
����������
�������

Citation: Nedelcu, A.S.; Steiner, F.;

Kramer, G. Low-Resolution

Precoding for Multi-Antenna

Downlink Channels and OFDM.

Entropy 2022, 24, 504. https://

doi.org/10.3390/e24040504

Academic Editor: Syed A. Jafar

Received: 13 February 2022

Accepted: 27 March 2022

Published: 4 April 2022

Corrected: 3 March 2023

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Low-Resolution Precoding for Multi-Antenna Downlink
Channels and OFDM †

Andrei Stefan Nedelcu 1, Fabian Steiner 2 and Gerhard Kramer 2,*

1 Optical and Quantum Laboratory, Huawei Munich Research Center, 80992 Munich, Germany;
andrei.nedelcu2@huawei.com

2 Institute for Communications Engineering, Technical University of Munich (TUM), 80333 Munich, Germany;
fabian.steiner@tum.de

* Correspondence: gerhard.kramer@tum.de
† The results of this paper have been presented in part at the Workshop on Smart Antennas (WSA) 2018.

Abstract: Downlink precoding is considered for multi-path multi-input single-output channels where
the base station uses orthogonal frequency-division multiplexing and low-resolution signaling. A
quantized coordinate minimization (QCM) algorithm is proposed and its performance is compared
to other precoding algorithms including squared infinity-norm relaxation (SQUID), multi-antenna
greedy iterative quantization (MAGIQ), and maximum safety margin precoding. MAGIQ and QCM
achieve the highest information rates and QCM has the lowest complexity measured in the num-
ber of multiplications. The information rates are computed for pilot-aided channel estimation and
data-aided channel estimation. Bit error rates for a 5G low-density parity-check code confirm the
information-theoretic calculations. Simulations with imperfect channel knowledge at the transmit-
ter show that the performance of QCM and SQUID degrades in a similar fashion as zero-forcing
precoding with high resolution quantizers.

Keywords: massive MIMO; precoding; coarse quantization; coordinate descent; information rates

1. Introduction

Massive multiple-input multiple-output (MIMO) base stations can serve many user
equipments (UEs) with high spectral efficiency and simplified signal processing [1,2].
However, their implementation is challenging due to the cost and energy consumption
of analog-to-digital and digital-to-analog converters (ADCs/DACs) and linear power
amplifiers (PAs). There are several approaches to lower cost. One approach is hybrid
beamforming with analog beamformers in the radio frequency (RF) chain of each antenna
and where the digital baseband processing is shared among RF chains. Second, constant
envelope waveforms permit using non-linear PAs. Third, all-digital approaches use low-
resolution ADCs/DACs or low-resolution digitally controlled RF chains. The focus of this
paper is on the all-digital approach.

1.1. Single-Carrier Transmission

We study the multi-antenna downlink and UEs with one antenna each, a model
referred to as multi-user multi-input single-output (MU-MISO). Most works on low-cost
precoding for MU-MISO consider phase-shift keying (PSK) to lower the requirements on
the PAs. For instance, the early papers [3,4] (see also [5]) use iterative coordinate-wise
optimization to choose transmit symbols from a continuous PSK alphabet for flat and
frequency-selective (or multipath) fading, respectively. We remark that these papers do not
include an optimization parameter (called α below, see (8)) in their cost function, which
plays an important role at high signal-to-noise ratio (SNR), see [6,7]. This parameter is
related to linear minimum-mean square error (MMSE) precoding.
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Most works consider discrete alphabet signaling. Perhaps the simplest approach,
called quantized linear precoding (QLP), applies a linear precoder followed by one low-
resolution quantizer per antenna [8–15]. Our focus is on zero forcing (ZF), and we use the
acronyms LP-ZF and QLP-ZF, respectively, for unquantized ZF and the QLP version of ZF.

More sophisticated approaches use optimization tools as in [3,4]. For example, the
papers [16–18] use convex relaxation methods; Refs. [19–25] apply coordinate-wise op-
timization; Refs. [26–28] develops a symbol-wise Maximum Safety Margin (MSM) pre-
coder; Refs. [29–32] use a branch-and-bound (BB) algorithm; Ref. [33] uses a majorization-
minimization algorithm; Ref. [34] uses integer programming; and [35,36] use neural
networks (NNs). These references are collected in Table 1 together with the papers listed
below on orthogonal frequency-division multiplexing (OFDM). As the table shows, most
papers focus on single-carrier and flat fading channels.

Table 1. References for quantized precoding.

Precoding Algorithm

QLP Convex Coord.-Wise Other (MSM,
Modulation Fading Relaxation Optimization BB, NN, etc.)

1 Carrier Flat [8–15] [16–18] [19–25] [26,27,29–36]
Freq.-Sel. [28]

OFDM Freq.-Sel. [37] [38] [39–41] [42,43]

1.2. Discrete Signaling and OFDM

Our main interest is discrete-alphabet precoding for multipath channels with OFDM as
in 5G wireless systems. Precoding for OFDM is challenging because the alphabet constraint
is in the time domain after the inverse discrete Fourier transform (IDFT) rather than in the
frequency domain. We further focus on using information theory to derive achievable rates.
For this purpose, we consider two types of channel estimation at the receivers: pilot-aided
channel estimation via pilot-aided transmission (PAT) and data-aided channel estimation.

