
����������
�������

Citation: Chen, Y.; Yu, J.; Zhao, Y.;

Chen, J.; Du, X. Task’s Choice:

Pruning-Based Feature Sharing

(PBFS) for Multi-Task Learning.

Entropy 2021, 24, 432. https://

doi.org/10.3390/e24030432

Academic Editors: Andrea Prati,

Luis Javier García Villalba and

Vincent A. Cicirello

Received: 17 December 2021

Accepted: 18 March 2022

Published: 21 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2020 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Task’s Choice: Pruning-Based Feature Sharing (PBFS) for
Multi-Task Learning
Ying Chen 1,*, Jiong Yu 1,2,*, Yutong Zhao 1,*, Jiaying Chen 2,* and Xusheng Du 2,*

1 School of Software, Xinjiang University, Urumqi 830008, China
2 College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China
* Correspondence: chenying@stu.xju.edu.cn (Y.C.); yujiong@xju.edu.cn (J.Y.); zhaoyutong@stu.xju.edu.cn (Y.Z.);

chenjiaying@stu.xju.edu.cn (J.C.); duxusheng@stu.xju.edu.cn (X.D.)

Abstract: In most of the existing multi-task learning (MTL) models, multiple tasks’ public information
is learned by sharing parameters across hidden layers, such as hard sharing, soft sharing, and
hierarchical sharing. One promising approach is to introduce model pruning into information
learning, such as sparse sharing, which is regarded as being outstanding in knowledge transferring.
However, the above method performs inefficiently in conflict tasks, with inadequate learning of
tasks’ private information, or through suffering from negative transferring. In this paper, we propose
a multi-task learning model (Pruning-Based Feature Sharing, PBFS) that merges a soft parameter
sharing structure with model pruning and adds a prunable shared network among different task-
specific subnets. In this way, each task can select parameters in a shared subnet, according to its
requirements. Experiments are conducted on three benchmark public datasets and one synthetic
dataset; the impact of the different subnets’ sparsity and tasks’ correlations to the model performance
is analyzed. Results show that the proposed model’s information sharing strategy is helpful to
transfer learning and superior to the several comparison models.

Keywords: multi-task learning; information sharing; deep learning; transfer learning

1. Introduction

Multi-task learning aims to augment the generalization performance by sharing infor-
mation among multiple tasks, which has succeeded in computer vision, recommendation
systems, and natural language processing [1–5]. Researchers have conducted many experi-
ments based on their model architecture to show the usefulness of multi-task learning. The
existing information-sharing mechanisms in multi-task learning are mainly divided into
four categories: hard parameter sharing, soft parameter sharing, hierarchical sharing, and
sparse sharing. As the most basic information-sharing method, hard parameter sharing in
Figure 1a, which was proposed by [5], appends a tower layer (a simple dense network to
obtain the final output of the task) on the top of the identical hidden layer representation,
so the same parameters are utilized by different tasks; many studies [6–8] based on this
method have achieved excellent performance. Each task in the soft parameter sharing
mechanism in Figure 1b has independent parameters and subnet, but their information can
be mutually learned. This method usually improves the prediction accuracy [9] by making
parameters as similar as possible with regularization or fusing information with a gated
network and attention mechanism.

The hierarchical sharing [10,11] in Figure 1c considers the progressive relationship
between tasks, which means that task A may be a subtask of another one, thus placing
them on different network layers. The sparse sharing mechanism [12] in Figure 1d is based
on the idea of the lottery ticket hypothesis, which argues that in any dense base network,
an optimal subnet could be found for each task to learn the required information. Since
the same base network is used, different tasks will automatically select the information
through IMP (iterative magnitude pruning).

Entropy 2021, 24, 432. https://doi.org/10.3390/e24030432 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24030432
https://doi.org/10.3390/e24030432
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e24030432
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24030432?type=check_update&version=2


Entropy 2021, 24, 432 2 of 17

Input

(a)Hard sharing

Input

(b)Soft sharing

Input

(c)Hierarchical sharing

Input

(d)sparse sharing

Input

(e)PBFS(ours)

Figure 1. Most of the existing multi-task learning architecture. (a) Hard parameter sharing. (b) Soft
parameter sharing. (c)Hierarchical sharing. (d) Sparse sharing. (e) The proposed model PBFS.

However, the above methods have certain limitations. When tasks conflict, hard
parameter sharing is easily affected by negative transferring, which is harmful to the
model performance [9]. Soft parameter sharing depends on a complex manual design
model architecture, and the discovery of effective information-sharing strategies often
requires researchers to pay a major expenditure of time and effort. The hierarchical sharing
mechanism relies on tasks’ relations, and the deployment of tasks is a complex problem
without prior knowledge [13]. Various tasks in sparse sharing rely on the same base
network without considering the interaction and differences of tasks, and it is hard to
learn in training [14]. Meanwhile, the seesaw phenomenon is also one of the significant
difficulties that most multi-task models face, which means that improvements in one task
often cause performance degradation of other tasks.

This paper proposes a multi-task learning model based on parameters pruning to
address the above problems shown in Figure 1e, which combines a soft parameter sharing
mechanism and model pruning. On an architecture that separates task-specific experts and
shared experts, the parameters of the latter can be partially trimmed. Specifically, each
task has a task-specific expert, and shared experts are connected by several tasks, which
are the pruned base network, simultaneously. Each task selects the optimal shared subnet
by conducting iterative quantitative pruning on the shared expert, and then the opted
subnet is combined with task-specific experts for training. So in this model, tasks have
their individual subnet, whether it is a task-specific or shared subnet. The advantages of
this method are (a) low-relevance or conflicting tasks can be compatible in the same model
without being mutually affecting, (b) no reliance on task characteristics to manually design
a shared architecture, and (c) noise parameters that will decrease the performance of the
model can be pruned.

Our paper contributions can be summarized as follows:

1. A soft sharing model jointed with parameter pruning is designed, in which each task
has an independent subnet, and the pruning is used to learn the information of shared
experts on the parameter level;

2. A task-specific pruning strategy is used to find the optimal subnet for each task so
that it can automatically learn to select the hidden representations and cut off harmful
noise;

3. Establish a shared pool based on the difference of the tasks’ relevance, and define the
limits of whether diverse tasks can prune a base shared expert so that more than two
tasks have an adaptive sharing scheme;

4. Experiments in three benchmark public datasets demonstrated that the proposed
model achieves considerable improvement compared with single-task learning and
several soft parameter sharing models. Meanwhile, we found that our pruning
strategy can avoid the impact of the seesaw phenomenon, which appeared in many
MTL models.

