
����������
�������

Citation: Liu, S.; Sun, S.

Adversarially Training MCMC with

Non-Volume-Preserving Flows.

Entropy 2022, 24, 415. https://

doi.org/10.3390/e24030415

Academic Editors: Udo

von Toussaint and Mateu Sbert

Received: 16 December 2021

Accepted: 14 March 2022

Published: 16 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Adversarially Training MCMC with
Non-Volume-Preserving Flows
Shaofan Liu and Shiliang Sun *

School of Computer Science and Technology, East China Normal University, Shanghai 200062, China;
51194506021@stu.ecnu.edu.cn
* Correspondence: slsun@cs.ecnu.edu.cn

Abstract: Recently, flow models parameterized by neural networks have been used to design efficient
Markov chain Monte Carlo (MCMC) transition kernels. However, inefficient utilization of gradient
information of the target distribution or the use of volume-preserving flows limits their performance
in sampling from multi-modal target distributions. In this paper, we treat the training procedure of
the parameterized transition kernels in a different manner and exploit a novel scheme to train MCMC
transition kernels. We divide the training process of transition kernels into the exploration stage
and training stage, which can make full use of the gradient information of the target distribution
and the expressive power of deep neural networks. The transition kernels are constructed with
non-volume-preserving flows and trained in an adversarial form. The proposed method achieves
significant improvement in effective sample size and mixes quickly to the target distribution. Empiri-
cal results validate that the proposed method is able to achieve low autocorrelation of samples and
fast convergence rates, and outperforms other state-of-the-art parameterized transition kernels in
varieties of challenging analytically described distributions and real world datasets.

Keywords: Hamiltonian Monte Carlo; flow models; Markov chain Monte Carlo; statistical pattern
recognition; Bayesian machine learning

1. Introduction

Markov chain Monte Carlo (MCMC) is one of the most powerful approaches to sample
from complex target distributions in statistical pattern recognition and Bayesian machine
learning. It has been widely employed in probabilistic modeling and inference [1,2].
MCMC methods approximate target distributions by generating samples from a proposal
distribution depending on the last sample, and ensure that the samples converge to the
target distribution by satisfying the detailed balance [3]. In theory, we can arbitrarily
choose a proposal distribution and employ the Metropolis–Hastings (MH) [4] algorithm to
satisfy the detailed balance. However, the specific choice of the proposal distribution has
a significant effect on the convergence and mixing speed [5,6]. For instance, a Gaussian
distribution centered on the current state is a regular choice for the proposal distribution,
which is also called a random walk proposal [7,8]. Although it has a particularly nice
intuition, the proposal scales poorly with the increase of dimensions and complexity of the
target distribution [9,10].

Hamiltonian Monte Carlo (HMC) [7] introduces auxiliary momentum variables v to
extend the state space to (x, v). In every update step of HMC, the leapfrog discretization
scheme is used to update x and v alternately [11]. Before a new update step, the auxiliary
variables are resampled to explore in the new equal-energy surface (or iso-probability
contour) so that x could change greatly in a systematic way. As a result, HMC can traverse
a long distance in the state space with a single MH step and prevent the random walk
behavior [7,12]. However, HMC can suffer dramatically in highly complex, multi-modal
distributions, for it is difficult to traverse low-density regions [13,14].

Entropy 2022, 24, 415. https://doi.org/10.3390/e24030415 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24030415
https://doi.org/10.3390/e24030415
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e24030415
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24030415?type=check_update&version=2

Entropy 2022, 24, 415 2 of 17

The core problem of MCMC is to build transition kernels (also known as the proposal
distribution) that can explore and sample from the target distribution efficiently. Recently,
training MCMC transition kernels parameterized by deep neural networks achieves great
success [13,15,16]. A-NICE-MC [15] uses volume-preserving flows [17] as transition kernels
and trains via generative adversarial network (GAN) [18,19]. L2HMC [13] uses non-volume-
preserving flows incorporating gradient information of the target distribution as transition
kernels, and the sampler is trained to maximize the expected squared jumped distance
which is equivalent to minimizing the lag-one autocorrelation [20].

A-NICE-MC uses volume-preserving flows as the transition kernels bring the random
walk behavior when traversing between different energy levels, and then they can get
correct samples through one MH step. They maintain a buffer to save the sample points,
use samples from the buffer as the learning objective of their transition kernels, and then
the buffer is updated with the new sample points [15]. In this way, they do not need
to compute the gradient of the target distribution since the sample points in the buffer
already contain the geometric information of the target distribution. However, although
eliminating the calculation of the gradient reduce the computational burden, without the
guidance of gradient information, this exploration is almost random. L2HMC introduces
neural networks into the leapfrog integrator to construct more flexible transition kernels,
where the gradient information of the target distribution is used as the input of neural
networks. Consequently, when exploring the same region twice, the gradient information
of the region also needs to be calculated twice since we can not record all gradients of the
target distribution. Thus the gradient information can not be exploited efficiently in the
training process, which may result in unnecessarily long training time.

To solve these issues, we design a new method that uses non-volume-preserving flows
as transition kernels to mix faster for the target distribution. Specifically, we divide the
training process of the parameterized transition kernels into the exploration stage and train-
ing stage. In the exploration stage, we use a gradient-based transition kernel to explore the
target distribution as much as possible, and we can design powerful exploration operators
without the restriction of convergence. We save samples of the exploration stage and use
these samples to record the geometry of the target distribution. In the adversarial training
stage, we optimize the parameters of the transition kernels by minimizing the distance
between samples generated from transition kernels and samples from the exploration stage.
Then samples generated from the trained transition kernels are accepted through MH
steps [21]. The accepted samples will be used to replace some of the samples collected in
the previous exploration stage. With the increase of the training iterations, we can generate
samples with better quality at a low computation cost since the collected samples record the
geometry of the target distribution. As a result, in the training stage, we need not compute
the gradient to get a high acceptance rate like L2HMC or vanilla HMC. Gradients are only
needed in the exploration stage.

The rest of this paper is organized as follows. In Section 2, we firstly introduce the
necessary background on MCMC methods and non-volume-preserving flows. We present
the proposed method in detail in Section 3. In Section 4, we describe the core ideas of
A-NICE-MC and L2HMC, we also introduce the motivation of our method in this section.
Experiments are given in Section 5. Finally, we conclude this paper in Section 6.

