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Abstract: Generative linguistic steganography encodes candidate words with conditional probability
when generating text by language model, and then, it selects the corresponding candidate words to
output according to the confidential message to be embedded, thereby generating steganographic text.
The encoding techniques currently used in generative text steganography fall into two categories:
fixed-length coding and variable-length coding. Because of the simplicity of coding and decoding
and the small computational overhead, fixed-length coding is more suitable for resource-constrained
environments. However, the conventional text steganography mode selects and outputs a word
at one time step, which is highly susceptible to the influence of confidential information and thus
may select words that do not match the statistical distribution of the training text, reducing the
quality and concealment of the generated text. In this paper, we inherit the decoding advantages of
fixed-length coding, focus on solving the problems of existing steganography methods, and propose
a multi-time-step-based steganography method, which integrates multiple time steps to select words
that can carry secret information and fit the statistical distribution, thus effectively improving the text
quality. In the experimental part, we choose the GPT-2 language model to generate the text, and both
theoretical analysis and experiments prove the effectiveness of the proposed scheme.

Keywords: linguistic steganography; text generation; multi-time-step; fixed-length coding; imper-
ceptibility; decoding efficiency

1. Introduction

Shannon [1] summarized three basic information security systems, namely encryption
system, privacy system and concealment system. The primary purpose of the encryption
system is to protect the security of confidential information itself and make the message
indecipherable through the key. The privacy system is designed to control access to
confidential information so that non-authorized users cannot access important information.
Both of these systems expose the existence of confidential information, making it vulnerable
to attacks. Concealment system hides the confidential information into different carriers and
transmits it through open channels, which can effectively hide the existence of confidential
information and thus enhance its security.

Steganography is a crucial technique in concealment systems, which focuses on how
to embed secret information into carriers efficiently and securely. Depending on the type of
carrier [2], steganography can be divided into image steganography [3], text steganogra-
phy [4], audio steganography [5] and video steganography [6]. The advantages of text over
other digital carriers such as image and audio are: (1) Text is the main form of information
communication for people, and its wide and universal usage scenarios give text steganog-
raphy a broad application prospect. (2) Text has strong robustness when transmitted in
public channels. Other carriers, such as digital images, usually produce a certain degree of
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distortion due to compression strategies when transmitted using public network channels,
which may destroy confidential information contained therein. On the other hand, text is
highly resistant to interference as it is transmitted in a public network environment with
little to no information loss due to channel noise.

Bennett [7] summarized two strategies of linguistic steganography: modification-
based steganography and generation-based steganography. Modification-based linguistic
steganography mainly involves the synonymous substitution of semantic units in the text
to embed confidential messages. For example, a synonym dictionary can be constructed,
and then words in the dictionary can be encoded to embed information by replacing
synonyms in the carrier text [8]. Alternatively, the syntactic structure can be equivalently
transformed to represent different secret information [9]. However, the embedding capacity
of such methods is relatively low, and it is difficult to convey a large amount of information.
Moreover, due to the low redundancy of text itself, performing substitution operations is
likely to lead to syntactic and semantic unnaturalness [10–12]. Generation-based linguistic
steganography is to automatically generate a piece of text using language model (LM),
encode the semantic units of the text during the generation process and select the output of
the corresponding semantic units according to the confidential message to be embedded,
so as to achieve steganographic information embedding. This strategy does not require
prior preparation of the carrier but automatically generates the carrier containing the
confidential message, so the steganographer has more freedom in the process of embedding
the information and thus can expect to obtain a high rate of information embedding [13–15].

Currently, generation-based text steganography can be divided into two main categories,
fixed-length coding-based steganography schemes [14,16,17] and variable-length coding-
based steganography schemes [16,18–23]. Fang et al. [14] firstly split the word space into
blocks, with several words in each block, and encoded the blocks using fixed-length coding. In
the process of generating text, the corresponding block is determined according to the secret
bitstream, from which suitable words are selected for output, thus completing the embedding
of secret information. However, to adjust the information-embedding rate, all words in the
entire dictionary need to be recombined and encoded, and the quality of the generated text
decreases rapidly as the embedding rate slowly increases. Yang et al. [16] proposed fix-length
coding (FLC) based on perfect binary tree and variable-length coding (VLC) based on Huffman
tree. They encode the Top-K words in the candidate pool (CP) predicted by the language
model at each time step according to the conditional probability and select the corresponding
word for output according to the secret message, thereby generating the steganographic text.
Xiang et al. [17] modeled natural sentences as letter sequences, used the Char-RNN model
to obtain letter-level conditional probability distributions, and then encoded letters based
on fixed-length coding. Many subsequent works based on variable-length coding followed
Yang’s framework. They use arithmetic coding [18], STC coding [22], etc., to encode candidate
words, and then select the corresponding words according to the secret message. Dai et al. [21]
proposed patient-Huffman coding, which changed the construction of candidate pools based
on Top-K to dynamic candidate pool construction.