Discrete-alphabet precoding for OFDM was treated in Ref. [37], who used QLP and
low resolution DACs. A more sophisticated approach appeared in Ref. [38], who applied
a squared-infinity norm Douglas-Rachford splitting (SQUID) algorithm to minimize a
quadratic cost function in the frequency domain. The performance was illustrated via
bit error rate (BER) simulations with convolutional codes and QPSK or 16-quadrature
amplitude modulation (QAM) by using 1–3 bits of phase quantization.

The paper [39] instead proposed an algorithm called multi-antenna greedy iterative
quantization (MAGIQ) that builds on [19] and uses coordinate-wise optimization of a
quadratic cost function in the time domain. MAGIQ may thus be considered an extended
version of [4] for OFDM and discrete alphabets. Simulations showed that MAGIQ out-
performs SQUID in terms of complexity and achievable rates. Another coordinate-wise
optimization algorithm appeared in [40,41] that builds on the papers [21,22]. The algorithm
is called constant envelope symbol level precoding (CESLP) and it is similar to the refine-
ment of MAGIQ presented here. The main difference is that, as in [38], the optimization
in [40,41] uses a cost function in the frequency domain rather than the time domain. We
remark that processing in the time domain has advantages that are described in Section 3.1.

The MSM algorithm was extended to OFDM in [42]. MSM works well at low and
intermediate rates but MAGIQ outperforms MSM at high rates both in terms of complexity
and achievable rates. Finally, the recent paper [43] uses generalized approximate message
passing (GAMP) for OFDM.
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1.3. Contributions and Organization

The contributions of this paper are as follows.

• The analysis of MAGIQ in the workshop paper [39] is extended to larger systems and
more realistic channel conditions;

• Replacing the greedy antenna selection rule of MAGIQ with a fixed (round-robin)
schedule is shown to cause negligible rate loss. The new algorithm is named quantized
coordinate minimization (QCM);

• The performance of QLP-ZF, SQUID, MSM, MAGIQ, and QCM are compared in terms
of complexity (number of multiplications and iterations) and achievable rates;

• We develop an auxiliary channel model to compute achievable rates for pilot-aided and
data-aided channel estimation. The models let one compare modulations, precoders,
channels, and receivers;

• Simulations with a 5G NR low-density parity-check (LDPC) code [44] show that the
computed rate and power gains accurately predict the gains of standard channel codes;

• Simulations with imperfect channel knowledge at the base station show that the
achievable rates of SQUID and QCM degrade as gracefully as those of LP-ZF.

We remark that our focus is on algorithms that approximate ZF based on channel
inversion, i.e., there is no attempt to optimize transmit powers across subcarriers. This
approach simplifies OFDM channel estimation at the receivers because the precoder makes
all subcarriers have approximately the same channel magnitude and phase. For instance, a
rapid and accurate channel estimate is obtained for each OFDM symbol by averaging the
channel estimates of the subcarriers, see Section 4.1. Of course, it is interesting to develop
algorithms for other precoders and for subcarrier power allocation.

This paper is organized as follows. Section 2 introduces the baseband model and
OFDM signaling. Section 3 describes the MAGIQ and QCM precoders. Section 4 develops
theory for achievable rates, presents complexity comparisons, and reviews a model for
imperfect channel state information (CSI). Section 5 compares achievable rates and BERs
with 5G NR LDPC codes. Section 6 concludes the paper.

2. System Model

Figure 1 shows a MU-MISO system with N transmit antennas and K UEs that each
have a single antenna. The base station has one message per UE and each antenna has a
resolution of 1 bit for the amplitude (on-off switch) and b bits for the phase per antenna.
All other hardware components are ideal: linear, infinite bandwidth, no distortions except
for additive white Gaussian noise (AWGN).

x1[t]

xN[t]

UE1

UE2

UEK�1

UEK

b bits

Phase 

Shifter

b bits

RF  

RF 

Switch

1 bit

1 bit

Local

Oscillator
Antenna

Power

Amplifier

Figure 1. Multi-user MIMO downlink with a low resolution digitally controlled analog architecture.
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2.1. Baseband Channel Model

The discrete-time baseband channel is modeled as a finite impulse response filter
between each pair of transmit and receive antennas. Let xn[t] be the symbol of transmit
antenna n at time t and let x[t] = (x1[t] . . . xN [t])T . Similarly, let yk[t] be the received
symbol of UE k at time t and let y[t] = (y1[t] . . . yK[t])T . The channel model is

y[t] =
L−1

∑
τ=0

H[τ]x[t− τ] + z[t] (1)

where the noise z[t] = (z1[t] . . . zK[t])T has circularly-symmetric, complex, Gaussian
entries that are independent and have variance σ2, i.e., we have z ∼ CN (0, σ2 I). The
H[τ], τ = 0, . . . , L− 1, are K× N matrices representing the channel impulse response, i.e.,
we have

H[τ] =


h11[τ] h12[τ] . . . h1N [τ]
h21[τ] h22[τ] . . . h2N [τ]

...
...