2. Background
2.1. Markov Chain Monte Carlo and Metropolis–Hasting Algorithm

MCMC methods [2] aim to construct an ergodic Markov chain converging to p(x)
under a target density p(x) = p̃(x)

Zp
, where p̃(x) can be readily evaluated and Zp is an

unknown constant. At each step of the algorithm, the new sample x′ is obtained from the
transition kernel (or proposal distribution) Kθ(x′|x) which depends on the current state x.
The MH step is utilized to make the Markov chain satisfy the detailed balance which can
be written as:

p(x′)Kθ(x|x′) = p(x)Kθ(x′|x). (1)

Entropy 2022, 24, 415 3 of 17

Specifically, a new sample x′ generated from a proposal distribution qθ(x′|x) is ac-
cepted with probability Aθ(x′|x) which takes the form as:

Aθ

(
x′|x

)
= min

(
1,

p(x′)qθ(x|x′)
p(x)qθ(x′|x)

)
. (2)

For vanilla HMC, assume that ξ is a state in the Hamiltonian dynamics. The transi-
tion from ξ to ξ? is deterministic, invertible and volume-preserving, which means that
qθ(ξ|ξ?) = qθ(ξ

?|ξ) [15]. According to the change of variable formula which takes the
form as:

pX(x) = pZ(f (x))
∣∣∣∣det

(
∂ f (x)
∂x>

)∣∣∣∣, (3)

the MH acceptance probability for the HMC proposal [22] can be simplified as:

Aθ(ξ
?|ξ) = min

(
1,

p(ξ?)
p(ξ)

∣∣∣∣∂qθ(ξ
?|ξ)

∂ξ>

∣∣∣∣), (4)

where
∣∣∣ ∂qθ(ξ

? |ξ)
∂ξ>

∣∣∣ = qθ(ξ|ξ ′)
qθ(ξ ′ |ξ)

= 1.

2.2. Hamiltonian Monte Carlo and Exploration on Total Energy Function

In Hamiltonian Monte Carlo (HMC) [7], we assume that the target distribution p(x)
takes the form as:

p(x) =
1

ZU
exp[−U(x)],

where U(x) is interpreted as the potential energy of the dynamics, and ZU is an unknown
constant. Auxiliary variables v can be interpreted as the momentum of the dynamics, and
the kinetic energy takes the form as:

K(v) =
1
2

v>v.

The total energy H is the sum of potential and kinetic energies:

H(x, v) = U(x) + K(v),

and the joint distribution can be written as:

p(x, v) =
1

ZH
exp[−H(x, v)].

When simulating Hamiltonian dynamics for a finite time, the value of x and v will
change with the total energy conserving. In practice, x and v are updated through the
leapfrog discretization, which for a single time step consists of:

v = v− ε

2
∂xU(x);

x′ = x + εv;

v′ = v− ε

2
∂xU(x′),

(5)

where ε is the step size.
In this way, x can change in a systematic way, which prevents the random walk

behavior [23]. Samples of the joint distribution are obtained by traversing along the
equal-energy surface of the extended state space. To explore other regions of the target
distribution, the momentum variables v should be resampled from an isotropic Gaussian.

Consequently, as Figure 1 shows, the entire HMC can be divided into two stages: the
deterministic exploration of an energy level which is represented by the blue arrow, and

Entropy 2022, 24, 415 4 of 17

the random walk between energy levels which is represented by the green arrow. The
contours represent different energy levels, where the energy level of the outer contour
is higher [24,25]. For the volume-preserving flows, the exploration across energy levels
is achieved by resampling a new momentum variable v′ generated from the Gaussian
distribution, and thus it can only explore regions of different energy levels in a random walk
behavior which is inefficient [26,27]. Although the process of the leapfrog discretization can
introduces numerical errors inevitably, the MH step can help HMC converge to the target
distribution. Since HMC can well preserve the total energy, it has a high acceptance rate.

Schematic representation of deterministic sampling at a given energy level (blue arrow)
and Gaussian redistribution of kinetic energy (green arrows).

6 4 2 0 2 4 6
X

4

2

0

2

4

V

Figure 1. Traversing between energy levels. The blue arrow represents the deterministic exploration
of an energy level. Green arrows represents the random walk between energy levels.

If we can change the total energy greatly during exploration and guarantee that the
transition kernels can converge to the target distribution, the random walk behavior of
the exploration between energy levels can be prevented [28]. This idea encouraged us to
develop the non-volume-preserving sampler. In our algorithm, we utilize the non-volume-
preserving flows as the transition kernels, which means that

∣∣∣ ∂qθ(ξ
? |ξ)

∂ξ>

∣∣∣ 6= 1. Thus, to avoid
a huge computational burden, the Jacobian determinant of the transition kernels should
be easy to compute. Next we will introduce the non-volume-preserving flow used in this
paper, which has the desired property.

2.3. Real-Valued Non-Volume-Preserving Flows

The main idea of the real-valued non-volume-preserving (RNVP) flows [13,29–31] is to
construct flexible and invertible architectures that enable the computation of log-likelihood
on continuous data using the change of variable formula [30]. By stacking a sequence of
carefully designed bijection functions which have tractable Jacobian determinant, flexible
and expressible transition functions can be constructed. As illustrated in Figure 2, we use
only four layers non-volumn-preserving flows to map a normal distribution to a complex
distribution. This simple experiment proves the powerful expression ability of RNVP. Each
bijection function of RNVP is called coupling layers with the form as:

y1:d = x1:d

yd+1:D = xd+1:D � exp[S(x1:d)] + T(x1:d),
(6)

where the Jacobian of this function is:

Entropy 2022, 24, 415 5 of 17

∂y
∂x>

=

[
Id 0

∂yd+1:D
∂x>1:d

diag(exp[S(x1:d)])

]
, (7)

which is triangular and where determinant can be computed simply by exp
[
∑j S(x1:d)

]
.

S rescales the inputs and T is a translation. Arbitrarily complex transition functions can be
built by stacking numerical layers. Moreover, computing the inverse of the coupling layers
does not require computing the inverse of S and T [13]:

x1:d = y1:d

xd+1:D = [yd+1:D − T(y1:d)]� exp[−S(y1:d)],
(8)

and its Jacobian determinant is also tractable.

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Figure 2. Scatter plots of normal distribution (left) and complex distribution of “MCMC” (right). We
use 6 layers RNVP flows constructed by neural networks with each layer contains 512 hidden units
and training with maximum likelihood estimation. The result is observed after 100,000 iterations
with a learning rate of 0.0001. The batch size is set to 512.

Since the computation of the determinant requires exp
[
∑j S(x1:d)

]
(or exp

[
−∑j S(x1:d)

]
for inverse transition), we can exploit arbitrarily flexible functions such as deep neural
networks as S and T. Therefore, we use RNVP to construct the transition kernels.