The information-encoding efficiency of variable-length coding is lower than that of
fixed-length coding, and the embedding rate of the latter is larger than that of the former
for the same size of candidate pool (CPS). Moreover, fixed-length coding is simpler and
has less computational overhead. In many cases, steganographic receivers do not have
high-performance devices to extract secret information, and they may only have handheld
or embedded devices to process steganographic text. In this scenario, high time efficiency
and low computational complexity are required. The decoding advantage of fixed-length
coding is particularly important in this resource-constrained environments, such as when
miniaturization and lightweighting of the decoding side are required. Therefore, generative
text steganography based on fixed-length coding deserves further research.

The steganographic schemes mentioned above determine a word according to the
secret message to be embedded in one time step, and the choice of the word has no
flexibility. The secret message has a great influence on the text generation, which may
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cause the selected words not to conform to the statistical distribution of the training text,
thus reducing the concealment of the steganographic text. Therefore, how to reduce the
influence of secret messages on candidate word selection in the process of steganography,
so as to generate more natural text, is an urgent problem to be solved.

In the paper, we propose a text steganography method based on multi-time-step
(MTS-stega), which integrates multiple time steps in the text generation process and selects
the optimal multiple consecutive words to jointly carry a unit of secret message by solving
the goal programming model. The contributions of this research are three-fold, as follows:

• For the problem that the selection of candidate words in current steganography
methods is seriously restricted by secret message, which in turn affects the quality of
steganographic text, we propose a multi-time-step method, which effectively reduces
the impact of secret information on candidate word selection, thereby effectively
improving the quality and imperceptibility of steganographic text.

• For the scenario where the resources of the steganographic receiver are limited and
only handheld devices or embedded devices are used, we propose to use fixed-
length coding to complete the mapping of word space to secret messages, which
can effectively reduce the decoding complexity and improve information extraction
efficiency compared to variable-length coding at the decoding end.

• We compare with existing fixed-length coding schemes in terms of the quality of gener-
ated text, and compare with mainstream variable-length coding schemes in terms of de-
coding efficiency. The experimental results demonstrate the effectiveness of this scheme.

The rest of this paper is organized as follows. Preliminaries and prior work are
provided in Section 2. In Section 3, we will describe the architecture of our proposed
method, including the information-hiding algorithm and information extraction algorithm.
In Section 4, we will present the experimental setup and show the performance of the
proposed method. The conclusions are summarized in Section 5.

2. Preliminaries and Prior Work

In this section, we first introduce the concept of the language model and evaluation
metrics for generative text steganography, including perplexity and embedding rate. After
that, we introduce the linguistic steganography based on FLC and explain its shortcomings
as the goal of our solution.

The main notations used in this paper are as shown in Table 1:

Table 1. Notations, abbreviations and descriptions.

Notations Descriptions

LM language model

ppl perplexity, an evaluation metric for the quality of generated text

ER embedding rate, the average number of secret bits that can be embedded per word

FLC fix-length coding based on perfect binary tree proposed by [16]

VLC variable-length coding based on Huffman tree proposed by [16]

t time step in the process of LM-generating text

CP (CPt) candidate pool (in time step t), consisting of candidate words

CPS the size of a candidate pool

H the height of a perfect binary tree

L how many consecutive time steps used to carry a unit of secret message, L can be 2, 3, 4, · · · ,
and the scheme using L can be called MTS-L

Wt
i the i-th word in CPt

CWt
i codeword of Wt

i after fix-length coding
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2.1. Evaluation Metrics of Generation-Based Linguistic Steganography

In the field of natural language processing, text is usually considered as a sequence
of words consisting of specific words combined according to semantic associations and
syntactic rules, and a language model is used to describe the joint probability distribution
of word sequences, whose expression is:

P(S) = P(W1, W2, . . . , Wn)

= P(W1)P(W2|W1) · · · P(Wn|W1W2 · · ·Wn−1)

=
n

∏
1

P(Wi|W1W2 · · ·Wi−1)

(1)

where P(S) represents the generation probability of the word sequence S = W1, W2, . . .,
Wn, and P(Wn|W1W2 · · ·Wn−1) denotes the conditional probability of generating word Wn
given W1W2 · · ·Wn−1 above. The conditional probability reflects the degree of fit between
the candidate word Wn and the previous text. The higher the conditional probability, the
more reasonable the generated text. Due to the diversity of language expressions, there are
usually multiple candidate words Wn for a given above W1W2 · · ·Wn−1, which can make
the generated text meet the constraints of semantic and grammatical rules. This provides
a redundancy for generative information hiding. The generation-based steganography
method does not need to prepare the steganographic carrier in advance, but it directly
generates text with smooth semantics, complete structure and natural appearance, and the
secret information is embedded in the process of text generation.