. . .
...

hK1[τ] hK2[τ] . . . hKN [τ]

 (2)

where hkn[.] is the channel impulse response from the n-th antenna at the base station to the
k-th UE. For instance, a Rayleigh fading multi-path channel with a uniform power delay
profile (PDP) has hkn[τ] ∼ CN (0, 1/L) and these taps are independent and identically
distributed (iid) for all k, n, τ.

The vector x[t] is constrained to have entries taken from a discrete and finite alphabet

X = {0} ∪
{√

P
N

ej 2πq/2b
; q = 0, 1, 2, . . . , 2b − 1

}
. (3)

The transmit energy clearly satisfies ‖x[t]‖2 ≤ P and we define SNR = P/σ2. The
inequality is due to the 0 symbol that permits antenna selection. Antenna selection was
also used in [45] to enforce sparsity. Our intent is rather to allow antennas not to be used if
they do not improve performance.

2.2. OFDM Signaling

Figure 1 shows how OFDM can be combined with the precoder. Let T = TF + Tc be
the OFDM blocklength with TF symbols for the DFT and Tc symbols for the cyclic prefix.
We assume that TF ≥ L and Tc ≥ L− 1. For simplicity, all TF subcarriers carry data and we
do not include the cyclic prefix overhead in our rate calculations below, i.e., the rates in bits
per channel use (bpcu) are computed by normalizing by TF.

Consider the frequency-domain modulation alphabet Û that has a finite number of
elements, e.g., QPSK has Û = {û : û = (±1 ± j)/

√
2}. Messages are mapped to the

frequency-domain vectors û[m] = (û1[m], . . . , ûK[m])T for subcarriers m = 0, . . . , TF − 1
that are converted to time-domain vectors u[t] by IDFTs

uk[t] =
1

TF

TF−1

∑
m=0

ûk[m]ej 2πmt/TF (4)

for times t = 0, . . . , TF − 1 and UEs k = 1, . . . , K. For the simulations below, we generated
the ûk[m] uniformly from finite constellations such as 16-QAM or 64-QAM. We assume that
E[ûk[m]] = 0 for all k and m. Each UE k uses a DFT to convert its time-domain symbols
yk[t] to the frequency-domain symbols

ŷk[m] =
TF−1

∑
t=0

yk[t]e− j 2πmt/TF . (5)
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2.3. Linear MMSE Precoding

To describe the linear MMSE precoder, consider the channel from base station antenna
n to UE k:

hkn = (hkn[0], . . . , hkn[L− 1], 0, . . . , 0︸ ︷︷ ︸
(TF − L) zeros

)T (6)

and denote its DFT as ĥkn = (ĥkn[0], . . . , ĥkn[TF − 1])T. The channel of subcarrier m is the
K × N matrix Ĥ[m] with entries ĥkn[m] for k = 1, . . . , K, n = 1, . . . , N. The linear MMSE
precoder (or Wiener filter) for subcarrier m is

P[m]Ĥ[m]†
(

P[m]Ĥ[m]Ĥ[m]† + σ2 I
)−1

(7)

where P[m] = E[|ûk[m]|2] is the same for all k, Ĥ[m]† is the Hermitian of Ĥ[m], and I
is the K × K identity matrix. The precoder multiplies û[m] by (7) for all subcarriers m,
and performs N IDFTs to compute the resulting x[0], . . . , x[TF − 1]. We remark that ZF
precoding is the same as (7) but with σ2 = 0, where Ĥ[m]Ĥ[m]† is usually invertible if N is
much larger than K.

3. Quantized Precoding

We wish to ensure compatibility with respect to LP-ZF. In other words, each receiver k
should ideally see signals uk[t], t = 0, . . . , T − 1, that were generated from the frequency-
domain signals ûk[m], m = 0, . . . , TF − 1. Let u[t] = (u1[t] . . . uK[t])T and define the
time-domain mean square error (MSE) cost function

G(x[0], . . . , x[T − 1], α) =
T−1

∑
t=0

Ez[t]

[
‖u[t]− αy[t]‖2

]
=

T−1

∑
t=0

∥∥∥∥∥u[t]− α
L−1

∑
τ=0

H[τ]x[t− τ]

∥∥∥∥∥
2

+ α2TKσ2 (8)

where Ez[t][·] denotes the expectation with respect to the noise z[t]. The optimization
problem is as follows:

min
x[0],...,x[T−1], α

G(x[0], . . . , x[T − 1], α)

s.t. x[t] ∈ X N , t = 0, . . . , T − 1

α > 0.