2. Related Work
2.1. Multi-Task Learning for Deep Learning

With the target of improving generalization and prediction by utilizing the task-specific
information contained in the training signals of related tasks [5], researchers widely apply
multi-task learning for optimizing multiple targets simultaneously. Based on deep learning,



Entropy 2021, 24, 432 3 of 17

traditional MTL in DNNs can be divided into two methods: hard parameter sharing and
soft parameter sharing.

Hard parameter sharing supposes that the latent feature of different tasks can be
partially extracted to the same hidden representations, which are regarded as the maximum
common knowledge among various tasks.There have been some studies applying this
structure and idea for information learning. ESMM [1] applies two auxiliary tasks and
shares partial embedding parameters among different tasks to improve the performance of
the main task. Hadash G. et al. [2] proposed a progressive multi-task model to construct
the correlations between tasks explicitly. Similarly, Qin Z. et al. [15] introduced LSTM as
the sharing bottom layer into a hard parameter sharing multi-task model to learn common
information. However, hard sharing is adversely susceptible to negative transfer with
complicated tasks. Clarkson G. et al. [16] considered information asymmetry and proposed
a novel knowledge-sharing method to address task conflicts. Meanwhile, cross-stitch
network [3] and sluice network [17] both select the fuse representations of different tasks
by learning linear combination weights. Unfortunately, the task’s latent feature picked by
the same static weights between loosely related tasks will significantly reduce the model’s
predictive ability.

To address the above issues, many researchers have argued that each task should have
an independent subnet to alleviate the effect of noise parameters from other data samples.
In this way, several works introduced a gated structure or attention network to improve
the performance of each task subnet, such as MoE [18], to provide a new link between
two different approaches and first apply gated-network to combine experts. MMOE [9]
upgrades MoE with setting up a particular gated network for each task by considering
sample independence. Jiejie Z. et al. [19] used multi-head self-attention to learn different
subspaces at different feature sets. PLE [13] improved the traditional gated structure
and removed unnecessary connections between experts to alleviate harmful parameter
interference between common and task-specific knowledge.

In particular, hierarchical sharing approaches [10], a novel idea in MTL study, reason
that low-level tasks are better kept at the lower layers, enabling the high-level tasks to use
the shared representation of the lower-level tasks. Then researchers present a multi-task
learning architecture with deep bi-directional RNNs, where different task supervision can
happen at different layers.

2.2. Sparse Networks

Deep learning can automatically learn the features required by the target profiting
from the rapid growth of neural networks. Nevertheless, extensive professional knowledge
and experiments are expected to design a well-behaved neural network with high computa-
tional cost, limiting its application in many fields. Therefore, many techniques seeking more
sparse networks have emerged, such as NAS [20], quantization [21,22], pruning [23–25],
etc., to reduce computational complexity and risk of overfitting without harming accuracy.

Given a set of candidate neural network structures called the search space, in each
iteration of the search process, NAS aims to search for a sub-network smaller than the
original model, and then the network structure is gradually optimized until the optimal
sub-structure is found [4,26,27]. Many multi-task models use NAS to find a more suitable
sparse subnet for each task to improve the accuracy of multi-objective prediction. For
example, in [28], binary variables are used to control the connection between subnets, and
AutoML technology is applied to explore the best structure of the task.

However, the NAS technology training and verification process are very time consum-
ing, and some time reducing methods will be unfavorable to the model. In contrast, pruning
provides an easier and more efficient approach to reduce storage occupancy, communication
bandwidth, and computational complexity [4]. Frankle J. et al. [29] argued that a randomly
initialized, dense neural network always contains a more sparse network, which can match
the test accuracy of the original network after being trained. Actually, this sub-network can
train faster but attach higher test accuracy and generalize better. LT4REC [14] applied this



Entropy 2021, 24, 432 4 of 17

hypothesis to recommendation systems, which can automatically and flexibly learn which
neuron weights to be shared without artificial experience. Sun T et al. [12] systematically
built sparse sharing architectures for multiple tasks by introducing the pruning technique,
thereby proposing a novel parameter sharing mechanism, named sparse sharing, that can
achieve consistent improvement while requiring fewer parameters.

3. Pruning-Based Feature Sharing Architecture
3.1. Base Model

Our base model is motivated by CGC [13]; in CGC [13], shared experts are detached
with task-specific experts, but then both are combined through a gated network for selective
fusion. Specifically, the gated network (shown in Figure 2) is designed to capture the
differentiation and interaction between experts, which is based on a single-layer feed-
forward network with softmax as the activation function, and input as the selector to
calculate the weighted sum of the selected vectors. Similarly, a tower layer is laid out on
the top of the gated network for receiving independent tasks’ target representation. The
output of task m can be formally expressed as:

φm(xm) = wm(xm)Sm(xm) (1)

where xm is the input of task m, wm represents the weighting function to calculate the
weight vector of task m through linear transformation and softmax activation function, Sm

is a united matrix made up of all output vectors, including task m’s specific experts and
shared experts, and their calculation formula is given as follows:

wm(xm) = SoftMax
(

wm
g (xm)

)
(2)

Sm(xm) =
[

ET
(m,1), ET

(m,2), . . . ET
(m,nm), ET

(s,1), ET
(s,2), . . . ET

(s,ns)

]
(3)

where wm
g ∈ R(nm+ns)×d is a trainable matrix, d expresses the dimension of the input data,

nm and ns are the number of task m’s specific experts and shared experts, respectively,
and ET

(m,nm) and ET
(s,ns)

represent the transposes of different expert’s output. Finally, the
prediction of task m is

ym
xm = tm(φm(xm)) (4)

where tm indicates the tower layer of task m.

Shared experts
Task-specific 

experts

( , ) ( , ) ( , )( , , , )
m

T T T

m m m n
E E E( , ) ( , ) ( , ) )( , ) ( , ) ( , )( , ) ( , ) (

m
, ), )

T T T( , , ,( , ) ( , ) ( , )( , ) ( , ) ( , )( , ) ( , ) ( , )( , ) ( , ) (( , ) ( , ) ( , )( , , ,( , , ,( , ) ( , ) (( , ) ( , ) (( , ) ( , ) (( , , , ( , ) ( , ) ( , )( , , , )
s

T T T

s s s n
E E E( , ), ), )( , )

s
( , )( , )

T T T, ), )( , )( , )( , )( , ), ), )( , )( , ), ), )

Softmax layer

Input data

FC layer

G

( )m

m
S x

E E E E E E

Figure 2. Structure of gated network.