The purpose of steganography is to hide the existence of information in the carrier and
ensure the security of secret information. Therefore, security and embedding capacity are
the primary evaluation criteria for steganographic systems. Perplexity (ppl) is usually used
as the quality evaluation metric for generating steganographic text [14,24,25], as shown
in Equation (2).

ppl = e−
1
N ∑N

i=1 ln P(Si)

= e−
1
N ∑N

i=1 ln Pi(W1,W2,...,Wn)
(2)

where N is the number of generated sentences, si = {W1, W2, . . . Wn} indicates the i-th
sentence, and P(Si) represents the probability distribution of words in Si. Comparing
Equation (2) with Equation (1), we find that perplexity is actually the difference in the
statistical distribution of the language model between the generated text and the training
text. The smaller its value, the more consistent the statistical distribution of the generated
text with the training text.

Embedding capacity is usually measured by the Embedding Rate (ER), which is
defined as the average number of secret bits that can be embedded per word (bpw), which
is formalized as:

ER =
1
N

N

∑
i=1

Ki
Li

(3)

where N is the number of generated sentences, Ki is the number of bits embedded in the
i-th sentence, and Li is the length of the i-th sentence.

2.2. Linguistic Steganography Based on FLC

Yang et al. [16] put forward two coding methods of FLC and VLC. Firstly, candidate
words are arranged in descending order according to conditional probability. Then, the first
K candidate words are selected to construct the candidate pool, and each word is coded by
constructing a perfect binary tree or Huffman tree. A schematic diagram of FLC is shown
in Figure 1. In this way, the embedding rate can be dynamically adjusted through the
setting of the K value, so as to adapt to the differences in the demand for hidden capacity
and concealment in different scenarios. The advantage of FLC is that the encoding and
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decoding are simple and fast, and the code length of each word is determined. The size
of the candidate pool of FLC has a direct correspondence with the height H of the perfect
binary tree: CPS = 2H . When the perfect binary tree is determined, then the coding of each
candidate word is determined accordingly, and the code length of each word is also H.
After that, the candidate word is selected for output according to the secret message to be
embedded; thus, this word carries H bits of secret message.

0 1

0 1 0 1

�1

t t+1

�2 �3 �4

0 1

0 1 0 1

�1 �2 �3 �4

0 1 

t+2

1 1 ⋯Bitstream

Perfect
binary

tree

Language
model

⋮

�2 �4
Stego text

Candidate
 pool

Figure 1. Fixed-length coding (FLC) proposed by [16].

This scheme determines one word per time step, and the secret message greatly
interferes with the text generation process. To minimize the perplexity of the generated
text, the conditional probability of the word selected at each time step should be as large as
possible; however, due to the influence of the secret message to be embedded, the selected
word may not be the most probable, which affects the quality of the generated text. Based
on this, we propose a multi-time-step-based steganography scheme to select the optimal
candidate word combination in multiple time dimensions. The specific scheme details will
be described in Section 3.

3. MTS-Stega Methodology

In this section, we first introduce the overall framework of MTS-stega, then show
the information hiding algorithm and information extraction algorithm, respectively, and
finally perform theoretical analysis on the embedding rate, imperceptibility and robustness
of this scheme.

3.1. Overall Architecture

Since our scheme uses L consecutive time steps to carry one unit of secret message
m, we need to generate all the candidate words at L moments and select the optimal
combination from them for output, instead of determining one word in one time step as in
the traditional scheme. In this scheme, we choose a perfect binary tree with tree height H
to encode the candidate words, so CPS = 2H , and the length of each word’s codeword is H.

Figure 2 outlines the overall framework of our scheme. First, we input the generated
text into LM to obtain all candidate words and their conditional probability distributions
at time t. The top 2H words are selected in descending order of probability to form the
candidate pool CPt at time t. After that, the 2H words at time t are input into LM to obtain
the probability distribution of words at time t + 1. It is worth noting that each word in CPt

corresponds to a set of candidate words at time t + 1. We arrange each group of words
in descending order of probability and take the top 2H words to form 2H basic candidate
pools. We expand the concept of candidate pool and refer to these 2H basic candidate pools
collectively as the candidate pool at time t + 1, and use CPt+1 to refer to it—and so on
until we obtain all candidate pools CPt, CPt+1, · · · , CPt+L−1 for L time steps. After that,
we encode the basic candidate pools in CPt, CPt+1, · · · , CPt+L−1 using perfect binary tree,
Wt

i denotes the i-th candidate word in CPt, and CWt
i is the codeword of Wt

i with length
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H. Then, we obtain the set of codewords CWPt, CWPt+1, · · · , CWPt+L−1 corresponding to
the candidate words at L moments.