(9)

The parameter α in (8) and (9) can easily be optimized for fixed x[0], . . . , x[T− 1] and
the result is (see [18] Equation (26))

α =
∑T−1

t=0 Re
(

u[t]H ∑L−1
τ=0 H[τ]x[t− τ]

)
∑T

t=0

∥∥∥∑L−1
τ=0 H[τ]x[t− τ]

∥∥∥2
+ TKσ2

. (10)

For the MAGIQ and QCM algorithms below, we use alternating minimization to find
the x[0], . . . , x[T − 1] and α. For the linear MMSE precoder, we label the α in (10) as αWF.

Observe that we use the same α for all K UEs because all UEs experience the same
shadowing, i.e., all K UEs see the same average power. For UE-dependent shadowing, a
more general approach would be to replace α with a diagonal matrix with K parameters αk,
k = 1, . . . , K, and then modify (8) appropriately.
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3.1. MAGIQ and QCM

For multipath channels, the vector x[t] influences the channel output at times t,
t + 1, . . . , t + L − 1. A joint optimization over strings of length T seems difficult be-
cause of this influence and because of the finite alphabet constraint for the xn[t]. Instead,
MAGIQ splits the optimization into sub-problems with reduced complexity by applying
coordinate-wise minimization across the antennas and iterating over the OFDM symbol.

For this purpose, consider the precoding problem for time t′ starting at t′ = 0 and
ending at t′ = T− 1. Observe that x[t′] influences at most L summands in (8), namely the
summands for t = (t′)T , . . . , (t′ + L− 1)T where (t)T = min(t, T− 1). To compute the new
cost after updating the symbol xn[t′], one may thus compute sums of the form

∑
t=(t′)T ,...,(t′+L−1)T

∥∥∥∥∥u[t]− α
L−1

∑
τ=0

H[τ]x[t− τ]

∥∥∥∥∥
2

(11)

for t′ = 0, . . . , T− 1. In both cases, one computes a first and second sum having the old and
new xn[t′], respectively. One then takes the difference and adds the result to (8) to obtain
the updated cost.

We remark that the time-domain cost function (8) is closely related to the frequency-
domain cost functions in [38,40,41]. However, the time-domain approach is more versatile
as it can include acyclic phenomena such as interference from previous OFDM blocks.
The time-domain approach is also slightly simpler because updating the symbol xn[t′] in
(8) or (11) requires taking the norm of at most L vectors of dimension K for each test symbol
in X while the frequency-domain approach in ([40] Equation (17)) takes the norm of TF
vectors of dimension K for each test symbol. Recall that TF ≥ L, and usually TF ≥ 10L to
avoid losing too much efficiency with the cyclic prefix that has length Tc ≥ L− 1.

The MAGIQ algorithm is summarized in Algorithm 1. MAGIQ steps through time
in a cyclic fashion for fixed α. At each time t, it initializes the antenna set S = {1, . . . , N}
and performs a greedy search for the antenna n and symbol xn[t] that minimize (8) (one
may equivalently consider sums of L norms as in (11)). The resulting antenna is removed
from S and a new greedy search is performed to find the antenna in the new S and the
symbol that minimizes (8) while the previous symbol assignments are held fixed. This
step is repeated until S is empty. MAGIQ then moves to the next time and repeats the
procedure. To determine α, MAGIQ applies alternating minimization with respect to α and
the precoder output {x[t] : t = 0, . . . , T − 1}. For fixed x[.] the minimization can be solved
in closed form, see (10) and line 22 of Algorithm 1.

Simulations show that MAGIQ exhibits good performance and converges quickly [39].
However, the greedy selection considerably increases the computational complexity. We
thus replace the minimization over S in line 9 of Algorithm 1) with a round-robin schedule
or a random permutation. We found that both approaches perform equally well. The new
QCM algorithm performs as well as MAGIQ but with a simpler search and a small increase
in the number of iterations.

Finally, one might expect that α is close to the αWF of the transmit Wiener filter [6,7]
since our cost function accounts for the noise power. However, Figure 2 shows that this is
true only at low SNR. The figure plots the average α of the QCM algorithm, called αQCM,
against the computed αWF for simulations with System A in Section 5. Note that αQCM is
generally larger than αWF.
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Algorithm 1 MAGIQ and QCM precoding.

1: procedure PRECODE(Algo, H[.], u[.])
2: x(0)[.] = x[.]init
3: α(0) = αinit
4: for i = 1 : I do // iterate over OFDM block
5: for t = 0 : T − 1 do
6: S = {1, . . . , N}
7: while S 6= ∅ do
8: if Algo = MAGIQ then
9: (x?n? , n?) = argminx̃n∈X ,n∈S

10: G
(

x(i)[0], . . . , x(i)[t− 1], x̃,

11: x(i−1)[t + 1], . . . , x(i−1)[T − 1], α(i−1)
)

12: else // Algo = QCM
13: n? = minS // round-robin schedule
14: x?n? = argminx̃n?∈X

15: G
(

x(i)[0], . . . , x(i)[t− 1], x̃,

16: x(i−1)[t + 1], . . . , x(i−1)[T − 1], α(i−1)
)