3. The Proposed Method

To overcome the problem of inefficient exploration of the volume-preserving flows,
and inefficient utilization of gradient information of the target distribution, we propose
NVP-MC, which exploits non-volume-preserving flows to construct transition kernels, and
repeatedly utilize gradient information of the target distribution through adversarially
training. In the following subsections, we will first describe the main idea of the proposed
method, and then introduce how to sample from a target distribution pd specified by an
analytic expression:

pd(x) =
1
Z

exp[−U(x)], (9)

where Z is an unknown normalization constant and U(x) is the potential energy function
in Hamiltonian dynamics.

3.1. Using Non-Volume-Preserving Flows as Generator

We construct three layers of the non-volume-preserving flow model as the gener-
ator. At each layer of the generator, the update of position and momentum variables
are correlative.

We firstly update auxiliary momentum variables with the following transition function:

v′ = v + εT(x), (10)

Entropy 2022, 24, 415 6 of 17

where T(x) is a translation item determined by x. We do not multiply a scale item to v
like RNVP in Equation (6), because we find that it can bring much worse results, and is
difficult to train. The Jacobian determinant of this transition function is I. Next we update
x through the transition function:

x′ = x� exp
[
εS(v′)

]
+ T(v′)� exp

[
εS(v′)

]
, (11)

where S(v′) is the scale item and T(v′) is the translation item that all determined by v′.
To simplify the calculation, we use the same item to rescale x and T(v′), which makes
the training process more stable in practice. The determinant of this transition function
is exp[εS(v′)]. We note that our transition kernels update x without dividing the x into
two parts like other methods. When a part of x is updated through another part of x, the
correlation between data will inevitably increase. Thus, we gave up this approach and only
updated x based on v.

Finally, we use the same function of Equation (10) to update v again. The full forward
update steps are shown below:

v′ = v +
ε

2
T(x);

x′ = x� exp
[
εS(v′)

]
+ T(v′)� exp

[
εS(v′)

]
;

v′′ = v′ +
ε

2
T(x′).

(12)

The (x′, v′′) represents the next state. Then we use MH algorithm to ensure pd is the
stationary distribution of the transition kernels. Assume that fθ represents forward transi-
tion function and ξ = (x, v) represents the previous state, the MH acceptance probability
takes the form as:

Aθ(ξ
?, ξ) = min(1,

p(ξ?)
p(ξ)

∣∣∣∣∂ fθ(ξ
?)

∂ξ>

∣∣∣∣), (13)

where ξ? denotes the new state obtained from the transition kernels depending on ξ.
Because the update steps of v and v′ are volume preserving, we only need to compute
Jacobian determinant of Equation (11) which is exp[∑i εS(vi)], where vi represents the i-th
dimension of v. To obtain the symmetric transition behavior and satisfy the detailed balance,
we need to build the inverse transition function f−1

θ and choose froward transition and
backward transition functions with the same probability. The inverse transition function
f−1
θ takes the form as:

v′ = v′′ − ε

2
T(x′);

x =
(
x′ − T(v′)� exp

[
εS(v′)

])
� exp

[
−εS(v′)

]
;

v = v′ − ε

2
T(x).

(14)

The Jacobian determinant of Equation (14) is exp[∑i −εS(vi)] which is similar to
Equation (12). The proposed method is similar to the past work of L2HMC and A-NICE-
MC. Our approach incorporates adversarial training of A-NICE-MC to prevent the us-
age of gradient information and uses non-volume-preserving flows to construct flexible
transition kernels.

3.2. Loss Function and Training Procedure

Now, we describe the training procedure of the proposed method. Firstly, we run a
gradient-based exploration operator to explore the energy function of the target distribution
and get some samples to initialize the buffer. In A-NICE-MC, HMC is chosen as the
exploration operator. However, in our scheme, we do not need the exploration operator to
sample exactly from the target distribution and only need to explore more regions of the
target distribution.

Entropy 2022, 24, 415 7 of 17

One of the characteristic properties of high-dimensional spaces is that there is much
more volume outside any given neighborhood than inside of it [9]. In other words, ex-
ploration towards the uniform distribution is inefficient in high-dimensional spaces [32].
In the D-dimensional spaces, the additional computational cost of evaluating a gradient
compared with evaluating the function itself will typically be a fixed factor independent of
D, whereas the D-dimensional gradient vector conveys D pieces of information compared
with the one piece of information given by the function itself [23]. Therefore, we also use
the gradient-based sampler as the exploration operator. Some studies have shown that the
MCMC methods implemented without the detailed balance can achieve acceleration of
convergence [33,34]. Thus we exploit HMC without MH steps as the exploration operator
to get higher mixing performance.

At each epoch of training, we generate samples through the transition kernels and use
the MH algorithm to compute acceptance probability. We treat all the samples from the
transition kernels as the “fake samples”, and treat the samples from the buffer as the “true
samples”. A discriminator will be trained to distinguish the “true samples” from the “fake
samples”. Our transition kernel will be trained to fool the discriminator. After getting new
samples, we drop some samples of the buffer in a constant ratio and insert the new accepted
samples, and thereby the quality of samples in the buffer can be improved. We train our
parameters in the framework of GANs, and the training objective can be formulated as:

min
K

max
D

V(D, K) = min
T

max
D

Ex∼B(x)[D(x)]

−Ez∼N (0,1)[D(K(z))]
(15)

where K is our transition kernel, D is the discriminator network, and B is the buffer used
to save the correct samples. To reduce the autocorrelation of samples obtained from the
generator, we use the pairwise discriminator in [15]. We initialize B with HMC without
the MH step. In fact, the samples of the uniform distribution can also be used to initialize
the buffer. Because a part of samples will be dropped after every training epoch, and
some new samples will be added into the buffer, the quality of samples in the buffer will
improve stably during the training process. However, initial samples from the uniform
distribution can not scale well in high-dimensional state spaces, it can only perform well in
low-dimensional state spaces. We exactly describe our training procedure in Algorithm 1.

Unlike L2HMC, we do not exploit the gradient information of the target distribution to
train the transition kernels. We have actually tried to do that, and find that the introduction
of the gradient items increases the training time by tenfold but not get better results
than the proposed method. Moreover, we find that L2HMC can not exploit the gradient
information of the target distribution properly. We will discuss the phenomenon in detail
in the next section.

Entropy 2022, 24, 415 8 of 17

Algorithm 1 Traing NVP-MC

Input: Energy function U(x), batch size M, learning rate α, number of iterations N, empty
buffer B, transition kernels Kθ and K−1

θ .
1: Initialize B using HMC without the MH step. Initialize the parameters of the transition

kernel Kθ and parameters of the discriminator Dφ.
2: for i = 1→ i = N do
3: Sample a batch {(x, v)(i)}i6N of Gaussian noise as the start points.
4: for i = 1→ i = M do
5: Randomly sample a number u in open interval (0, 1).