�

���

Encode

����

� + 1

���+1

Encode

����+1

� + � − 1

���+�−1

Encode

����+�−1

… …
Language model

Candidate words

Fixed length coding

⋮

Code words of candidate words

…

���  � ��
�|⋯ × � ��

�+1|⋯��
� × ⋯ × � ��

�+�−1|⋯��
���

�+1⋯ 
�. �.    ���

� ⊕ ���
�+1 ⊕ ⋯ ⊕ ���

�+�−1 = �
Goal programming model 

��
� ��

�+1 ��
�+�−1…

� + �

Stego text

� consecutive time steps

Figure 2. Overall framework of the proposed scheme.

After obtaining the codewords of all candidate words, we find the combination of L
candidate words Wt

i , Wt+1
j , · · · , Wt+L−1

k satisfying the conditions as the output of these L
time steps and also as the input of the next L time steps by solving the goal programming
model. We describe the goal programming model in detail as shown in Equation (4).

max P(Wt
i | · · · )× P(Wt+1

j | · · ·Wt
i )× · · · × P(Wt+L−1

k | · · ·Wt
i Wt+1

j · · · )

s.t. CWt
i ⊕ CWt+1

j ⊕ · · · ⊕ CWt+L−1
k = m

(4)

where P(Wt
i | · · · ) represents the conditional probability of the candidate word Wt

i when
the previous words are determined. According to Equations (1) and (2), the perplexity of
the text generated by LM is related to the conditional probability of each word. The larger
the product of the conditional probabilities of all words, the smaller the perplexity and
the higher the quality of the generated text. The goal in the goal programming model is
to maximize the conditional probability product of L consecutive words so as to reduce
the overall perplexity of generated text. The constraint of the goal programming model
is CWt

i ⊕ CWt+1
j ⊕ · · · ⊕ CWt+L−1

k = m, which maps the binary secret information to the
word space by L words to carry one unit of secret information m, which guarantees the
correctness upon extraction. When we obtain the optimal combination of candidate words
at this L time step, we add it to the generated stego text and input the model to embed the
remaining secret message.

3.2. Information-Hiding Algorithm

The core idea of the information-hiding algorithm of this scheme is to use perfect
binary tree coding to realize the mapping of secret messages to the word space, so that each
L word in the steganographic text can carry a unit of secret message m, and the length of m
is equal to the height of the perfect binary tree. To make the generated text more diverse, we
first feed the introductory context into the model, on which we can condition the language
model. The detailed process of information hiding is described in Algorithm 1.
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Algorithm 1 Information-Hiding Algorithm.

Input: Secret bitstream M = {0, 0, 1, 0, 1, · · · , 0, 1, 0}; height of perfect binary tree H;
introductory context; length of time step L; language model LM.
Output: Generated steganographic text C.
Step 1: Feed introductory context into LM to begin the generation process.
Step 2: Calculate the probability distribution of the candidate pool CPt = [Wt

1, Wt
2, · · · , Wt

2H ]

(t represents the t time step), sort it in descending order and limit its size by 2H .
Step 3: For each candidate word Wt

i (i = 1, 2. . . , 2H) in CPt, feed Wt
i into LM to obtain

CPt+1 for the next time step, and so on, until it is the t + L− 1 time step; then, we can
obtain CPt, CPt+1, · · · , CPt+L−1.
Step 4: One unit of M to be embedded is m, which has H bits. Based on the conditional
probability distribution of each candidate pool for these consecutive L time steps, code
the words by perfect binary tree (each word has a codeword length of H).
Step 5: XOR the codes of all corresponding candidate word combinations and multiply
the conditional probabilities. The candidate word combination (L words) with the
greatest product of the conditional probabilities and whose XOR result is equal to m is
selected and added to the generated steganographic text.
Step 6: Repeat steps 2–5 until M is completely hidden.
Step 7: Output the steganographic text C.

H and L in the input are the two hyperparameters of this scheme. H is the tree height
of the perfect binary tree used for encoding. The larger H is, the longer the code length of
each codeword is, and the more secret information it can carry. However, as H increases, the
candidate pool will also become larger, which may cause some words with relatively low
probability to be selected, thereby reducing the quality of the generated text. L represents
that L time steps are used to carry one unit of secret information. The larger L is, the
lower the embedding rate of the scheme will be, but there will be more candidate word
combinations that meet the constraints of the goal programming model, so it is easier to
obtain a good combination of candidate words to improve the quality of the text. However,
in this case, the more time steps that need to be considered overall, the greater the amount
of computation. When L = 1, this scheme degenerates into an FLC scheme. Therefore,
the selection of H and L needs to weigh the embedding rate, text quality and calculation
amount. In practical applications, we usually take L = 2, 1 ≤ H ≤ 6.