17: end if
18: x(i)n? [t] = x?n? // update antenna n? at time t
19: S ← S \ {n?}
20: end while
21: end for
22: α(i) =

∑T−1
t=0 Re(u[t]H ∑L−1

τ=0 H[τ]x(i) [t−τ])

∑T
t=0‖∑L−1

τ=0 H[τ]x(i) [t−τ]‖2
+TKσ2

23: end for
24: return x[.] = x(I)[.], α = α(I)

25: end procedure

0.25 0.3 0.35 0.4

0.25

0.3

0.35

0.4

0.45

SNR = 0dB

SNR = 20dB

αWF

α
Q

C
M

Figure 2. αQCM vs. αWF for System A of Table 2 and 64-QAM.
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Table 2. System parameters for the simulations.

System N K T = TF + Tc L Constellation b Fading Statistics

A 128 16 270 = 256 + 14 15 {16, 64}-QAM 2, 3 Flat and Rayleigh
uniform PDP

B 64 8 35 = 32 + 3 4 {4-32}-PSK 2 Rayleigh uniform PDP

C 80 8 277 = 256 + 21 22 16-QAM 2 Rayleigh uniform PDP
286 = 256 + 30 varies Winner2 NLOS C2 urban

D 128 16 410 = 396 + 14 15 64-QAM 2 Rayleigh uniform PDP

4. Performance Metrics
4.1. Achievable Rates

We use generalized mutual information (GMI) to compute achievable rates [46,47],
(Ex. 5.22) which is a standard tool to compare coded systems. Consider a generic in-
put distribution P(x) and a generic channel density p(y|x) where x = (x1, . . . , xS)

T and
y = (y1, . . . , yS)

T each have S symbols. A lower bound to the mutual information

I(X; Y) = ∑
x,y

P(x)p(y|x) log2

(
p(y|x)

∑a P(a) p(y|a)

)
(12)

is the GMI

Iq,s(X; Y) = ∑
x,y

P(x)p(y|x) log2

(
q(y|x)s

∑a P(a) q(y|a)s

)
(13)

where q(y|x) is any auxiliary density and s ≥ 0. In other words, the choices q(y|x) = p(y|x)
for all x, y and s = 1 maximize the GMI. However, the idea is that p(y|x) may be unknown
or difficult to compute and so one chooses a simple q(y|x). The reason why p(y|x) is
difficult to compute here is because we will measure the GMI across the end-to-end channels
from the ûk[m] to the ŷk[m] and the quantized precoding introduces non-linearities in these
channels. The final step in evaluating the GMI is maximizing over s ≥ 0. Alternatively, one
might wish to simply focus on s = 1, e.g., see [48].

We study the GMI of two non-coherent systems: classic PAT and data-aided channel
estimation. For both systems, we apply memoryless signaling with the product distribution

P(x) =
Sp

∏
i=1

1(xi = xp,i) ·
S

∏
i=Sp+1

P(xi) (14)

where the xp,i are pilot symbols, 1(a = b) is the indicator function that takes on the value
1 if its argument is true and 0 otherwise, and P(x) is a uniform distribution. Joint data
and channel estimation has Sp = 0 so that we have only the second product in (14). At the
receiver we use the auxiliary channel

q(y|x) =
S

∏
i=1

qx,y(yi | xi) (15)

where the symbol channel qx,y(.) is a function of x and y. Observe that qx,y(.) is invariant
for S symbols and the channel can be considered to have memory since every symbol x`
or y`, ` = 1, . . . , S, influences the channel for all “times” i = 1, . . . , S. The GMI rate (13)
simplifies to

∑
x,y

P(x)p(y|x)
S

∑
i=Sp+1

log2

(
qx,y(yi | xi)

s

∑a P(a) qx,y(yi | a)s

)
. (16)
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One may approximate (16) by applying the law of large numbers for stationary signals
and channels. The idea is to independently generate the B pairs of vectors

x(b) = (x(b)1 , . . . , x(b)S )T

y(b) = (y(b)1 , . . . , y(b)S )T

for b = 1, . . . , B, and then the following average rate will approach Iq,s(X; Y)/S bpcu as
B grows:

Ra =
1
B

B

∑
b=1

R(b)
a (17)

where

R(b)
a =

1
S

S

∑
i=Sp+1

log2

 qx(b),y(b)

(
y(b)i | x

(b)
i

)s

∑a P(a) qx(b),y(b)

(
y(b)i | a

)s

. (18)

We choose the Gaussian auxiliary density

qx,y(y|x) =
1

πσ2
q

exp

(
−|y− h · x|2

σ2
q

)
(19)

where for pilot-aided transmission (PAT) the receiver computes joint maximum likelihood
(ML) estimates with sums of Sp terms:

h =
∑

Sp
i=1 yi · x∗i

∑
Sp
i=1

∣∣x2
i

∣∣
σ2

q =
1

Sp

Sp

∑
i=1
|yi − h · xi|2.