6: Choose transition kernel: Kθ(x, v) =

{
Kθ(x, v), 0 < u < 0.5

K−1
θ (x, v), 1 > u > 0.5.

7: Generate the new sample {(x′, v′′)(i)} through Kθ .
8: Accept the new sample with probability computed by Equation (4),
9: and replace the samples in B with the accepted samples.

end for
10: Sample a batch {(x′′)(i)}i6N from B as the correct samples.
11: Update the discriminator:
12: φ← φ− α∇φ

1
M ∑M

i=1

[
log Dφ

(
x′′(i)
)
+ log

(
1− Dφ

(
Kθ

(
x(i)
)))]

.
13: Update the transition kernel:
14: θ ← θ − α∇θ

1
M ∑M

i=1 log
(

1− Dφ

(
Kθ

(
x(i)
)))

.
end for

4. Related Work

Since the choice of the proposal distribution determines the effect of the MH algorithm,
many works have focused on this research. Recently, some works [13,15] exploit flexible
deep neural networks or flow models [17,30] to build the proposal distribution that can
mix fast for the target distribution. These algorithms outperform the vanilla Hamiltonian
Monte Carlo (HMC) [35], and are the state-of-the-art methods.

4.1. Getting MCMC Transition Kernels through Adversarially Training

A-NICE-MC [15] aims to obtain parameterized MCMC transition kernels as the pro-
posal distribution of MH algorithm through adversarially training. The training principle
is similar to Wasserstein GANs [18]. They use a novel pairwise discriminator to reduce
autocorrelation of samples by scoring two samples at a time. For every sample pair, “real
data” (xr1 , xr2) are drawn from bootstrapped samples. Assume Kθ(x|x′) represents the
transition kernel, the “fake data” (x f1 , x f2) are generated by x f1 ∼ Kθ(x|x f2) , where x f2 is
either drawn from the data distribution or generated from the transition kernel with initial
noise samples. Compared with the normal discriminator, the pairwise discriminator is
more sensitive among the correlation of samples. For the generation process of “fake data”,
the introduction of true data makes the training procedure more stable. Inspired by HMC,
A-NICE-MC also introduces auxiliary variables into the transition kernels, but without
gradient information of the target distribution. They leverage volume-preserving flows
as the transition kernels, which have tractable Jacobian determinants and are the same as
vanilla HMC. The inputs into the transition kernels of A-NICE-MC will first be partitioned
into two parts x1 and x2, then the transition kernels take the form as:

x′1 = x1

x′2 = x2 + m(x1),
(16)

where m is a neural network. Intuitively, the expression ability of the transfer kernels is
not sufficient. However, the transition function can be stacked multiple layers to get an
expressive model [17]. In HMC, the introduction of auxiliary variables can prevent the
random walk behavior. Auxiliary variables in A-NICE-MC have a similar purpose and

Entropy 2022, 24, 415 9 of 17

add randomness to the generator. In practice, they obtain exact initial samples by running
HMC and use a bootstrap process [36] to generate samples.

However, A-NICE-MC suffers from the same difficulties in mixing across energy levels
as HMC [13], especially when facing multi-modal distributions. For gradient-based MCMC
methods, effective exploration is achieved by exploiting the differential structure of the
energy function. In addition, when a region is explored twice, the gradient is also calculated
twice, which is inefficient. In other words, they only exploring, but not making full use of
the information of the area that has been explored.

Using gradient-based MCMC methods to get some initial samples, we can repeatedly
utilize gradient information of the target distribution through adversarially training, which
will bring considerable performance improvement. Therefore, we develop a new method
for training flexible MCMC kernels, which not only has the powerful exploration ability of
non-volume-preserving flows, but also can effectively utilize gradient information of the
target distribution in an adversarially training form.

4.2. Parameterized Non-Volume-Preserving Transition Kernels

Vanilla HMC can be seen as an invertible volume-preserving flow, which has diffi-
culties in mixing across energy levels [13]. Inspired by RNVP, L2HMC introduces neural
networks as scale and translation items into leapfrog integrator to construct the parameter-
ized non-volume-preserving transition kernels, which can explore the target distribution
efficiently. The training objective of L2HMC aims to maximize the acceptance rate and
expected squared jumped distance [20], and the loss function takes the form as:

`λ[ξ, ξ?, A(ξ?|ξ)] = λ2

δ(ξ, ξ?)A(ξ?|ξ) −
δ(ξ, ξ?)A(ξ?|ξ)

λ2 , (17)

where ξ = (x, v) and ξ? = (x′, v′) represent the last state and the new state, respectively. λ
is a scale parameter, and δ(ξ, ξ?) is the expected squared jumped distance between these
two states. A(ξ?|ξ) denotes the acceptance probability for the new state ξ?. Intuitively, the
training objective encourages the parameterized transition kernels to get low autocorrela-
tion of samples and meanwhile keep a high acceptance rate. Maximizing expected squared
jumped distance is equivalent to minimizing the lag-one autocorrelation [20].

In L2HMC, scale and transition items are all controlled by neural networks. The
parameterized transition kernels take the form:

v′ = v� exp
[ε

2
Sv(ζ1)

]
− ε

2
(∂xU(x)� exp[εQv(ζ1)] + Tv(ζ1))

x′ = xm̄t + mt �
(
x� exp[εSx(ζ2)] + ε

(
v′ � exp[εQx(ζ2)] + Tx(ζ2)

))
x′′ = x′mt + m̄t �

[
x′ � exp[εSx(ζ3)] + ε

(
v′ � exp[εQx(ζ3)] + Tx(ζ3)

)]
v′′ = v′ � exp

[ε

2
Sv(ζ4)

]
− ε

2
(
∂xU

(
x′′
)
� exp[εQv(ζ4)] + Tv(ζ4)

)
.

(18)

Here, ζ = (x, ∂xU(x), t) represents the full state and excludes v. The three newly
introduced functions T, Q and S are all neural networks. Scale items exp(S(ζ)) and
exp(Q(ζ)) utilize gradient information of the target distribution as input, which will take
up much computational budget. mt is a fixed random binary mask that determines which
variables are updated. The update scheme first updates a subset of the coordinates of x [13],
and then updates the rest subset to make transition kernels more expressive.

However, L2HMC has poor performance in far-distance multi-modal distributions.
When using a small batch size, it will be hard to converge to the target distribution or
traverse between correct modes in our empirical experiments, which indicates that L2HMC
can not effectively and correctly use the gradient information of the target distribution to
help build high-performance transition kernels.

Since the large step size will introduce more errors when traversing along iso-probability
contours, there is a trade-off between a high acceptance rate and high diversity of samples.