Entropy 2021, 24, 432 5 of 17

Since then, a dense base network has been established, which removes connections
between a task’s tower layer and the task-specific experts of other tasks and retains the
traditional hard parameter sharing mechanism in which different tasks use the same shared
expert representation.

3.2. Model Architecture

The deep learning based multi-task model optimizes the performance of each task
by training in parallel, considering the differences and interaction between tasks. The
proposed model comprises task-specific experts and shared pools to consider the differences
and interactions between tasks. The former is a unique subnet for each task. The latter
connects all tasks with special associations and learns common information through specific
parameter pruning. In the following part, we formally define the main architecture of the
proposed model.

Given M tasks to be learned, with each m process, a corresponding samples space
Dm ∈ (Nm × dm), where Nm denotes the number of m’s sample, dm indicates data dimen-
sion, and the task’s correlation score is calculated with the Pearson coefficient, is defined as
COORM, which is a M ∗M symmetric matrix, with the diagonal elements being 1.

In traditional research [9,13], different tasks utilize identical shared experts. However,
it will cause noise for tasks with large differences in relevance. Therefore, we define a
shared pool s (s = 1, 2, . . . , S), with each s =<Q[s], As>, where Q[s](Q[s] ⊆ M) is a set of
the task’s index, which is connected with shared pool s, and As(2 6 As 6 M) is the number
of tasks that appears in Q[s]. Then, its shared mean factor SMFs is defined as follows:

SMFs =


COORM, As = 2

∑(i,j)∈Q[s]
COOR<i,j>

M

C2
As

, As > 2
(5)

where C is the combination number formula in mathematics. When there are only two
tasks in a shared pool, SMFs (0 < SMFs < 1) is the correlation between the two tasks.
Otherwise, for any associated task pair <i, j>(i 6= j, i, j ⊆ M), the condition for sharing data
in s is:

∣∣∣SMFs −COOR<i,j>
M

∣∣∣ < α, and α is an adjustable empirical parameter that controls
the selection of tasks in the shared pool s.

In this way, to task m, a related sharing pool set Um(Um ⊆ S) can be obtained. Different
prune strategies are applied to shared pools in the set, which we will cover in detail in the
next section. Finally, the output of task m’s sharing pool can be mathematically formulated
as follows:

Pm =
Um

∑
s=0

fs(λ, σ(xs)) (6)

where f is the pruning function, λ denotes the pruning parameter of the task m for the
shared pool s, namely the target sparseness, σ means the specified activation function, and
xs is the input data of the shared pool s.

Each task also has the output of a task-specific subnet, whose input data are the
corresponding samples related to the task, focusing on learning the information required by
the corresponding task. In this paper, the specific task subnet we use is the MLP network,
and the activation function depends on the task attributes. Therefore, the output of a
specific task subnet for task m is

Om = σ(wxm) (7)

where σ denotes the activation function.
In summary, for task m, we not only learned the knowledge through information

sharing with other tasks, but also obtained the specific knowledge of the task, then let it



Entropy 2021, 24, 432 6 of 17

pass through a gated network with a selection function to obtain the output. Therefore, the
gated network output of task m is

Gm = ψ(Pm, Om) (8)

where ψ is a gated network function, similar to that in the base model. So, the output of the
tower layer of task m is

Ym = tm(Gm) (9)

where tm denotes the tower network of task m.

3.3. Pruning-Based Feature Sharing Strategy

In the proposed model, the parameters required by different tasks are taken into
account, and the noise parameters that would cause negative transfer are pruned. The two
ideas are based on the following assumptions:

Hypothesis 1. In MTL, diverse tasks need different representations among shared experts. That
is, for any task, the task can find an optimal subnet architecture that is most suitable for itself by
pruning the shared expert’s parameters;

Hypothesis 2. After the base model is trained, the weight of noise features that will affect the
performance of the model will have a lower weight, and when parameters pruning is applied to these
connections, there will be no adverse impact within a reasonable threshold.

For Hypothesis 1 Frankle J. et al. [29] conducted a lot of experiments to prove that in
an original base model, a more sparse pruned sub-model can always be found, and this
sub-model can reach or even exceed the performance of the original model in roughly the
same training process as the original model and the number of iterations. For Hypothesis 2
Sun T et al. [12] warmed up the original model before pruning so that a specific subnet
could be confirmed before pruning model parameters related to the task. Then, the cut
parameters with IMP according to the neurons’ weight value for obtaining the subnet of
the task will hardly be harmful to the model performance in the next training process.
Moreover, the pruning mechanism of the neural network can reduce more than 90% of
parameters in the trained network, thus cutting down storage requirements and improving
computing performance without affecting accuracy [30].

Following the sparse sharing mechanism, our PBFS method provides an effectively
shared architecture (shown in Figure 3). Given a base dense neural work, the M task and
the sparsity parameter of each task to each shared pool are used to generate shared pool
Q, which has ruled the strategy of the task’s information sharing (described in detail in
Algorithm 1). Furthermore, its output representation is routed to the gated network of
the corresponding task, and the parameters pruning is performed inside the shared pool.
It should be noted that different tasks prune the same shared pool with different target
sparsity. Each task has its adjustable pruning parameters for each shared pool, such as
initial sparsity, target sparsity, etc., and finally generates an independent training subnet
for each task. This subnet contains the parameters required by the corresponding task in
the base network. The details are in Algorithm 2.



Entropy 2021, 24, 432 7 of 17

Algorithm 1: Generate sharing pool for tasks
Input: M tasks, threshold parameter α, correlation matrix COORM
Output: Set of sharing pool Q
Preparation: Generate task pair set T={< i, j >, i, j ⊆ M and

i 6= j},< i, j >=< j, i >,
S=0
for < i, j > in T:

if Q==NULL :
S=1;
Q[1]<—<i, j>;

else:
for s = 1 to S + 1:

if (| SMFs −COOR<i,j>
M |< α and s <= S):

Q[s]<—<i, j>;
update SMFs;
break;

else if (s == S + 1):
S ++;
Q[s]<—<i,j>;
SMFs=COOR<i,j>

M ;
break;

end for
end for
Return: Q

Algorithm 2: Generate sparse shared-expert for each task

Preparation: Task M, target sparsity Mλ
m→s,(m = 1toM, s is the shared pool s),

initial sparsity Mµ
m→s, sharing pool set Q

Output: Sparse shared-expert network {P1, P2, . . . , PM}
1: for s in Q:

generate base shared-expert network Ps(xs), (xs is input data of all tasks in
Q[s]) .