(20)

For the data-aided detector we replace Sp with S in (20). Note that for the Gaussian
channel (19) the parameter s multiplies 1/σ2

q in (16) or (18), and optimizing s turns out to
be the same as choosing the best parameter σ2

q when s = 1.
Summarizing, we use the following steps to evaluate achievable rates. Suppose

the coherence time is S/TF OFDM symbols where S is a multiple of TF. We index the
channel symbols by the pairs (`, m) where ` is the OFDM symbol and m is the subcarrier,
1 ≤ ` ≤ S/TF, 0 ≤ m ≤ T − 1. We collect the pilot index pairs in the set Sp that has
cardinality Sp, and we write the channel inputs and outputs of UE k for OFDM symbol `
and subcarrier m as ûk[`, m] and ŷk[`, m], respectively.

1. Repeat the following steps (2)–(4) B times; index the steps by b = 1, . . . , B;
2. Use Monte Carlo simulation to generate the symbols ûk[`, m] and ŷk[`, m] for

k = 1, . . . , K, ` = 1, . . . , S/TF, and m = 0, . . . , T − 1;
3. Each UE estimates its own channel hk and σ2

q,k, i.e., the channel estimate (20) of UE k is

hk =
∑(`,m)∈Sp ŷk[`, m] · ûk[`, m]∗

∑(`,m)∈Sp |ûk[`, m]|2

σ2
q,k =

1
Sp

∑
(`,m)∈Sp

|ŷk[`, m]− hk · ûk[`, m]|2.
(21)

For the data-aided detector, in (21) we replace Sp with the set of all index pairs (`, m),
and we replace Sp with S;
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4. Compute R(b)
a in (18) for each UE k by averaging, i.e., the rate for UE k is

R(b)
a,k =

1
S ∑

(`,m)/∈Sp

log2

(
qûk ,ŷk

(ŷk[`, m] | ûk[`, m])s

∑a P(a) qûk ,ŷk
(ŷk[`, m] | a)s

)
(22)

where ûk and ŷk are vectors collecting the ûk[`, m] and ŷk[`, m], respectively, for all
pairs (`, m). For the data-aided detector we set Sp = ∅ in (22);

5. Compute Ra in (17) for each UE, i.e., the average rate of UE k is Ra,k =
1
B ∑B

b=1 R(b)
a,k ;

6. Compute the average UE rate Ra = 1
K ∑K

k=1 Ra,k.

Our simulations showed that optimizing over s ≥ 0 gives s ≈ 1 if the channel
parameters are chosen using (21).

4.2. Discussion

We make a few remarks on the lower bound. First, the receivers do not need to know
α. Second, the rate Ra in (17) is achievable if one assumes stationarity and coding and
decoding over many OFDM blocks. Third, as S grows, the channel estimate of the data-
aided detector becomes more accurate and the performance approaches that of a coherent
receiver. Related theory for PAT and large S is developed in [49]. However, the PAT rate is
generally smaller than for a data-aided detector because the PAT channel estimate is less
accurate and because PAT does not use all symbols for data.

We remark that blind channel estimation can approach the performance of data-aided
receivers for large S. Blind channel estimation algorithms can, e.g., be based on high-order
statistics and iterative channel estimation and decoding. For polar codes and low-order
constellations, one may use the blind algorithms proposed in [50]. We found that the PAT
rates are very close (within 0.1 bpcu) of the pilot-free rates multiplied by the rate loss factor
1− Sp/S for pilot fractions as small as Sp/S = 10%.

Depending on the system under consideration, we choose one of TF = 32,256,396,
one of T = 35,270,277,286,410, one of S = 256,1584, and B = 200. For most simulations
we have TF = S = 256 and estimate the channel based on individual OFDM symbols, see
Section 1.3. For example, for T = 270 and a symbol time of 30 ns (symbol rate 33.3 MHz)
the coherence time needs to be at least (30 ns) · T = 8.1 µs. Of course, the transmitter needs
to know the channel also, e.g., via time-division duplex, which requires the coherence time
to be substantially larger. The main point is that channel estimation at the receiver is not a
bottleneck when using ZF based on channel inversion. Finally, for the coded simulations
we chose TF = 396 and S = 4TF = 1548 because the LDPC code occupies four OFDM
symbols.

4.3. Algorithmic Complexity

This section studies the algorithmic complexity in terms of the number of multiplica-
tions and iterations. The complexity of SQUID is thoroughly discussed in [38] and Table 3
shows the order estimates take from [38] (Table I). Note the large number of iterations.

Table 3. Algorithmic complexity.

Algorithm Multiplications per Iteration Iterations Pre-Processing Multiplications

QLP-ZF O(TK3 + TK2N) 1 -

SQUID O(8KNT + 8NT log T) 20–300 2T · ( 5
3 K3 + 3K2N + (6N − 2

3 )K)

MSM O(4KNT2 + 4KT + 2NT) ≈8400 4KNT

MAGIQ & QCM O(KNTL + KNL|X |) 4–6 KNT + 4NT log T

The complexity of MSM depends on the choice of optimization algorithm and [42]
considers a simplex algorithm. Unfortunately, the simplex algorithm requires a large
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number of iterations to converge because this number is proportional to the number of
variables and linear inequalities that grow with the system size (N, K, T). An interior point
algorithm converges more quickly but has a much higher complexity per iteration.