Entropy 2022, 24, 415 10 of 17

For the training objective (Equation (17)) of L2HMC, the two aspects are all considered, but
they do not have a relationship of adversarial form here. Moreover, the order of magnitude
of δ(ξ, ξ?) and A(ξ?|ξ) seems to be different. A(ξ?|ξ) represents the acceptance rate which
is no more than 1, while δ(ξ, ξ?) represents the Euclidean distance between samples that
can be much greater than 1. When we optimizer the parameters through gradient descent
with the objective of larger δ(ξ, ξ?)A(ξ?|ξ), the influence of the two items on the gradient
are obviously different. In other words, the trained sampler may have a high acceptance
rate but high autocorrelation or vice versa under the loss function, which will bring bad
empirical results. We will discuss the situation in detail in Section 5.

5. Experiment

In this section, we evaluate the performance of NVP-MC. We compare our method
with A-NICE-MC(NICE), L2HMC and vanilla RNVP on four challenging distributions
using the effective sample size (ESS) [35]. For vanilla RNVP, we firstly sample some correct
sample points of the target distribution, then directly train the RNVP flows to capture the
target distribution. Since the method is firstly inspired by Normalizing Flow(NF) [37],
we use NF to represent the baseline method in our experiments. Then we compare with
the three methods by evaluating maximum mean discrepancy (MMD) [38]. Similar to
experiments in [13], we build a challenging mixture of Gaussians to show the shortcomings
of parameterized gradient-based transition kernels. We demonstrate the sample density
plots generated by the four different methods. Finally, we conduct experiments on nine
real datasets using Bayesian logistic regression [39] to showcase the practicability of the
proposed method.

5.1. Performance Indexes

ESS can reflect the magnitude of the autocorrelation or the number of “effective
samples” of the samples, which is defined as:

ESS = N/

[
1 + 2×

∞

∑
s=1

ρ(s)

]
, (19)

where N represents the total sample number. We use the same computation method as [15]
to estimate ρs:

ρ̂s =
1

σ̂2(N − s)

N

∑
n=s+1

(xn − µ̂)(xn−s − µ̂), (20)

where µ̂ and σ̂ are the empirical mean and variance obtained from the independent sampler.
Similar to [40], when the autocorrelation goes below 0.05 we truncate the sum to reduce the
noise of large lags.

MMD can measure the difference between samples drawn from two distributions X
and Y, which takes the form:

MMD2[X, Y] =
1

M2

M

∑
i,j=1

κ
(

xi, xj
)
− 2

MN

M,N

∑
i,j=1

κ
(
xi, yj

)
+

1
N2

N

∑
i,j=1

κ
(
yi, yj

)
,

(21)

where M represents the sample number in X while N represents the sample number in Y,
and κ(·, ·) is the kernel function which takes the form:

κ(x, y) =
(

1.0 + x>y
)2

. (22)

Through evaluating MMD, we can justify the convergence of the proposed method.
The lower the MMD value is, the more rapid convergence the sampler has. We run the

Entropy 2022, 24, 415 11 of 17

same computation procedure of MMD for 10 times and record the mean and variance as
our final results.

5.2. Varieties of Challenging Energy Functions

We present an empirical evaluation for our trained sampler on varieties of synthetic
2D energy functions. For all energy functions, the largest ESS for all dimensions is shown
in Table 1 and the MMD value is demonstrated in Figure 3. Then we further utilize the
MoG experiment, to show the powerful exploration efficiency of the proposed method,
compared with L2HMC.

For synthetic 2D target distributions we choose: Mixture of six Gaussians (MoG6):
The analytic form of p(x) for MoG6 is:

p(x) =
1
6

6

∑
i=1
N (x|µi, σi),

where µi =
[
sin iπ

3 , cos iπ
3

]
and σi = [0.5, 0.5].

Gaussian funnel (GF): The energy function of the 2D funnel is

U(x) =
1
2

[(x1

σ

)2
+

x2
2

exp(x1)
+ ln[2π · exp(x1)]

]

and we set σ = 1.0.
Strongly correlated Gaussian (SCG): We rotate a diagonal Gaussian with variance

[102, 10−2] by π
4 , which takes the form:

p(x) = N
(

0, BΣBT
)

, Σ =

[
10−2 0

0 102

]
, B =

[
1/
√

2 −1/
√

2
1/
√

2 1/
√

2

]
.

The case is an extreme version of the example in [35].
Mixture of five rings (Ring5): The analytic form of the energy function of the mixture

of 5 ring shaped target distributions is:

U(x) = min(u1, u2, u3, u4, u5),

where ui = (
√

x2
1 + x2

2 − i)2/0.04.
Mixture of Gaussians (MoG2): This is a mixture of two isotropic Gaussians separated

by the distance of 10
√

2:

p(x) = 0.5 ∗ N (x|µ1, σ1) + 0.5 ∗ N (x|µ2, σ2),

where µ1 = [5, 5], µ2 = [−5,−5] and σ2
1 = 3, σ2

2 = 0.05. The MoG2 distribution is more
challenging than the example used to show that L2HMC has better mixing performance
than A-NICE-MC in [13].

Ill-Conditioned Gaussian (ICG): This is a Gaussian distribution with diagonal covari-
ance spaced log-linearly between 0.01 and 100, which has the same analytic expression
with SCG.

We use the same hyperparameters for all density-based experiments. Specifically, we
construct the transition kernels with three coupling layers to ensure that both x and v could
get fully updated. We get initial samples through HMC without MH steps with 6 leapfrog
steps and step size ε = 0.3, and discard the first 1000 steps as burn-in steps. The remain
samples are saved in a buffer, after each training epoch of transition kernels, the samples in
the buffer will be discard by 0.5 and add the new accepted samples into the buffer. At each
training epoch, the transition kernels will move 5000 steps. In each coupling layer, the S
and T are 3 layers neural networks. The discriminator is also 3 layer neural networks with

Entropy 2022, 24, 415 12 of 17

400 units and activated with leaky rectified linear units. We train our model by Adam [41]
optimizer with batch size of 32 and beta1 = 0.5, beta2 = 0.9 for Dloss and Gloss. The learning
rate is set to be 0.0005 for the Dloss, and 0.0003 for the Gloss. To make the training process
more stable, we clip the gradient of all the neural networks by −8 and 8.

As shown in Figure 3, A-NICE-MC and NVP-MC have lower MMD among the two
distributions. When we use less than 4000 samples to compute MMD, the MMDs variance
of NVP-MC is larger than A-NICE-MC. Its because that NVP-MC explores the target
distributions in a more extensive way, which brings more noise, however, the exploration
can bring NVP-MC samples with higher quality. When we use more than 4000 samples
to compute MMD, the variance of MMD of NVP-MC is almost the same as A-NICE-MC,
while the two methods all achieve the lowest MMD compared with NF and L2HMC.