In step 1, we first input the introductory context to the model to constrain the text
generated by the model later. This is to enable the generated stego text to adapt to different
scenarios and meet different context needs.

In steps 3 and 4, we encode the candidate pools for L time steps. Although we have
expanded the concept of the candidate pool and use all the basic candidate pools obtained
by inputting words from the previous time step into LM as the expanded candidate pools
for this time step, the size of the basic candidate pool is still 2H . For example, if there are
2H candidate words in the candidate pool at time t, then after inputting these words into
LM, we can obtain 2H basic candidate pools with the size of 2H for the next time step,
and each word at moment t corresponds to one basic candidate pool at time t + 1, and we
encode for each basic candidate pool separately. So, the codeword length of each word in
each basic candidate pool is H bits, which provides the basis for the constraints of the goal
programming model that there exists L codewords whose XOR result can be equal to the
secret message of L bits.

Step 5 is the concrete realization of the goal programming model of this scheme. The
secret information is carried by the XOR result of the codewords of candidate words, and
the perplexity of text is reduced by selecting the combination of words with the largest
multiplication of conditional probability.



Entropy 2022, 24, 585 8 of 16

3.3. Information Extraction Algorithm

The method of information extraction uses encoding for mapping word space to
binary bits during text generation. The receiver uses the same language model as the
sender, obtains the probability distribution of the next word based on the initial input,
encodes each candidate word based on a perfect binary tree, and extracts the code of
corresponding candidate word based on the actual word selected for the steganographic
text. Then, it XORs the extracted L codewords every L cycles to obtain a unit of secret
message. Unlike the information-hiding algorithm, the information extraction algorithm
does not need to input all the candidate words of the previous time step into LM each
time to obtain the candidate pool for the next time step. Since the steganographic text is
determined, we can directly determine the selected candidate word each time step and use
it as the input for the next time step. The specific implementation details are described in
Algorithm 2.

Algorithm 2 Information Extraction Algorithm.

Input: Steganographic text C; height of perfect binary tree H; introductory context;
length of time step L; language model LM.
Output: Secret bitstream M = {0, 0, 1, 0, 1, · · · , 0, 1, 0}.
Step 1: Feed introductory context into LM to begin the extraction process.
Step 2: Calculate the probability distribution of the candidate pool CP = [W1, W2, · · · , W2H ],
sort it in descending order and limit its size by 2H .
Step 3: Code each word Wi in a perfect binary tree based on their conditional probability.
Based on the actual accepted word in C, extract H bits codeword. Repeat steps 2–3 for L times.
Step 4: XOR L codewords obtained in step 3, then add the L bits secret message to M.
Step 5: Repeat steps 2–4 until C is completely processed.
Step 6: Output extracted secret bitstream M.

Due to the characteristics of text itself, it will not be compressed or distorted during
transmission like images or videos, so it has strong robustness, which makes the applica-
tion scenarios of generation-based text steganography very extensive. For example, the
transmission of stego text through instant messaging software such as Telegram and Skype,
or the release of stego text through social media platforms such as Twitter and Facebook,
can complete the concealed transmission of secret information. Then, the receiver can
obtain stego text through browsing and copying from the platforms mentioned above and
then extract the secret information from the stego text using our information extraction
algorithm.

3.4. Comparative Analysis with Existing Methods

We combine the existing steganography schemes based on fixed-length coding to
analyze the embedding rate and text quality of the proposed scheme MTS.

Fang et al. [14] (Bins) first split the vocabulary into 2B blocks, each of which can be
indexed with B bits. In the generation process, they select a word in the corresponding
block for output according to the secret message of B bits each time step, so the embedding
rate is B bits/word. FLC [16] performs perfect binary tree coding on the candidate pool
of each time step, the tree height H is the length of a codeword, and it selects a candidate
word for output according to the secret message of H bits to be embedded each time step,
so the embedding rate is H bits/word. The proposed MTS performs perfect binary tree
coding on the candidate pools of L consecutive time steps. The length of each codeword is
the same as that of FLC, and the tree height is H, but we choose L codewords to carry one

unit of secret message together, so the embedding rate is
H
L

bits/word.
When B = H, Bins has the same embedding rate as FLC. Since FLC and MTS first sort

the candidate words in descending order of conditional probability and select the first 2H

words for coding, the conditional probability of these words is relatively large. However,
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Bins does not consider the probability of word occurrence when dividing the dictionary, so
the selected word may have a small probability, which affects the quality of the text. As ER
increases, the number of blocks divided by the dictionary also increases. In some iterations,
it may even be difficult to find a suitable word in the corresponding block as output, which
makes the quality of the text generated by Bins drop rapidly as ER increases.

