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Abstract: Motor faults, especially mechanical faults, reflect eminently faint characteristic amplitudes
in the stator current. In order to solve the issue of the motor current lacking effective and direct
signal representation, this paper introduces a visual fault detection method for an induction motor
based on zero-sequence current and an improved symmetric dot matrix pattern. Empirical mode
decomposition (EMD) is used to eliminate the power frequency in the zero-sequence current derived
from the original signal. A local symmetrized dot pattern (LSDP) method is proposed to solve the
adaptive problem of classical symmetric lattice patterns with outliers. The LSDP approach maps the
zero-sequence current to the ultimate coordinate and obtains a more intuitive two-dimensional image
representation than the time–frequency image. Kernel density estimation (KDE) is used to complete
the information about the density distribution of the image further to enhance the visual difference
between the normal and fault samples. This method mines fault features in the current signals, which
avoids the need to deploy additional sensors to collect vibration signals. The test results show that
the fault detection accuracy of the LSDP can reach 96.85%, indicating that two-dimensional image
representation can be effectively applied to current-based motor fault detection.

Keywords: induction motors; fault detection; local symmetrized dot pattern; zero-sequence current;
kernel density estimation

1. Introduction

Since the motor is the most widely used and efficient power source in the current
industrial system, the running state of a motor is directly related to the continuity and
reliability of a task chain. In large engineering fields such as mining and aerospace, it is
often expensive to disassemble and inspect critical motors, and the unexpected failures of
these machines can lead to even more significant losses. Therefore, motor fault detection
and diagnosis have outstanding economic value and practical significance.

From the perspective of measuring signal types, some researchers have studied motor
faults by analyzing physical quantities such as sound [1], temperature [2], and magnetic
flux [3], but the most commonly used are vibration and current signals. Based on the
principle that the mechanical fault characteristics of a motor are manifested in the vibra-
tion signal, the most popular vibration analysis method combines signal processing and
feature extraction to analyze the possible fault information, which is interoperable with
other types of mechanical equipment fault diagnosis methods. Classical techniques in
vibration analysis include Fourier transform, wavelet transform, empirical mode decompo-
sition (EMD), and envelope demodulation. However, since vibration data often contain
complex ambient noise and other disturbances, these techniques are often suboptimal for
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weak fault detection. In addition, since vibration analysis can be considered to extract
aperiodic signals from cyclic stationary vibration signals, it is possible to use machine
learning to learn from known samples and identify faults. Therefore, vibration analy-
sis methods are often used in conjunction with artificial intelligence techniques. In the
research of the time–frequency analysis method, Yu [4] proposed a transient extraction
transform based on a short-time Fourier transform that could effectively characterize and
extract transient components in fault signals. Aiming at the cumbersome parameter defi-
nition of the stochastic resonance method, Cui et al. [5] proposed a coupled multi-stable
stochastic resonance method with two first-order multi-stable stochastic resonance sys-
tems. They adaptively optimized and determined the system parameters of the stochastic
resonance method by taking the signal-to-noise ratio as the fitness function of the search
optimization algorithm using the subsampling technique. To improve the readability of
the time–frequency analysis method, Zhang et al. [6] proposed a framework for improving
the time–frequency post-processing method to reduce the interference of cross-terms and
enhance the time–frequency energy concentration characteristic. In the field of artificial
intelligence technology, Sikder et al. [7] extracted the power features in motor vibration data
and introduced the extreme learning machine method to a motor-bearing fault diagnosis.
The average classification accuracy rate could reach 98.67%. Furthermore, Shao et al. [8]
developed an auxiliary classifier generative adversarial network-based framework for
learning local features from raw inputs and generating synthetic signals with labels. These
generated signals could be used as augmented data for further applications in machine
learning for fault diagnosis. Nishat et al. [9] combined empirical mode decomposition
and kurtosis to filter out irrelevant eigenmode functions and transformed a reconstructed
signal into a two-dimensional image with a continuous wavelet transform to train the
convolutional neural network model.