2000 4000 6000 8000 10,000

Number of Samples

0

50

100

150

200

250

M
M

D

NF
L2HMC
NICE
NVP-MC

2000 4000 6000 8000

Number of Samples

0

2

4

6

8

10

12

14

M
M

D

NF
L2HMC
NICE
NVP-MC

10,000

Figure 3. The performance of NF, L2HMC, NICE, NVP-MC on SCG (left) and MoG6 (right) distribu-
tions. In limited training steps, NF and L2HMC can not sample correctly from the target distributions
compared with A-NICE-MC and NVP-MC.

We further demonstrate the sample density plots generated by the four different
methods. As Figure 4 shows, L2HMC and NF cannot find the target distributions of SCG
and MoG6, while NVP-MC still performs well, for NVP-MC exploits HMC without MH
steps as the exploration operator to get higher mixing performance. Although NICE is able
to find the target distributions of SCG and MoG6, it has a large error (lower ESS) while
NVP-MC is able to sample from the target distribution precisely.

To estimate the quality of samples, we train NVP-MC, A-NICE-MC and L2HMC for
10,000 iterations with the same batch size and record the minimum value of ESS for all
dimensions. Because we choose the same model size as A-NICE-MC (neural networks with
3 hidden layers with 400 (1024 for the 50-d ICG), the training time is similar. Therefore,
there is no need for us to construct experiments to evaluate ESS per second (ESS/S) which
is mentioned in [15]. L2HMC consumes far more time than A-NICE-MC and NVP-MC but
gets the ESS value that does not match the effort. As Table 1 illustrates, NVP-MC can get
significant improvement in ESS in all distributions compared with A-NICE-MC.

Table 1. The ESS of NVP-MC, A-NICE-MC, L2HMC, and HMC. Data in bold represent best results.

Target NVP-MC A-NICE-MC L2HMC HMC

MoG6 568.2 320.0 311.2 1.0
GF 834.3 270.0 304.1 8.0
SCG 1000.0 539.4 497.0 0.48
Ring5 200.3 155.6 69.1 0.43
50-d ICG 0.83 0.29 0.78 0.02

Entropy 2022, 24, 415 13 of 17

20 10 0 10 20

20

10

0

10

20

(a) SCG, generated by L2HMC.

8 6 4 2 0 2 4 6
8

6

4

2

0

2

4

6

(b) MoG6, generated by L2HMC.

20 10 0 10 20

20

10

0

10

20

(c) SCG, generated by NICE.

8 6 4 2 0 2 4 6 8
8

6

4

2

0

2

4

6

8

(d) MoG6, generated by NICE.

30 20 10 0 10 20

20

10

0

10

20

30

(e) SCG, generated by NF.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

(f) MoG6, generated by NF.

30 20 10 0 10 20 30

30

20

10

0

10

20

30

(g) SCG, generated by NVP-MC.

8 6 4 2 0 2 4 6 8

6

4

2

0

2

4

6

(h) MoG6, generated by NVP-MC.

Figure 4. Density plots of samples from L2HMC, A-NICE-MC, NF and NVP-MC.

To further validate the performance of the proposed method in far-distance multi-
modal distributions, we build on the MoG experiment presented in [13]. We increase the
distance between modes by

√
2 and use the same variance. We run L2HMC and NVP-MC

10,000 iterations respectively, and use the same batch size for the two algorithms. As shown
in Figure 5, although L2HMC introduces the gradient information of the target distribution,
it can not correctly sample from the target distribution while NVP-MC can mix quickly

Entropy 2022, 24, 415 14 of 17

between the modes, which indicates that it may be inappropriate to introduce gradient
information directly into parameterized transition kernels. Gradient information is infor-
mative in the exploration stage, but not the training stage. By dividing the training process
into the two stages, we can remove the restriction of exact sampling in the exploration
stage and the proposed method can have powerful exploration ability. In the training stage,
adversarially training can learn the geometry of the target distribution by minimizing the
loss function. The exact samples can be obtained through accepting the samples generated
from the transition kernels by using MH steps. Moreover, L2HMC needs twice times
than NVP-MC to train the transition kernels in the training stage, and a trained NVP-MC
can sample from the target distribution six times faster than HMC. We also report the
autocorrelation of NVP-MC and the compared methods. As seen in Figure 6, the samples
collected by NVP-MC have the fastest drop in autocorrelation with respect to gradient
evaluations in target distribution of 2d-SCG. In high-dimensional target distribution of
50d-ICG, the rate of autocorrelation decline of NVP-MC is similar to that of NICE-MC and
slightly faster than that of L2HMC.

12 10 8 6 4 2 0 2 4 6
12

10

8

6

4

2

0

2

4

6

(a) NVP-MC

12 10 8 6 4 2 0 2 4 6
12

10

8

6

4

2

0

2

4

6

(b) L2HMC

Figure 5. NVP-MC (a) can correctly and faster mix between modes in limited training steps and
batch sizes compared with L2HMC (b).

(a) 50d-ICG (b) 2d-SCG

Figure 6. Autocorrelation with respect to gradient evaluation steps for 50-d ICG and 2d-SCG.

5.3. Bayesian Logistic Regression

In this section, we conduct the experiments on nine real datasets using Bayesian
logistic regression. To show the practicability of the proposed method, we sample from the
posterior distribution and compare NVP-MC with HMC, logistic regression (LR) [42] and
variational Bayesian logistic regression (VBLR), which are all the widely applicable methods
in Bayesian logistic regression [43]. Given a conditional distribution p(Y|X) parameterized
by the logistic distribution, the goal of LR is to maximize the likelihood function and get
the optimized parameters to predict the class of the data. We consider nine datasets from
UCI repository [44]: Pima (Pi), Haberman (HA), Blood (BL), Immunotherapy (IM), Indian

Entropy 2022, 24, 415 15 of 17

(IN), Mammographic (MA), Heart(HE), German (GE) and Australian (AU) and evaluate
the accuracy rate and area under the receiver operating characteristic curve (AUC) [45]. To
improve the stability of the models, we normalize all datasets to have zero mean and unit
variance. We set the normal distribution N (0, I) as the prior distribution of parameters,
and use the same data partition for all experiments.

We set the dimension of the auxiliary variable v to 35 for every real dataset experiment.
At each training epoch, the transition kernels will move 5000 steps. In each coupling layer,
the S and T are 3 layers neural networks with 400 units for input and output layer, 800 units
for the hidden layer, and each layer is not activated. The discriminator is 3 layer neural
networks with 800 units and activated with leaky rectified linear units. As for the optimizer,
we use the same setting as in the synthetic 2D target distribution experiments.

