. The
experimental results are shown in Table 5. On the MNIST dataset, we performed targeted
and untargeted attacks with Lenet5, LSTM and CNN models as victim models. We also
used ResNet20V1, ResNet32V1, ResNet44V1, ResNet56V1, ResNet110V1, ResNet20V2,
ResNet56V2 and ResNet110V2 as target models on the CIFAR-10 dataset. These ResNet
models were trained with data augmentation and, respectively, obtained the following
accuracy rates on the CIFAR-10 test set: 90.61%, 91.58%, 91.92%, 92.27%, 91.54%, 91.31%,
92.93%, 92.9%.

It can be seen from Table 4 that under the same target model, our method has a greater
advantage in the AvgQueries used to successfully attack. On different target models, the
attack success rates of the two methods have their own advantages and disadvantages,
but the difference is relatively small. From Tables 4 and 5, it can be seen that the proposed
ABCAttack can obtain superior results on target models with different structures, different
datasets and different model sizes. This shows that it has good applicability.

https://github.com/rstudio/keras/tree/master/vignettes/examples
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Table 4. Comparison of the results of ABCAttack and AdversarialPSO on different target models,
and the bolded item indicates the best result.

MNIST

HRNN MLP

Attack ASR AvgQueries ASR AvgQueries

AdversarialPSO 100% 552 94.70% 548

SWISS 100% 3214 100% 1984

ABCAttack (α = 0.5) 100% 395 99.40% 412

ABCAttack (α = 0.1) 100% 1083 99.80% 715

CIFAR-10

CNNCapsule ResNet

Attack ASR AvgQueries ASR AvgQueries

AdversarialPSO 97.80% 2052 100% 1723

SWISS 98.90% 3725 100% 1792

ABCAttack (α = 0.5) 100% 164 99.20% 165

ABCAttack (α = 0.1) 100% 300 99.20% 290

Table 5. The wide applicability of ABCAttack on various target models.

Model Dataset Untargeted Targeted

ASR AvgQueries ASR AvgQueries

CNN

MNIST

99.50% 381 80.30% 806

LSTM 100% 184 98.50% 920

Lenet5 99.90% 291 93.90% 1648

ResNet20V1

CIFAR-10

99.10% 161 91.60% 798

ResNet32V1 98.80% 140 93.10% 892

ResNet44V1 99.10% 202 91.40% 900

ResNet56V1 99.60% 171 93.20% 617

ResNet110V1 99.50% 180 90.30% 682

ResNet20V2 99.60% 136 95.30% 547

ResNet56V2 99.40% 150 94.30% 546

ResNet110V2 98.90% 141 95.80% 564

6. Discussion

In this paper, the ABC algorithm is used to generate adversarial images. As a swarm
intelligence algorithm, the performance of ABC is sensitive to the selection of the hyperpa-
rameter of population size. In addition, under the constraint of the maximum change in
the image, the value of δ∞ can also affect the performance of ABCAttack. Therefore, in this
section, we will discuss the impact of population size, maximum L∞-norm perturbation
and maximum queries on the AvgQueries and ASR.

Population size: A larger population size will increase the diversity of candidate
solutions, thereby enhancing the exploration ability of the algorithm. In this paper, a single
candidate solution input to the target model is recorded as a query, so we need to set the
population size reasonably to balance the algorithm performance and the average queries.
As can be seen from Figure 2, we increase the population size from 10 to 30 in steps of 2, and
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observed the change in the average queries, and found that with the continuous growth of
the population size, the average queries used for successful attacks no longer decreased,
but remained relatively stable, and even increased slightly. Therefore, we conclude that
setting the population size to 20 is a more reasonable choice to balance the convergence
speed of the algorithm and the average queries.

δmax: δmax is the maximum absolute value in a single dimension limited to the added
perturbation on the clean image, and it is obvious that δmax directly affects the adversarial
image quality, attack success rate and average queries. As the greater the increased per-
turbation amplitude, the greater the distance between it and the clean image in the pixel
domain, the easier it is to cause the model to give wrong prediction results, and the attack
algorithm can obtain higher attack success rate with fewer queries. We show in Table 3 the
average queries and success rates of the proposed attack under different δmax in breaking
SAP and ensemble training defense strategies, which prove this. However, correspondingly,
the distance between the generated adversarial image and the clean image is larger, and
when the value of δmax increases to a certain extent, the generated adversarial samples may
cause humans to fail to distinguish their original class. Therefore, the added adversarial
perturbation needs to be constrained to be less different from the original image.

7. Conclusions and Future Work

In this paper, a black-box attack using the ABC algorithm ABCAttack is proposed,
and related experiments are carried out on MNIST, CIFAR-10 and ImageNet datasets. The
results of comparison with methods such as ZOO, C&W, AdversarialPSO, GenAttack and
UAP show that the proposed ABCAttack can efficiently generate adversarial images with
high attack success rates. We analyze the relationship between SN, α and the AvgL2 and
AvgQueries of the generated adversarial images. It is noticed that the smaller the L2-norm
between the initial food sources and the original images, the smaller the final L2-norm of the
adversarial perturbations. By comparing the original–predicted class of adversarial sample
pairs of untargeted and targeted attacks, it is found that some images are easier to be made
into such adversarial images, where the predicted label of the adversarial examples and
the corresponding true label show some visual or appearance similarity for both a CNN
and human eyes. To some extent, this reflects that the DNN models has learned the local
information of the class. The proposed ABCAttack can still break some defenses to a certain
extent, even if these defenses claim to be robust to white-box attacks. This puts forward
new requirements for future defenses, and should be evaluated in black-box attacks. It
seems that there is a long way to go for the defense of adversarial samples. The experiments
in this paper further illustrate the importance of population-based gradient-free black-box
attacks in adversarial attacks, and provide a future research direction for ML system attacks
and defenses.

Although the experimental results show the effectiveness of ABCAttack, there is still
space for further improvement. The existing GenAttack, AdversarialPSO and ABCAttack
are all black-box attacks, they can achieve high attack success rates with fewer average
queries and the L2-norm of perturbations is larger than that of white-box attacks and gradi-
ent evaluation methods. ABC has many variants and improvements in this algorithm. In
the next step, we will pursue the use of fewer queries to produce higher-quality adversarial
images with a smaller distance from the original images. Secondly, it takes time and effort
to craft adversarial samples with high-dimensional data. How to improve the applicability
of the algorithm to high-dimensional data needs further research under the premise of
maintaining the attack success rate. Finally, the defense ability of many existing defense
measures against population-based gradient-free black-box attacks is greatly reduced,
which undoubtedly increases the urgency of designing more effective defense measures
against attacks. In addition, no single defense can effectively defend against all attacks, and
there will always be powerful attacks to break the defense, which makes us more vigilant
about the security issues of DNN models. In the future, we will also focus on the root
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causes and interpretability of adversarial samples, and study more robust defense methods
to enhance the security of DNN models.
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