For MAGIQ and QCM, Equation (8) shows that updating x[.] requires updating L
of the T terms that each require a norm calculation. The resulting terms ‖u[t]‖2 do not
affect the maximization; terms such as ‖αHx‖2

2 can be pre-computed and stored with a
complexity of NKL|X |, and then reused as they do not change during the iterations. On
the other hand, products of the form αuHHx must be computed for each of the L terms for
each antenna update and at each time instance, resulting in a complexity of O(NKLT). The
initialization requires KNT multiplications and one must transform the solutions to the
time domain. We neglect the cost of updating α because the terms needed to compute it are
available as a byproduct of the iterative process over the time instances.

4.4. Sensitivity to Channel Uncertainty at the Transmitter

In practice, the CSI is imperfect due to noise, quantization, calibration errors, etc. We
do not attempt to model these effects exactly. Instead, we adopt a standard approach based
on MMSE estimation and provide the precoder with channel matrices H̃[τ] that satisfy

H[τ] =
√

1− ε2H̃[τ] + εZ[τ] (23)

where 0 ≤ ε ≤ 1 and Z[τ] is a K× N matrix of independent, variance σ2
h = 1/L, complex,

circularly-symmetric Gaussian entries. Note that ε = 0 corresponds to perfect CSI and
ε = 1 corresponds to no CSI. The precoder treats H̃[τ] as the true channel realization for
τ = 0, . . . , L− 1.

5. Numerical Results

We evaluate the GMIs of four systems. The main parameters are listed in Table 2 and
we provide a few more details here.

• System A: the DFT has length TF = 256 and the channel has either L = 1 or L = 15
taps of Rayleigh fading with a uniform PDP. The minimum cyclic prefix length for
the latter case is Tc = 14 so the minimum OFDM blocklength is T = 270;

• System B: MSM is applied to PSK. However, the MSM complexity limited the simu-
lations to smaller parameters than for System A. The channel now has L = 4 taps of
Rayleigh fading with a uniform PDP. The T = 35 OFDM symbols include a DFT of
length TF = 32 and a minimum cyclic prefix length of Tc = 3;

• System C: System C is actually two systems because we compare the performance
under Rayleigh fading to the performance with the Winner2 model [51] whose number
L of channel taps varies randomly. For the Winner2 channel, the choice Tc = 30 suffices
to ensure that Tc ≥ L− 1. The Rayleigh fading model has L = 22 taps with a uniform
PDP, where L was chosen as the maximum Winner2 channel length that has almost
all the channel energy;

• System D: similar to System A but for a 5G NR LDPC code with code rate 8/9 and
64-QAM for an overall rate of 5.33 bpcu. The LDPC code uses the BG1 base graph
of the 3GPP Specification 38.212 Release 15, including puncturing and shortening as
specified in the standard. The code length is 9504 bits or 1584 symbols of 64-QAM;
this corresponds to 4 frames of TF = 396 symbols.The codewords were transmitted
using at least T = 410 symbols that include a DFT of length TF = 396 and a minimum
cyclic prefix length of Tc = 14.

The average GMIs for Systems A–C were computed using S = 256, B = 200, and a
data-aided detector. The coded results of System D instead have S = 1584 symbols to fit the
block structure determined by the LDPC encoder. For System D we considered both PAT
and a data-aided detector. For all cases, the GMI was computed by averaging over the sub-
carriers, i.e., channel coding is assumed to be applied over multiple sub-carriers and OFDM
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symbols. The MAGIQ and QCM algorithms were both initialized with a time-domain
quantized solution of the transmit matched filter (MF).

Figures 3 and 4 show the average GMIs for System A with b = 2 and b = 3, respectively.
In Figure 3, MAGIQ performs four iterations for each OFDM symbol while QCM performs
six iterations. Observe that MAGIQ and QCM are best at all SNRs and they are especially
good in the interesting regime of high SNR and rates. The gap to the rates over flat
fading channels (L = 1) is small. SQUID with 64-QAM requires 100–300 iterations for
SNR > 15 dB and a modified algorithm with damped updates, otherwise SQUID diverges.
In addition, we show the broadcast channel capacity with uniform power allocation and
Gaussian signaling as an upper bound for the considered scenario [52,53]. Figure 4 shows
that QCM with three iterations operates within ≈0.2–0.4 dB of MAGIQ with five iterations
when b = 3, which shows that QCM performs almost as well as MAGIQ.
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Figure 3. Average GMIs for System A and b = 2.
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Figure 4. Average GMIs for System A with 64-QAM and b = 3.