As Tables 2 and 3 illustrated, NVP-MC can obtain better performance in almost
all datasets, which indicates that the proposed method can sample from the posterior
distribution more accurately.

Table 2. Classification accuracy for LR, VBLR, HMC and NVP-MC. Data in bold represent best results.

Dataset LR VBLR HMC NVP-MC

HA 69.3 ± 0.2 69.3 ± 0.1 69.3 ± 0.2 69.4 ± 0.1
PI 76.6 ± 0.2 76.2 ± 0.1 76.6 ± 0.1 76.8 ± 0.1
MA 82.5 ± 0.3 83.1 ± 0.1 83.1 ± 0.1 83.1 ± 0.1
BL 76.0 ± 0.2 76.0 ± 0.2 76.0 ± 0.3 76.1 ± 0.2
IM 77.7 ± 0.3 77.8 ± 0.4 83.2 ± 0.2 83.3 ± 0.4
IN 75.8 ± 0.3 73.2 ± 0.2 73.2 ± 0.2 73.8 ± 0.2
HE 75.9 ± 0.2 75.9 ± 0.2 75.9 ± 0.2 76.1 ± 0.2
GE 71.5 ± 0.1 71.5 ± 0.1 72.5 ± 0.2 73.2 ± 0.1
AU 86.9 ± 0.2 87.6 ± 0.2 87.6 ± 0.2 87.7 ± 0.2

Table 3. AUC for LR, VBLR, HMC and NVP-MC. Data in bold represent best results.

Dataset LR VBLR HMC NVP-MC

HA 62.7 ± 0.1 63.2 ± 0.1 63.0 ± 0.2 63.3 ± 0.1
PI 79.2 ± 0.2 79.3 ± 0.1 79.3 ± 0.1 79.4 ± 0.1
MA 89.9 ± 0.1 89.8 ± 0.1 89.9 ± 0.1 89.9 ± 0.1
BL 73.5 ± 0.3 73.4 ± 0.3 74.4 ± 0.3 73.6 ± 0.2
IM 76.7 ± 0.3 78.5 ± 0.5 89.2 ± 0.2 89.3 ± 0.4
IN 73.2 ± 0.3 73.2 ± 0.2 72.4 ± 0.2 72.7 ± 0.2
HE 80.1 ± 0.2 81.3 ± 0.2 82.2 ± 0.3 81.9 ± 0.2
GE 74.7 ± 0.2 75.5 ± 0.2 76.7 ± 0.3 76.7 ± 0.1
AU 92.5 ± 0.2 93.9 ± 0.2 93.9 ± 0.3 93.9 ± 0.2

6. Conclusions

In this study, we develop the adversarially training MC, non-volume-preserving tran-
sition kernels, and exploit a novel scheme to train MCMC kernels with promising mixing
performance. Compared with existing gradient-based sample methods, the proposed
method can leverage gradient information more efficiently, and explore the target dis-
tribution faster. The experiments in various challenging distributions and real datasets
show that the proposed method outperforms other state-of-the-art MCMC methods and is
promising for practical uses.

Author Contributions: Conceptualization, S.L. and S.S.; methodology, S.L.; experiments, S.L.; formal
analysis, S.L. and S.S.; writin—original draft preparation, S.L.; writing—review and editing, S.L. and
S.S.; visualization, S.L.; supervision, S.S. All authors have read and agreed to the published version of
the manuscript.

Entropy 2022, 24, 415 16 of 17

Funding: This work was supported by the NSFC Projects 62076096 and 62006078, the Shanghai
Municipal Project 20511100900, Shanghai Knowledge Service Platform Project ZF1213, the Shanghai
Chenguang Program under Grant 19CG25, the Open Research Fund of KLATASDS-MOE and the
Fundamental Research Funds for the Central Universities.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available in a publicly accessible repository. The data presented
in this study are openly available in UCI Machine Learning Repository at http://archive.ics.uci.edu/
ml/index.php (accessed on 13 March 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Robert, C.; Casella, G. Monte Carlo Statistical Methods; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013.
2. Neal, R.M. Probabilistic Inference Using Markov Chain Monte Carlo Methods; Technical Report; Department of Computer Science,

University of Toronto: New Brunswick, MA, Canada, 1993.
3. Martino, L.; Read, J. On the flexibility of the design of multiple try Metropolis schemes. Comput. Stat. 2013, 28, 2797–2823.

[CrossRef]
4. Hastings, W.K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 1970, 57, 97–109.

[CrossRef]
5. Wang, Z.; Mohamed, S.; Freitas, N. Adaptive Hamiltonian and riemann manifold Monte Carlo. In Proceedings of the 30th

International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013.
6. Wang, J.; Sun, S. Decomposed slice sampling for factorized distributions. Pattern Recognit. 2020, 97, 107021. [CrossRef]
7. Duane, S.; Kennedy, A.D.; Pendleton, B.J.; Roweth, D. Hybrid Monte Carlo. Phys. Lett. B 1987, 195, 216–222. [CrossRef]
8. Simsekli, U.; Yildiz, C.; Nguyen, T.H.; Richard, G.; Cemgil, A.T. Asynchronous Stochastic Quasi-Newton MCMC for Non-Convex

Optimization. In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018.
9. Betancourt, M. A conceptual introduction to Hamiltonian Monte Carlo. arXiv 2017, arXiv:1701.02434.
10. Psutka, J.V.; Psutka, J. Sample size for maximum-likelihood estimates of Gaussian model depending on dimensionality of pattern

space. Pattern Recognit. 2019, 91, 25–33. [CrossRef]
11. Betancourt, M.; Byrne, S.; Girolami, M. Optimizing the integrator step size for Hamiltonian Monte Carlo. arXiv 2014,

arXiv:1411.6669.
12. Zou, D.; Xu, P.; Gu, Q. Stochastic Variance-Reduced Hamilton Monte Carlo Methods. In Proceedings of the 35th International

Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018.
13. Levy, D.; Hoffman, M.D.; Sohl-Dickstein, J. Generalizing Hamiltonian Monte Carlo with Neural Networks. In Proceedings of the

6th International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.
14. Liu, C.; Zhuo, J.; Zhu, J. Understanding MCMC Dynamics as Flows on the Wasserstein Space. arXiv 2019, arXiv:1902.00282.
15. Song, J.; Zhao, S.; Ermon, S. A-NICE-MC: Adversarial training for MCMC. In Proceedings of the 31st Conference on Neural

Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017.
16. Azadi, S.; Olsson, C.; Darrell, T.; Goodfellow, I.; Odena, A. Discriminator rejection sampling. arXiv 2018, arXiv:1810.06758.
17. Dinh, L.; Krueger, D.; Bengio, Y. Nice: Non-linear independent components estimation. arXiv 2014, arXiv:1410.8516.
18. Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein GAN. arXiv 2017, arXiv:1701.07875.
19. Wei, G.; Luo, M.; Liu, H.; Zhang, D.; Zheng, Q. Progressive generative adversarial networks with reliable sample identification.