2: for m = 1 to M:
for s in Um:

Ps
m= prune Mµ

m→s % parameters of Ps with low magnitude, save Ps
m in

Pm.
end for

end for
And then train model with Pm.
3:Prune parameters with polynomial decay and training until shared-expert’s
sparsity

arrived to Mλ
m→s, record the performance of training process with different

sparsity.
4:Replace Ps

m with the sparse shared-expert reached best performance of task m.
5: Repeat steps 3–4 until training is over.
Return: {P1, P2, . . . , PM}



Entropy 2021, 24, 432 8 of 17

Tower Layer A

Tower Layer M

Shared-pool s

G

G

Task A

Task M

Figure 3. Model architecture of PBFS.

After introducing our parameters pruning strategy into the base model, the joint loss
optimization of the model can be expressed as

L[(θ1, θs
1), (θ2, θs

2) . . . , (θM, θs
M)] =

M

∑
m=1

wmLm(θm, θs
m) (10)

where θm denotes the task m’s specific-experts parameters, and θs
m is task m’s shared

parameters, and Lm indicates the loss function of task m.

4. Experiments and Results
4.1. Datasets

UCI census income [31]: This dataset is extracted from the U.S. Census database and
contains 299,285 statistical data instances of adults, each of which has 40 features. This
experiment set two classification tasks as income and marital status, respectively. The
former predicts whether the income of each sample is higher than 50,000, and the latter
classifies married or unmarried. The correlation score of the two tasks is 0.1768 [9].

Movielens 1 M: This dataset is widely used in the field of recommendation systems,
including 100,000 rating records (1–5 points) of 1682 films by 943 users, of which each
user has no less than 20 rating data for different films. In this dataset, the ratio of training
data to test data is 7:3, and the prediction of users’ age and rating to films are regarded as
regression and classification task, respectively. When the rating score is greater than 3, the
user is deemed to like the movie and otherwise to not like it. The correlation score of the
two tasks is 0.0551.

Student [32]: This data approaches student achievement in secondary education of a
Portuguese school. The datasets are provided regarding the performance in two distinct
subjects: mathematics and Portuguese language. It is worth noting that the target attribute
G3 has a strong correlation with attributes G2 and G1. This occurs because G3 is the final
year grade, while G1 and G2 correspond to the 1st and 2nd period grades. It is more
challenging to predict G3 without G2 and G1, but such prediction is much more useful. So
we consider both G1 and G2 as unattached tasks, and G3 cannot learn related information,
except the sharing pool that we build. Task’s correlation score of student dataset shown in
Table 1.

Table 1. Task’s correlation score in student dataset.

Math Portuguese

G1 G2 G3 G1 G2 G3

G1 1.0000 0.8521 0.8015 1.0000 0.8650 0.8263
G2 0.8521 1.0000 0.9049 0.8650 1.0000 0.9185
G3 0.8015 0.9049 1.0000 0.8263 0.9185 1.0000



Entropy 2021, 24, 432 9 of 17

Synthetic data: This dataset was generated by nonlinear rules in [9] to verify the
performance of the model on tasks with different correlated scores, and two regression
tasks were generated in total. In the experiment of this paper, we use this rule to generate
120,000 data, of which 100,000 are used for the training model, 10,000 are applied for
verification, and the rest for testing.

4.2. Comparison Model

Single-task: Two separate MLP networks are applied to predict different tasks, respectively.
Shared-bottom [5]: A widely used method in the multi-task model. Its basic idea is

to make different tasks share a knowledge extraction network, and only the output of the
tower layer is separated.

Cross-stitch [3]: This model uses two cross-sharing units to learn the common knowl-
edge between two tasks, a coefficient matrix to learn the output of hidden layers of different
tasks, and controls the shared knowledge learning between various tasks by automatically
adjusting the value of parameters in the coefficient matrix.

MMOE [9]: MMOE proposed to use a gated unit that relied on input samples to control
the importance of each expert for each task so that different tasks have a specific selection
ability on the same expert.

PLE [13]: This model separates task-specific experts and shared experts, whose infor-
mation is selectively learned by a gated network.

4.3. Experiments Setup

For all the comparison algorithms, we adjust parameter settings based on their models
to ensure that the learning process is neither under-fitting nor over-fitting to achieve the
best performance of the corresponding model on each dataset. Since the tunable parameters
of each model are different, we refer to the experimental parameter design in the original
paper of the comparison algorithm and summarize the detailed data of parameters after
the experiment as follows:

Single-task: Experiments on all datasets use a three-layers MLP network with hidden
layer size of [32,16,8], and the number of neurons in the final output layer is determined by
task attributes.

Shared-bottom: The shared-bottom mechanism uses the same three-layer MLP net-
work as the single-task model, but the difference is that it has a task-specific tower layer,
which is a two-layer dense network with an input layer and an output layer. The number of
neurons in the input layer is eight, and the task attributes also decide the output layer size.

Cross-stitch: According to the cross-stitch model’s design, 32 neurons are used in both
the sharing and task layers, and the output layer is set as above.

MMOE: This model adopts the experimental setup in the original paper [9], with a
total of eight task-specific experts and four neurons for each expert.

PLE: Two layers of experts are set according to the original paper. Each expert is a
single-layer network containing 16 neurons.

PBFS: Each expert has 2 hidden layers in the census-income dataset, and each layer
size has 32. In the MovieLens dataset, each layer has 16 hidden units. In the synthetic
dataset, eight neurons are set up in PBFS.

The Adam optimizer is used to learn all models, the initial learning rate on the census
income dataset is 0.001, and the number of iterations is set to 400. The learning rate on the
MovieLens and synthetic datasets are both 0.0001, and the former training has 400 epochs,
yet later has 300 epochs. Furthermore, the input data in the multi-task models are executed
simultaneously, and the shared subnets of different tasks in the proposed model are trained
in parallel.