The embedding rate of FLC and MTS is closely related to CPS. The larger the CPS, the
greater the ER, but the quality of the generated text will also decrease. This is because CP is
sorted and truncated in descending order of conditional probability. When CPS increases,
candidate words with low probability will appear in CP, which will lead to the possibility
of selecting words with small probability based on secret information. The selection of
each word in the FLC scheme depends on the secret information to be embedded each
time step, so it is possible to select a word with a lower probability in CP, thus increasing
the perplexity of generated text. However, the word combination selected by MTS among
L consecutive time steps is the optimal probability combination under the constraints of
the goal programming model, which can minimize the local perplexity of the text. The
accumulation of this advantage can significantly reduce the perplexity of the generated
text and improve the text quality compared to the FLC scheme.

3.5. Robustness Analysis

The traditional steganography methods assume that the carrier is transmitted without
loss, so the receiver can extract the secret information completely without error. However,
when a secret carrier is transmitted on a public channel, information is likely to be lost due
to channel noise. For example, social networking platforms (such as Facebook, WeChat,
etc.) will perform lossy processing on uploaded images and video carriers to save memory
and bandwidth [26,27]. Due to the change of the secret carrier, the receiver cannot accu-
rately extract the secret information, so the requirement of information integrity cannot be
met. Therefore, steganography methods that use public channels such as social network
platforms as covert communication channels need to consider both detection resistance
and robustness. When the text is transmitted in the public network environment, almost
no information is lost due to channel noise, so the hidden information it contains can
retain a strong enough anti-interference ability. Therefore, text steganography has a natural
advantage in robustness compared with schemes based on other carriers.

However, since generative text steganography uses the language model to embed
secret information in the text generation process, the process of text generation also needs
to be repeated during extraction. If one or more words in the stego text are modified or
deleted, it will lead to a certain moment in which the corresponding word cannot be found
in the candidate pool, which affects the subsequent extraction of secret information. The
development focus of the existing generative text steganography schemes is to improve the
text quality and semantic coherence of stego text, and it does not consider the problem of
how to effectively extract secret information after the stego text is destroyed. We think this
is an urgent problem to be solved in the future.

4. Experiments and Analysis

In this section, we evaluate the performance of MTS in terms of imperceptibility,
embedding capacity and information extraction efficiency. Details of our experiments and
the analysis of the results are present in the following subsections.

4.1. Experimental Setup

Datasets. We evaluated the performance of MTS on three public corpora, including “A
Million News Headlines” (https://www.kaggle.com/datasets/therohk/million-headlines,
accessed on 20 April 2022), “Microsoft Coco” [28], and “Movie Review” [29]. “A Million
News Headlines” contains data on news headlines published by the Australian news source
ABC (Australian Broadcasting Corporation) over an eighteen-year period, which contains
1,226,259 sentences. The average length of news headlines is 6 to 7 words. “Microsoft

https://www.kaggle.com/datasets/therohk/million-headlines
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Coco” (MSCOCO 2017) is a large dataset published by Microsoft for object detection,
segmentation and captioning. We selected the portion of the dataset used for image captions
as our corpus, which contains 591,753 sentences. Most of these descriptive sentences are
of medium length (about 10 words). The sentences are simple in structure and mainly
describe people, objects and scenes. “Movie Review” (IMDB) mostly has long sentences
(about 25 words), and the text is relatively diversiform, involving a variety of subjects. We
randomly select 100 sentences from these three datasets for experiments (The sentences
we used are available in https://github.com/yuxiaoxiaochun/MTS-stega, accessed on
20 April 2022, and the video of a real-time example is available in https://github.com/
yuxiaoxiaochun/MTS-stega/releases/tag/real_time_example_vedio, accessed on 20 April
2022), and the statistics are shown in Table 2.

Table 2. Datasets statistics.

Dataset News Headlines MSCOCO IMDB

Num. of Sentences 100 100 100

Avg. Num. of Words 6.44 10.44 25.77

Baselines. We rebuilt Fang et al. [14] (Bins) and the FLC and VLC of Yang et al. [16] as
baselines. For fair comparison, we rebuilt all the baselines with the same language model,
which is the 345M parameter GPT-2 model [30].

4.2. Imperceptibility Results

The purpose of a concealment system is to hide the existence of information in the
carrier to ensure the security of important information. Therefore, the imperceptibility of
information is the most important performance evaluation factor of a concealment system.

Since Bins is coded according to blocks, the coding length of each block is the same.
During the steganography process, the corresponding block is retrieved according to
the secret information, and a word is selected from it. So, we can migrate the concept
of the candidate pool to Bins, and the size of the candidate pool is just the number of
divided blocks.

We take each text in the three datasets as confidential information, first convert the
confidential text into secret bitstream, and then use Bins, FLC, VLC and the proposed
scheme to generate steganographic texts, respectively, when CPS = 2, 4, 8, 16, 32, and 64.
In all experiments, we choose L = 2 and call it MTS-2. In order to ensure the diversity of
generated steganographic text, before generating text, we input the text in each dataset
as introductory context to LM. The experimental results are shown in Table 3. For a more
intuitive display, we have drawn line charts on the three datasets, respectively, as shown in
Figure 3.