Pattern Recognit. Lett. 2020, 130, 91–98. [CrossRef]
20. Pasarica, C.; Gelman, A. Adaptively scaling the Metropolis algorithm using expected squared jumped distance. Stat. Sin. 2010,

20, 343–364.
21. Yang, J.; Roberts, G.O.; Rosenthal, J.S. Optimal scaling of Metropolis algorithms on general target distributions. arXiv 2019,

arXiv:1904.12157.
22. Green, P.J. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 1995, 82,

711–732. [CrossRef]
23. Bishop, C.M. Pattern Recognition and Machine Learning; Springer: New York City, NY, USA, 2006.
24. Cong, Y.; Chen, B.; Liu, H.; Zhou, M. Deep Latent Dirichlet Allocation with Topic-Layer-Adaptive Stochastic Gradient Riemannian

MCMC. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017.
25. Betancourt, M.; Byrne, S.; Livingstone, S.; Girolami, M. The geometric foundations of Hamiltonian Monte Carlo. Bernoulli 2017,

23, 2257–2298. [CrossRef]
26. Tripuraneni, N.; Rowland, M.; Ghahramani, Z.; Turner, R. Magnetic Hamiltonian Monte Carlo. In Proceedings of the 34th

International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017.
27. Huang, L.; Wang, L. Accelerated Monte Carlo simulations with restricted Boltzmann machines. Phys. Rev. 2017, 95, 035105.

[CrossRef]

http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/index.php
http://doi.org/10.1007/s00180-013-0429-2
http://dx.doi.org/10.1093/biomet/57.1.97
http://dx.doi.org/10.1016/j.patcog.2019.107021
http://dx.doi.org/10.1016/0370-2693(87)91197-X
http://dx.doi.org/10.1016/j.patcog.2019.01.046
http://dx.doi.org/10.1016/j.patrec.2019.01.007
http://dx.doi.org/10.1093/biomet/82.4.711
http://dx.doi.org/10.3150/16-BEJ810
http://dx.doi.org/10.1103/PhysRevB.95.035105

Entropy 2022, 24, 415 17 of 17

28. Li, C.; Chen, C.; Carlson, D.; Carin, L. Preconditioned Stochastic Gradient Langevin Dynamics for deep neural networks. In
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 Feburary 2016

29. Kingma, D.P.; Salimans, T.; Jozefowicz, R.; Chen, X.; Sutskever, I.; Welling, M. Improved variational inference with inverse autore-
gressive flow. In Proceedings of the Advances in Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016.

30. Dinh, L.; Sohl-Dickstein, J.; Bengio, S. Density estimation using Real NVP. arXiv 2016, arXiv:1605.08803.
31. Ma, F.; Ayaz, U.; Karaman, S. Invertibility of convolutional generative networks from partial measurements. In Proceedings of

the Advances in Neural Information Processing Systems, Montréal, QC, Canada, 3–8 December 2018.
32. Dinh, V.; Bilge, A.; Zhang, C.; Matsen, F.A., IV. Probabilistic path Hamiltonian Monte Carlo. In Proceedings of the 34th

International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017.
33. Zhang, Y.; Ghahramani, Z.; Storkey, A.J.; Sutton, C.A. Continuous relaxations for discrete Hamilton Monte Carlo. In Proceedings

of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012.
34. Ichiki, A.; Ohzeki, M. Violation of detailed balance accelerates relaxation. arXiv 2013, arXiv:1306.6131.
35. Neal, R.M. MCMC using Hamiltonian dynamics. In Handbook of Markov Chain Monte Carlo; Chapman & Hall/CRC: Boca Raton,

FL, USA, 2011.
36. Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; CRC Press: Boca Raton, FL, USA, 1994.
37. Rezende, D.J.; Mohamed, S. Variational Inference with Normalizing Flows. In Proceedings of the 32nd International Conference

on Machine Learning, Lille, France, 6–11 July 2015.
38. Borgwardt, K.M.; Gretton, A.; Rasch, M.J.; Kriegel, H.; Scholkopf, B.; Smola, A.J. Integrating structured biological data by Kernel

Maximum Mean Discrepancy. IBM J. Res. Dev. 2006, 22, 49–57. [CrossRef]
39. MacKay, D.J.C. The Evidence Framework Applied to Classification Networks. Neural Comput. 1992, 4, 720–736. [CrossRef]
40. Hokman, M.D.; Gelman, A. The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo. J. Mach.

Learn. Res. 2014, 15, 1593–1623.
41. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
42. Freedman, D.A. Statistical Models: Theory and Practice; Cambridge University Press: Berkeley, CA, USA, 2009.
43. Tóth, J.; Tomán, H.; Hajdu, A. Efficient sampling-based energy function evaluation for ensemble optimization using simulated

annealing. Pattern Recognit. 2020, 107, 107510. [CrossRef]
44. Dua, D.; Graff, C. UCI Machine Learning Repository. 2017. Available online: https://archive.ics.uci.edu/ml/index.php (accessed

on 13 March 2022).
45. Hanley, J.A.; McNeil, B.J. A method of comparing the areas under receiver operating characteristic curves derived from the same

cases. Radiology 1983, 148, 839–843. [CrossRef]

http://dx.doi.org/10.1093/bioinformatics/btl242
http://dx.doi.org/10.1162/neco.1992.4.5.720
http://dx.doi.org/10.1016/j.patcog.2020.107510
https://archive.ics.uci.edu/ml/index.php
http://dx.doi.org/10.1148/radiology.148.3.6878708

	Introduction
	Background
	Markov Chain Monte Carlo and Metropolis–Hasting Algorithm
	Hamiltonian Monte Carlo and Exploration on Total Energy Function
	Real-Valued Non-Volume-Preserving Flows

	The Proposed Method
	Using Non-Volume-Preserving Flows as Generator
	Loss Function and Training Procedure

	Related Work
	Getting MCMC Transition Kernels through Adversarially Training
	Parameterized Non-Volume-Preserving Transition Kernels

	Experiment
	Performance Indexes
	Varieties of Challenging Energy Functions
	Bayesian Logistic Regression

	Conclusions
	References