There are only two tasks in the census income, MovieLens, and synthetic datasets for
the proposed model, so there is no need to design the number of shared-pool and shared-
threshold parameter α. However, there are three tasks in the student dataset, so in addition
to the primary parameter design of the unit’s number, the design of other parameters will



Entropy 2021, 24, 432 10 of 17

be discussed in the tuning of hyperparameters. The cross-entropy loss function is used
for classification tasks, and the MSE loss function is introduced to regression tasks on
all datasets.

4.4. Experiments Results
4.4.1. Results in Public Datasets

Both tasks in the census-income dataset are classification tasks. Therefore, the F1-score
and ACC are selected to evaluate the proposed model. Table 2 describes the performance
of different multi-task models on this dataset, and the optimality is marked in bold black
font in Table 2.

Table 2. Results on census-income dataset.

Model
Task 1-Income Task 2-Marital

F1-Score ACC F1-Score ACC

Single-task 0.6931 0.9520 0.9270 0.9283
Shared-bottom 0.6436 0.8451 0.9313 0.9327

Cross-stitch 0.7423 0.9505 0.9334 0.9345
MMOE 0.6790 0.9482 0.9325 0.9336

PLE 0.7139 0.9509 0.9272 0.9290
PBFS(ours) 0.7466 0.9511 0.9537 0.9548

The single-task model has the highest ACC value on task 1, due to only needing to
improve the prediction accuracy of one target, compared to the multi-task model aiming
to improve the performance of multiple targets simultaneously. From the perspective of
parameter complexity and feature learning, the single-task model is simpler and more
efficient in the learning process. However, when the tasks are correlated, the single-task
model would damage the final effect because it does not learn the common knowledge of
other tasks. We can find that the performance of the single-task model in the marital task is
not better than that of other multi-task models. When the sparsity of the PBFS model is
close to 1, it is equivalent to a single-task model; the influence of sparsity on the results is
analyzed in detail in the next section.

In addition, we can notice that the performance of the proposed model on task 1 is
not significantly improved, compared with other models. In contrast, it is dramatically
enhanced on task 2. Inspired by the seesaw phenomenon presented in PLE [13], after
analyzing the result of the comparison algorithm on the dataset, we find that when most
models (such as the comparison algorithms) improve the prediction performance of one
task, they often lead to the performance degradation of another task. This phenomenon
also means that when looking for the maximum hidden layer representation fusion of
different tasks, the traditional multi-task model favors one task rather than treating two
tasks equally. However, the proposed model can significantly improve the martial results
without compromising the prediction performance of income because each task has dif-
ferent pruning strategies for the same shared pool. Each task can decide whether to use a
hidden feature to generate a mutually independent subnet with some identical parameters
and then train the subnet separately.

Table 3 shows the shared pool sparsity of the task subnet when the F1-score and
accuracy of each task reaches the optimal value. For the income task, the sparsity of the
highest F1 value is different from that when the ACC value is optimal. After comparing
the experimental data, we find that when the F1 value is optimal, the difference between
the ACC value and the optimal ACC value under the same sparsity is only 0.001; the same
error also exists in the F1 value under the optimal sparsity of ACC.



Entropy 2021, 24, 432 11 of 17

Table 3. Optimal subnet’s sparsity of tasks on census-income dataset.

Task 1-Income Task 2-Marital

F1-score ACC F1-score ACC
sparsity 0.2891 0.6691 0.7002 0.7002

The two tasks in the Movielens dataset are the classification task and regression task,
respectively. We use AUC to measure for the classification task, while for the regression
task, we use MSE to evaluate. The correlation score between rating and age is deficient,
and it is very complex to learn the features that can fit these two tasks by DNN, so many
multi-task models struggle to make noticeable progress. Despite this, the performance of
PBFS on this dataset is better than that of other multi-task models (shown in Table 4).

For different tasks, different subnet sparsity can be selected according to the experi-
mental results so that the model can trade off multiple tasks and optimize their performance
as much as possible. According to the experimental results on the Movielens dataset and
Table 5, the sparsity of the shared pool required by task 1 is very different from that needed
by task 2. After analyzing the data samples, we observed that the rating data are closely
related to the user’s age, but the user’s age is not associated with the rating. That is why
the age subtask needs to cut more parameters. However, according to the the Pearson
correlation coefficient, the calculated correlation of the two tasks is very low for only
considering the linear correlation of the two tasks, which is insufficient to measure the
relationship between variables when a particular progressive relationship exists between
tasks. That is why the traditional multi-task model is always harmfully affected by the
seesaw phenomenon.

There are two subjects in the student dataset, and each subject has three scores, G1,
G2 and G3, where G3 is the most crucial task, which indicates students’ final score, yet G1
and G2 exist as auxiliary tasks of G3. Unlike the above experiments, most of the compared
models are ruled out because their design is unavailable for three tasks, so we compared
PBFS with MMOE and shared-bottom model on the student dataset.

Table 4. Result on MovieLens dataset.

Model AUC-Rating MSE-Age

Single-task 0.6154 0.0115
Shared-bottom 0.5387 0.0133

Cross-stitch 0.5977 0.0117
MMOE 0.5836 0.0110

PLE 0.6046 0.0110
PBFS(ours) 0.6173 0.0078

Table 5. Optimal subnet’s sparsity of tasks on MovieLens dataset.

Task 1-Rating Task 2-Age

sparsity 0.1016 0.6992

Table 6. Result of Portuguese on Student dataset.

Subject Portuguese Math

Model MSE-G1 MSE-G2 MSE-G3 MSE-G1 MSE-G2 MSE-G3

Shared-bottom 0.0005 0.0008 0.0009 0.0010 0.0014 0.0021
MMOE 0.0008 0.0006 0.0007 0.0015 0.0020 0.0053
PBFS 0.0005 0.0007 0.0006 0.0008 0.0017 0.0019



Entropy 2021, 24, 432 12 of 17

Although the performance of the proposed model on G1 and G2 is not always optimal,
it can always maintain the optimal value on G3 (shown in Table 6). In MTL research,
selecting appropriate auxiliary tasks for the main task is also a way to optimize the structure.
The experimental results on the student dataset manifested that the proposed model can
improve the performance of the main task by uniting subtasks.

4.4.2. Result in Synthetic Dataset

Experiments to discuss the impact of different task correlations are conducted in a
synthetic dataset to convincingly demonstrate PBFS’s manifestation in low task relatedness.
Model sparsity is also considered for validating adaptive parameters selection capability.
Aside from 100,000 samples being generated for the training model in every task correlation
score, 10,000 samples are used for validation and test, respectively. Tasked relatedness is
governed in [0.2, 0.5, 0.8, 1].