Based on these results, we can draw the following conclusions. First, on each dataset,
for each steganography algorithm, the perplexity gradually increases as CPS increases.
That is, the statistical linguistic distribution difference between the generated text and the
training samples will gradually increase. This is because as the number of embedding bits
per word increases, during each iteration, the word selected as the output is more and more
controlled by the number of embedding bits, making it increasingly difficult to select the
word that best fits the statistical distribution of the training text. Secondly, the quality of
steganographic text generated by the variable-length coding scheme is higher than that of
the fixed-length coding schemes under the same CPS. This is because the variable-length
coding makes the codeword length of the word with a larger conditional probability in the
candidate pool shorter, and it has a greater probability of being selected for each time step,
but because the codeword becomes shorter, the secret information carried by a word will
be less, and the embedding rate will be smaller than the fixed-length coding scheme under
the same CPS. Compared with other schemes, MTS-2 has an obvious advantages in the
quality of generated text, which is even better than the variable-length coding scheme. This

https://github.com/yuxiaoxiaochun/MTS-stega
https://github.com/yuxiaoxiaochun/MTS-stega/releases/tag/real_time_example_vedio
https://github.com/yuxiaoxiaochun/MTS-stega/releases/tag/real_time_example_vedio
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is due to the trade-off of MTS-2 over two time steps. Compared with other schemes, the
choice of words is more flexible, and it is easier to select the word combination with the
largest multiplication of conditional probability.

Table 3. The mean of the perplexity results of different steganographic methods under the same CPS.

Dataset CPS Bins [14] FLC [16] VLC [16] MTS-2

News headlines

2 7.3523 5.6029 6.608 2.3645
4 20.6893 16.3785 9.8417 4.5797
8 51.4391 30.233 12.2796 7.3124

16 94.1353 55.3581 16.1114 9.7485
32 255.3615 145.5817 21.2936 16.5474
64 418.8856 285.5139 28.8719 24.5283

MSCOCO

2 5.554 5.1126 5.8332 2.2973
4 17.578 13.8499 9.4598 4.1502
8 47.3078 26.9079 12.0263 6.8475

16 80.1382 51.9122 15.2561 9.0102
32 219.519 145.321 19.1511 15.0822
64 432.0135 367.5067 24.9883 24.0809

IMDB

2 4.9013 4.7677 5.215 2.4626
4 15.1401 11.8964 8.7275 3.9473
8 42.4247 25.8169 11.22 6.7513

16 56.3714 43.9763 14.5684 8.7607
32 207.6012 128.1702 18.4876 14.8658
64 368.9476 255.3289 23.8892 22.7323
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Figure 3. The results of different steganography methods at different CPS on each dataset. (a) News
Headlines, (b) MSCOCO, (c) IMDB.

Since MTS-2 utilizes two words to carry one unit of secret information, the embedding
rate is half of Bins and VLC under the same CPS. Next, we analyze the text quality of each
scheme under the same embedding rate. Since the embedding rate of VLC is uncertain for
each secret text and has no direct correspondence with CPS, we do not compare it this time.
The experimental results are shown in Table 4, and the line graph is shown in Figure 4.
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Table 4. The mean of the perplexity results of different fixed-length coding-based steganographic
methods under the same embedding rate.

Dataset ER (Bits/Word) Bins [14] FLC [16] MTS-2

News Headlines

1 7.3523 5.6029 4.5797
2 20.6893 16.3785 9.7485
3 51.4391 30.233 24.5283
4 94.1353 55.3581 59.1203
5 255.3615 145.5817 123.1296

MSCOCO

1 5.554 5.1126 4.1502
2 17.578 13.8499 9.0102
3 47.3078 26.9079 24.0809
4 80.1382 51.9122 56.7739
5 219.519 145.321 118.0109

IMDB

1 4.9013 4.7677 3.9473
2 15.1401 11.8964 8.7607
3 42.4247 25.8169 22.7323
4 56.3714 43.9763 52.6528
5 207.6012 128.1702 113.5318
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Figure 4. The results of different steganography methods at different ER on each dataset. (a) News
Headlines, (b) MSCOCO, (c) IMDB.

Based on the above results, we can know that although the embedding rate of MTS-2
is smaller than that of Bins and FLC under the same CPS, the embedding rate of MTS-2
can be improved by increasing the height of the perfect binary tree and the length of each
codeword, while still maintaining a high text quality.

Table 5 shows two steganographic examples of MTS-2 in the case of ER = 3 bits/word
and ER = 4 bits/word, respectively.
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Table 5. Steganography example by MTS-2.