Figure 5 compares achievable rates of QCM, SQUID, and MSM for a smaller system
studied in [42]. We use PSK because the MSM algorithm was designed for PSK. The figure
shows that MSM outperforms SQUID and QCM at low to intermediate SNR and rates,
but QCM is best at high SNR and rates. This suggests that modifying the cost function (8)
to include a safety margin will increase the QCM rate at low to intermediate SNR, and
similarly modifying the MSM optimization to more closely resemble QCM will increase
the MSM rate at high SNR. We tried to simulate MSM for System A but the algorithm ran
into memory limitations (we used 2 AMD EPYC 7282 16-Core processors, 125 GB of system
memory, and Matlab with both dual-simplex and interior-point solvers).

Consider next the Winner2 non-line-of-sight (NLOS) C2 urban model [51], which is
more realistic than Rayleigh fading. The model parameters are as follows.

• Base station at the origin (x, y) = (0, 0);
• 100 drops of 8 UEs placed on a disk of radius 150 m centered at (x, y) = (0, 200 m); the

locations of the UEs are iid with a uniform distribution on the disc;
• 8 × 10 uniform rectangular antenna array at the base station with half-wavelength

dipoles at λ/2 spacing;
• 5 MHz bandwidth at center frequency 2.53 GHz;
• No Doppler shift, shadowing and pathloss.

Figure 6 shows the average GMIs for LP-ZF and MAGIQ. At high SNR, there is a
slight decrease in the slope of the MAGIQ GMI as compared to LP-ZF. This suggests that
one might need a larger N or b. The performance for the Rayleigh fading model is better
than for the Winner2 model but otherwise behaves similarly.
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Figure 7 shows BERs for the LDPC code with 64-QAM. Each codeword is interleaved
over 4 OFDM symbols, all 396 subcarriers, and the 6 bits of each modulation symbol by
using bit-interleaved coded modulation (BICM). The interleaver was chosen randomly
with a uniform distribution over all permutations of length 9504. The solid curves are for
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data-aided channel estimation and the dotted curves show the performance of PAT when
the fraction of pilots is Sp/S = 10%. The pilots were placed uniformly at random over the
four OFDM symbols and 396 subcarriers. A good blind detector algorithm that performs
joint channel and data estimation should have BERs between the solid and dotted curves.

The dashed curves in Figure 7 show the SNRs required for the different algorithms
based on Figure 3. In particular, the rate 5.33 bpcu requires SNRs of 9 dB, 12.9 dB, and
15.2 dB for LP-ZF, QCM, and SQUID, respectively. SQUID is run with 300 iterations
and QCM is run with 6 iterations. Each UE computes its log-likelihoods based on the
parameters (20) of the auxiliary channel. The GMI predicts the coded behavior of the
system within approximately 1 dB of the code waterfall region, except for SQUID, where
the gap is about 2 dB. The gap seems to be caused mainly by the finite-blocklength of the
LDPC code, since the smaller gap of approximately 1 dB is also observed for additive white
Gaussian noise (AWGN) channels. The sizes of the gaps are different, and the reason may
be that the slopes of the GMI at rate 5.33 bpcu are different, see Figure 3. Observe that
LP-ZF exhibits the steepest slope and SQUID the flattest at Ra = 5.33 bpcu; this suggests
that SQUID’s SNR performance is more sensitive to the blocklength.

8 10 12 14 16 18
10−5

10−4

10−3

10−2

10−1

SNR [dB]

Bi
tE

rr
or

R
at

e

LP-ZF
LP-ZF, 10% pilots
QCM
QCM, 10% pilots
SQUID
SQUID, 10% pilots

Figure 7. BERs for System D and a 5G NR LDPC code. The dashed vertical curves show the SNRs
required for long random codes, see Figure 3.

Figure 8 is for System A and shows how the GMI decreases as the CSI becomes noisier.
The behavior of all systems is qualitatively similar. However, the figure shows that the
QCM rate is more sensitive to the parameter ε than the SQUID rate when ε is small.
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Figure 8. Average GMIs for System A and imperfect CSI at SNR = 12 dB.

6. Conclusions

We studied downlink precoding for MU-MISO channels where the base station uses
OFDM and low-resolution DACs. A QCM algorithm was introduced that is based on the
MAGIQ algorithm in [39] (see also [19]) and which performs a coordinate-wise optimization
in the time-domain. The performance was analyzed by computing the GMI for two auxiliary
channel models: one model for pilot-aided channel estimation and a second model for a
data-aided channel estimation. Simulations for several downlink channels, including a
Winner2 NLOS urban scenario, showed that QCM achieves high information rates and is
computationally efficient, flexible, and robust. The performance of QCM was compared
to MAGIQ and other precoding algorithms including SQUID and MSM. The QCM and
MAGIQ algorithms achieve the highest information rates with the lowest complexity
measured by the number of multiplications. For example, Figure 4 shows that b = 3 bits
of phase modulation operates within 3 dB of LP-ZF. Moreover, BER simulations for a 5G
NR LDPC code show that GMI is a good predictor of the coded performance. Finally, for
noisy CSI the performance degradation of QCM and SQUID is qualitatively similar to the
performance degradation of LP-ZF.
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