Figure 4 shows the lowest MSE value of each task in four distinct task correlation
scores, and the performance of the proposed model remains stable beyond expectation as
the task correlation decreases. In particular, changes in task relevance have no harmful
impact in task 1; although the MSE value in task 2 achieved a slight increase when task
correlation score faced 0.5, it also reduced to the lowest value of 0.2 in the correlation score.
It is worth noting that this experiment is taken up with different model sparsity, which
means that the selected lowest MSE value of two tasks comes from dissimilar trained task
subnets. We discuss the performance of task relatedness under unequal subnet sparsity in
the next section.

0.01009 0.01009 0.01009 0.01009

0.01011

0.01014

0.01012

0.01013

0.2 0.5 0.8 1

0.0100

0.0101

0.0102

M
S
E

correlation

task1

task2

Figure 4. Results with different task’s correlation score on synthetic dataset.

5. Analysis and Discussions
5.1. Hyperparameters Tuning

In this section, we experiment on the census-income dataset to study the influences
of the expert units in PBFS. In detail, the shared expert’s initial sparsity is set to 0.6, the
target sparsity is 0.7, and the expert’s units are designed within [8, 6, 32, 64, 128]; BOlded
numbers in Table 7 shows the optimal results.



Entropy 2021, 24, 432 13 of 17

Table 7. Results on different units.

Units 8 16 32 64 128

Income-F1 0.7179 0.7331 0.7441 0.7448 0.7138
Marital-F1 0.9457 0.9456 0.9537 0.9550 0.9536

With the expert with 64 units, the proposed model shows outstanding performance in
two tasks, but it is not the experimental setting we selected for PBFS on the census-income
dataset. To explain the reason, we also discuss the performance differences between 32 units
and 64 units with different sparsity. The experimental results are as shown in Table 8.

Table 8. Results on different sparsity.

Sparsity 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Number of Parameters

32units F1-income 0.7425 0.7405 0.7466 0.7448 0.7448 0.7228 0.7441 0.7433 0.7128 18,682F1-marital 0.9536 0.9535 0.9534 0.9534 0.9534 0.9525 0.9537 0.9535 0.9533

64units F1-income 0.7415 0.7413 0.7400 0.7448 0.7439 0.7391 0.7448 0.7475 0.7452 61,402F1-marital 0.9541 0.9528 0.9545 0.9539 0.9537 0.9548 0.9550 0.9538 0.9548

Notwithstanding that the model achieved the best performance with the task experts
with 64 units, the number of parameters with 64 units (including trainable and untrainable
parameters) are almost three times that of 32 units, and the former’s performance improve-
ment is hardly noteworthy. Meanwhile, the original intention of the proposed model is
to reduce the model parameters as much as possible but keep the model performance
excellent. Of course, if high performance is expected in practical application, a scheme with
more parameters can also be used.

5.2. Subnet’s Sparsity

The proposed model prunes parameters in the shared expert, so we conduct many
experiments in all datasets to find the best subnet for each task, and their final shared-expert
sparsity is decided by the test results. Therefore, we control the subnet sparsity from 0 to
1. Every experiment is conducted with 0.1 difference in the initial sparsity and the target
sparsity, such as finding the best subnet in sparsity from 0 to 0.1, and then recording it.

Figure 5 shows how different shared-expert sparsity impacts the task prediction results
in the census-income dataset, and all tasks’ F1-score or ACC encounter a decline, especially
for task 2-marital. Admittedly, PBFS is similar to the single-task model when the sparsity
of the shared experts is close to 1, and most equal to CGC when close to 0. Task 2-marital’s
sudden dropped accuracy when 100% parameters of the shared experts is nearly pruned
show an almost similar performance with the single-task model illustrated in Table 2.
Fortunately, the case mentioned above does not happen in task 1-income, whose ACC
can remain relatively flat for most subnet sparsity. By comparison, the dependence of
task 2 on task 1 is greater than that of task 1 on task 2, which is challenging to find with
prior knowledge of researchers; even more than that, the correlation of tasks is measured
with an ambiguous value that hinders them from building an effective multi-task learning
architecture. In this situation, sharing parameters through task-based pruning is a method
that does not cause conflict. The above results indicate that the proposed model could
search the most optimal shared-expert subnet as possible for each task, which can match
the original shared-experts performance, or even outperform that.

It is easier to find a hidden representation that can meet multiple closely correlated
tasks, while that will result in adverse consequences for aggravating the conflict of param-
eters in less related tasks. Therefore, most multi-task models work the former well, yet
negative transfer will occur in the latter. Two tasks in the MovieLens dataset are extremely



Entropy 2021, 24, 432 14 of 17

loosely correlated, although the fluctuation continues at different sparsity. The proposed
model outstrips the single-task model after trimming several parameters shown in Figure 6.

0.0 0.2 0.4 0.6 0.8 1.0

0.70

0.75

0.80

0.85

0.90

0.95

1.00

V
al
u
e

sparsity

F1-score

ACC

(a)task1-income

0.0 0.2 0.4 0.6 0.8 1.0

0.925

0.930

0.935

0.940

0.945

0.950

0.955

0.960

0.965

(b)task2-marital

v
al
u
e

sparsity

F1-score

ACCore

Figure 5. Results of different sparsity on census-income dataset. (a) Task 1-income’s performance
with subnet sparsity from 0 to 1. (b) Task 2-marital’s performance with subnet sparsity from 0 to 1.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018
MSE-Age

AUC-Rating

sparsity

M
S
E
-A
g
e

0.604

0.606

0.608

0.610

0.612

0.614

0.616

0.618

0.620

0.622

A
U
C
-R
at
in
g

Figure 6. Results of different sparsity on MovieLens dataset.

Three tasks in the student dataset have complicated relations when measured with
the Pearson correlation coefficient, and G3 has a strong correlation with targets G2 and G1.
We can note that G2 always maintains an upper MSE, whatever the sparsity in Figure 7.
Actually, G1 and G2 have a low relationship with G3, so their performance is not affected
evidently when the sparsity changes. However, for G3, which is closely correlated with
other tasks, its performance will be greatly hurt because it inadequately learns the common
knowledge when too many parameters are pruned.

In the same way, PBFS’s MSE value in two tasks of synthetic data is verified with
different sparsity under the 0.5 correlation score. According to Figure 8, the task’s MSE
reaches the lowest value when the pruning rate is 0.9, but it will rebound obviously
when all parameters are cut off, which proved that there might be too many redundant
parameters existing in the model. Additionally, the importance of sharing some public
information between tasks also provides evidence that the proposed model can improve
the prediction accuracy.