Introductory context
The lives of several individuals intertwine as they go about their lives in their own unique
ways, engaging in acts society as a whole might find disturbing in a desperate search for
human connection.

Secret message 1 Eve is not who she says she is.

Steganographic text 1
(ER = 3 bits/word)

There is no shame in using music to explore the possibilities of existence. Though the use of
music as a bridge between communities and reality can be seen as positive, it sometimes
becomes a temptation to put too much baggage such as emotional baggage such as family,
job, education, environment, and religious beliefs out of its light. So, does the music tell us
some good things about what some people know about people? While it

Secret message 2 The secret code is X3SJ83F.

Steganographic text 2
(ER = 4 bits/word)

Children are subject to dehumanization, trauma, harm, suicide, intimidation, pressure, depri-
vation, injustice, rape, repression, violent demonstrations, coercion, racism, institutionalized
inhumanity, psychological abuses, and myriad other methods of everyday control. Whether
it’s threats of detention

4.3. Results of Information Extracting Efficiency

For the steganographic schemes, since the words in the candidate pool need to be tree-
coded at each iteration, the size of the candidate pool will significantly affect the efficiency
of information extraction. The proposed scheme selects the perfect binary tree to encode the
candidate words and inherits the decoding advantages of the fixed-length coding scheme.
We selected 100 long texts from the datasets as secret messages and limited the length
of the generated steganographic texts to 100 words. We use VLC and MTS-2 to conduct
experiments according to the guidance of [31] and record the information extraction time
at CPS = 2, 4, 8, 16, 32, 64. The results are shown in Table 6 and Figure 5.

Table 6. The results of the mean extraction time of this scheme and the variable-length coding
steganography scheme under the same CPS.

CPS VLC [16] (s) MTS-2 (s)

2 2.5314 1.8066
4 2.5452 1.7904
8 2.589 1.8429

16 2.5294 1.8602
32 2.5141 1.8413
64 2.7205 1.8766
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Figure 5. Mean extraction time of VLC and MTS-2 when the steganographic texts have the same length.
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It can be seen that the proposed scheme has higher decoding efficiency than VLC, and
with the increase of CPS, the decoding time does not change significantly. This is because
the VLC scheme uses a Huffman tree to encode candidate words, and the time complexity
of constructing a Huffman tree is O(nlogn), which is higher than O(n) for constructing a
perfect binary tree. With the increase of CPS, the tree depth increases, and the construction
of the Huffman tree will consume more time. In the MTS-2 scheme, since the words in the
candidate pool are already arranged in descending order of the conditional probability,
and CPS = 2H , it is not even necessary to construct a perfect binary tree in the specific
implementation, but the codeword of each candidate word can be directly determined, so
the decoding efficiency of MTS-2 is higher than that of VLC.

4.4. Experimental Summary

In this section, we compared the proposed scheme with Bins, FLC and VLC in terms of
concealment, embedding capacity and information extraction efficiency. The experimental
results show that MTS-2 has the smallest text perplexity under the same CPS; the quality
of the steganographic text under the same embedding rate has obvious advantages over
the fixed-length coding schemes Bins and FLC; the information extraction efficiency is
significantly better than the variable-length coding scheme VLC.

Since the proposed scheme uses L words to carry one unit of secret message, the text
length is L times as long as Bins and FLC with the same ER, and we need to consider the
candidate words of L time steps, so these will undoubtedly increase a lot of computation
when generating text. These are the costs of improving the quality of steganographic text.
In our experiments, we found that when L = 2, the purpose of reducing the perplexity
of steganographic texts can be well achieved, and the amount of computation in the
information-hiding stage is relatively low, and it has achieved good results in terms of
steganographic text quality and computation amount. Therefore, only the experimental
results of MTS-2 are shown in this section.

5. Conclusions

In this paper, we propose a linguistic steganography scheme based on multi-time-step
by taking advantage of the decoding superiority of fixed-length coding and addressing
the shortcomings of conventional generative text steganography schemes. We trade off
multiple time steps in generating text using language model, utilize multiple words to carry
a unit of secret information, and select the optimal combination of candidate words by
solving the goal programming model to effectively improve the quality of steganographic
text. The experiments verify the advantages of this scheme in terms of generated text
quality and information extraction efficiency. Meanwhile, there are still some deficiencies
in the proposed scheme, which need to be solved in our future work.

• Since the calculation amount of our scheme when generating steganographic text
increases with the increase of L, how to reduce the calculation amount when L is
relatively large is an issue that requires further research.

• Due to the limitations of generative text steganography, existing schemes cannot resist
attacks such as word modification or deletion, which is an urgent problem to be solved.

• The proposed scheme can generate coherent and high-quality stego text but cannot
effectively control its subject or emotion and other attributes, so it is not applicable
in some scenarios that require precise control of semantic attributes. This is also our
future direction.
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