Entropy 2021, 24, 432 15 of 17

0
.0
0
1
0
3

0
.0
0
1
0
5

0
.0
0
0
8
9

0
.0
0
0
8
8

0
.0
0
0
9
2

0
.0
0
0
9
7

0
.0
0
0
9
2

0
.0
0
0
9
1

0
.0
0
0
9
1

0
.0
0
1
9

0
.0
0
1
8
8

0
.0
0
2
1
9

0
.0
0
2
1
3

0
.0
0
1
8
1

0
.0
0
2
1
3

0
.0
0
1
9

0
.0
0
1
7
5

0
.0
0
1
8
5

0
.0
0
1
9
2

0
.0
0
1
9
2

0
.0
0
4

0
.0
0
3
6
4

0
.0
0
1
9
5

0
.0
0
2

0
.0
0
1
9
7

0
.0
0
2
0
1

0
.0
0
2
0
6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.000

0.005

(a)data-Math

M
S
E

sparsity

G1

G2

G3

0
.0
0
0
5
2

0
.0
0
0
5
4

0
.0
0
0
6
9

0
.0
0
0
7
9

0
.0
0
0
7

0
.0
0
0
7

0
.0
0
0
7

0
.0
0
0
7

0
.0
0
0
7

0
.0
0
0
8
1

0
.0
0
0
8
1

0
.0
0
0
8
1

0
.0
0
0
8
1

0
.0
0
0
8
1

0
.0
0
0
8
1

0
.0
0
0
8
1

0
.0
0
0
8
1

0
.0
0
0
8
1

0
.0
0
0
6
7

0
.0
0
0
6
5

0
.0
0
0
7
9

0
.0
0
0
7
5

0
.0
0
0
6
9

0
.0
0
0
6
4

0
.0
0
0
6
4

0
.0
0
0
9

0
.0
0
0
9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.0004

0.0006

0.0008

0.0010

(b)data-Portuguese

M
S
E

sparsity

G1

G2

G3

Figure 7. Results of different sparsity on student dataset.

0.0 0.2 0.4 0.6 0.8 1.0

0.01005

0.01010

0.01015

0.01020

0.01025

0.01030

M
S
E

sparsity

Task1

Task2

Figure 8. Results of different sparsity on synthetic dataset.

5.3. Adjustable Parameter α

Parameter α affects the model’s performance by controlling the number of shared
pools. Theoretically, it can play a better role among tasks with low correlation. To verify
the influence of α on the model performance, we conducted a comparative test on the
student dataset, adjusted parameter α according to the relevancy of tasks in the dataset,
and obtained a model with three shared pools. Table 9 describes the experimental results.
Not surprisingly, because of the high correlation score, the approach of a multi sharing
pool is no better than using a single shared expert. Specifically, the former performed better
on G1 and G2 but significantly worse on G3. In future work, a dataset with multiple tasks
and low correlation between them is expected to verify the effect of parameter α.

Table 9. Optimal subnet’s sparsity of tasks on MovieLens dataset.

Number of Sharing Pool
Portuguese Math

MSE-G1 MSE-G2 MSE-G3 MSE-G1 MSE-G2 MSE-G3

1 0.0005 0.0007 0.0006 0.0008 0.0017 0.0019
3 0.0005 0.0006 0.0009 0.0007 0.0019 0.0045



Entropy 2021, 24, 432 16 of 17

6. Conclusions

We propose a novel multi-task learning model (PBFS) composed of soft sharing and
parameter pruning, introducing a more sparse and efficient structure into the traditional
multi-task model. Its distinctive advantages are testified with a lot of experiments on
synthetic data and several public datasets, including outperforming other baseline MTL
models and alleviating the harmful impact of negative transfer. Furthermore, it can better
address the issue, where tasks are less related and search the best shared-experts subnet for
each task.

In future work, we will concentrate on introducing information sharing into multi-
modal data in NLP, reducing the computational overhead of the whole MTL structure and
optimizing the parameter pruning strategy simultaneously.

Author Contributions: Conceptualization, Y.C. and J.Y.; methodology, Y.C.; software, Y.C. and
Y.Z.; validation, Y.C., J.C. and X.D.; formal analysis, J.Y. and J.C.; resources, J.Y.; data curation,
Y.C.; writing—original draft preparation, Y.C. and Y.Z.; writing—review and editing, X.D. and Y.C;
supervision, J.C.; funding acquisition, J.Y. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China grants 61862060,
61462079, and 61562086.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

MTL Multi-task Learning
NLP Natural Language Processing
DNN Deep Neural Networks
RNN Recurrent Neural Networks
LSTM Long Short-Term Memory
NAS Neural Architecture Search
AutoML Automated Machine Learning
UCI University of California
MLP Multi Layer Perceptron
MSE Mean Squared Error
AUC Area Under the Curve

References
1. Ma, X.; Zhao, L.; Huang, G.; Wang, Z.; Hu, Z.; Zhu, X.; Gai, K. Entire space multi-task model: An effective approach for estimating

post-click conversion rate. In Proceedings of the 41st International ACM SIGIR Conference on Research & Development in
Information Retrieval, Ann Arbor, MI, USA, 8–12 July 2018; pp. 1137–1140.

2. Hadash, G.; Shalom, O.S.; Osadchy, R. Rank and rate: multi-task learning for recommender systems. In Proceedings of the 12th
ACM Conference on Recommender Systems, Vancouver, BC, Canada, 2 October 2018; pp. 451–454.

3. Misra, I.; Shrivastava, A.; Gupta, A.; Hebert, M. Cross-stitch networks for multi-task learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 3994–4003.

4. Negrinho, R.; Gordon, G. Deeparchitect: Automatically designing and training deep architectures. arXiv 2017, arXiv:1704.08792.
5. Caruana, R. Multitask learning. Mach. Learn. 1997, 28, 41–75. [CrossRef]
6. Collobert, R.; Weston, J. A unified architecture for natural language processing: Deep neural networks with multitask learning.

In Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 5–9 July 2008; pp. 160–167.
7. Subramanian, S.; Trischler, A.; Bengio, Y.; Pal, C.J. Learning general purpose distributed sentence representations via large scale

multi-task learning. arXiv 2018, arXiv:1804.00079.
8. Liu, X.; He, P.; Chen, W.; Gao, J. Multi-task deep neural networks for natural language understanding. arXiv 2019,

arXiv:1901.11504.
9. Ma, J.; Zhao, Z.; Yi, X.; Chen, J.; Hong, L.; Chi, E.H. Modeling task relationships in multi-task learning with multi-gate mixture-of-

experts. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London,
UK, 19–23 August 2018; pp. 1930–1939.

http://doi.org/10.1023/A:1007379606734


Entropy 2021, 24, 432 17 of 17

10. Søgaard, A.; Goldberg, Y. Deep multi-task learning with low level tasks supervised at lower layers. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Berlin, Germany, 7–12 August 2016;
pp. 231–235.

11. Hashimoto, K.; Xiong, C.; Tsuruoka, Y.; Socher, R. A joint many-task model: Growing a neural network for multiple nlp tasks.
arXiv 2016, arXiv:1611.01587.

12. Sun, T.; Shao, Y.; Li, X.; Liu, P.; Yan, H.; Qiu, X.; Huang, X. Learning sparse sharing architectures for multiple tasks. In Proceedings
of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 8936–8943.

13. Tang, H.; Liu, J.; Zhao, M.; Gong, X. Progressive layered extraction (ple): A novel multi-task learning (mtl) model for personalized
recommendations. In Proceedings of the Fourteenth ACM Conference on Recommender Systems, Virtual Event, Brazil, 22–26
September 2020; pp. 269–278.

14. Xiao, X.; Chen, H.; Liu, Y.; Yao, X.; Liu, P.; Fan, C.; Ji, N.; Jiang, X. LT4REC: A Lottery Ticket Hypothesis Based Multi-task Practice
for Video Recommendation System. arXiv 2020, arXiv:2008.09872.

15. Qin, Z.; Cheng, Y.; Zhao, Z.; Chen, Z.; Metzler, D.; Qin, J. Multitask mixture of sequential experts for user activity streams.
In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, San Diego, CA,
USA, 23–27 August 2020; pp. 3083–3091.

16. Clarkson, G.; Jacobsen, T.E.; Batcheller, A.L. Information asymmetry and information sharing. Gov. Inf. Q. 2007, 24, 827–839.
[CrossRef]

17. Ruder, S.; Bingel, J.; Augenstein, I.; Søgaard, A. Sluice networks: Learning what to share between loosely related tasks. arXiv
2017, arXiv:1705.08142.

18. Jacobs, R.A.; Jordan, M.I.; Nowlan, S.J.; Hinton, G.E. Adaptive mixtures of local experts. Neural Comput. 1991, 3, 79–87. [CrossRef]
[PubMed]

19. Zhao, J.; Du, B.; Sun, L.; Zhuang, F.; Lv, W.; Xiong, H. Multiple relational attention network for multi-task learning. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August
2019; pp. 1123–1131.

20. Liu, C.; Zoph, B.; Neumann, M.; Shlens, J.; Hua, W.; Li, L.J.; Fei-Fei, L.; Yuille, A.; Huang, J.; Murphy, K. Progressive neural
architecture search. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September
2018; pp. 19–34.

21. Vanhoucke, V.; Senior, A.; Mao, M.Z. Improving the Speed of Neural Networks on CPUs. Improving the Speed of Neural
Networks on CPUs. In Proceedings of the Deep Learning and Unsupervised Feature NIPS Workshop. 2011. Available online:
http://research.google.com/pubs/archive/37631.pdf (accessed on 17 March 2022).

22. Jacob, B.; Kligys, S.; Chen, B.; Zhu, M.; Tang, M.; Howard, A.; Adam, H.; Kalenichenko, D. Quantization and training of neural
networks for efficient integer-arithmetic-only inference. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 2704–2713.

23. LeCun, Y.; Denker, J.; Solla, S. Optimal brain damage. Adv. Neural Inf. Process. Syst. 1989, 2, 598–605.
24. Hassibi, B.; Stork, D.G. Second Order Derivatives for Network Pruning: Optimal Brain Surgeon; Morgan Kaufmann: Burlington, MA,

USA, 1993.
25. Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; Graf, H.P. Pruning filters for efficient convnets. arXiv 2016, arXiv:1608.08710.
26. Liu, H.; Simonyan, K.; Vinyals, O.; Fernando, C.; Kavukcuoglu, K. Hierarchical representations for efficient architecture search.

arXiv 2017, arXiv:1711.00436.
27. Elsken, T.; Metzen, J.H.; Hutter, F. Efficient multi-objective neural architecture search via lamarckian evolution. arXiv 2018,

arXiv:1804.09081.
28. Ma, J.; Zhao, Z.; Chen, J.; Li, A.; Hong, L.; Chi, E.H. Snr: Sub-network routing for flexible parameter sharing in multi-task learning.

In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33,
pp. 216–223.

29. Frankle, J.; Carbin, M. The lottery ticket hypothesis: Finding sparse, trainable neural networks. arXiv 2018, arXiv:1803.03635
30. Liu, Z.; Li, J.; Shen, Z.; Huang, G.; Yan, S.; Zhang, C. Learning efficient convolutional networks through network slimming.

In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2736–2744.
31. Asuncion, A.; Newman, D. UCI Machine Learning Repository. 2007. Available online: http://archive.ics.uci.edu/ml (accessed

on 17 March 2022).
32. Cortez, P.; Silva, A.M.G. Using Data Mining to Predict Secondary School Student Performance. 2008. Available online:

http://archive.ics.uci.edu/ml/datasets/Student+Performance (accessed on 17 March 2022).

http://dx.doi.org/10.1016/j.giq.2007.08.001
http://dx.doi.org/10.1162/neco.1991.3.1.79
http://www.ncbi.nlm.nih.gov/pubmed/31141872
http://research.google.com/pubs/archive/37631.pdf
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml/ datasets/Student+Performance

	Introduction
	Related Work
	Multi-Task Learning for Deep Learning
	Sparse Networks

	Pruning-Based Feature Sharing Architecture
	Base Model
	Model Architecture
	Pruning-Based Feature Sharing Strategy

	Experiments and Results
	Datasets
	Comparison Model
	Experiments Setup
	Experiments Results
	Results in Public Datasets
	Result in Synthetic Dataset


	Analysis and Discussions
	Hyperparameters Tuning
	Subnet's Sparsity
	Adjustable Parameter 

	Conclusions
	References