Motor current signature analysis (MCSA) is generally used to diagnose electrical faults
in motors, such as broken rotor bars, winding short circuits, and single-phase ground-
ing [10]. Existing research shows that MCSA can also be used to detect mechanical fail-
ures [11,12]. In contrast to the intrusive installation of vibration sensors or expensive
non-contact measurements, the current signal is obtained through a sensor (such as the
current clamp) connected to the power supply cable of a motor, which gives MCSA the
significant advantage of low signal acquisition cost and integration with the control system.
MCSA mainly inspects the amplitude and phase changes of the stator current caused
by motor failure components, such as waveform distortion, so its data processing and
analysis methods are analogous to vibration analysis. Corne et al. [13] studied the map-
ping relationship between three types of bearing evolution faults and a motor current and
analyzed this relationship by extending the Park vector method. Based on the magnetic
field theory, Khelfi et al. [14] demonstrated that a broken rotor bar induced an amplitude
modulation of the stator current that could be extracted with a low computational effort
by calculating the square root of the three-phase stator current. Abd-El-Malek et al. [15]
used a Hilbert transform to extract fault features from the stator current envelope and
perform a statistical analysis to generate a formula to obtain the exact location of the
fault in the induction machine rotor. For large induction motors with a low slip rate,
Puche-Panadero et al. [16] proposed the use of the spectrum of the rectifier stator current
for fault diagnosis to eliminate the coverage of the fundamental wave leakage to the early
fault components. Li et al. [17] used the Teager–Kaiser energy operator to obtain the esti-
mation of the instantaneous amplitude and instantaneous frequency of a motor current
signal, to remove the main power component of a motor current and highlight the broken
rotor bar fault feature. The classic vibration envelope analysis is also used for reference in
MCSA. Areias et al. [18] proposed the identification of the fault characteristic frequency of
rolling bearings in the current spectrum by performing an envelope analysis on the bearing
vibration signal. MCSA can also be combined with artificial intelligence methods. Garcia-
Bracamonte et al. [19] applied independent component analysis to the Fourier domain
spectral signals of a single-phase current. The segmented standard deviation in the region
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of interest was used as the input feature of a neural network to diagnose an induction
motor broken bar fault.

Based on the existing research, no matter what type of signal is selected, it is difficult
to achieve an intuitive visual representation in the signal processing and feature extraction
stages, which is difficult for untrained diagnostic system users to understand. Therefore,
the emergence of image analysis technology provides a new method for the simple visual
representation of fault features, and it provides the possibility to improve the usability of
fault detection and diagnosis systems. The traditional form of converting time-domain
signals into two-dimensional images involves time–frequency images, and this form of
expression still has a certain threshold for objective understanding. The Symmetrized Dot
Pattern (SDP), which is based on a fixed time delay, can linearly map a one-dimensional
time series signal to a two-dimensional symmetric snowflake scatter image with a relatively
small amount of computation and express signal changes with obvious visual changes.
Several studies have shown the effectiveness of the SDP for the visual analysis of motor
vibration signals. For example, Wang et al. [20] used the SDP method to map the bearing
vibration data into a picture data set, and they input SE-CNN training to obtain a diagnostic
model. Sun et al. [21] performed empirical modal decomposition on a motor-bearing
vibration data set and then used the first five intrinsic mode functions components to draw
an SDP image and calculate an improved distance metric for fault classification. Combining
SDP images and dense Scale Invariant Feature Transform (SIFT) features, Long et al. [22]
proposed a method for motor fault diagnosis based on the visual image information and
the bag-of-words model.

Considering the advantages of MCSA compared to vibration signals in terms of
acquisition cost and system complexity, for the visual analysis of current signals, the SDP
method has the potential to be popularized and widely applied. However, due to the
low ratio of the characteristic amplitude of the current signal to the amplitude of the
fundamental frequency, it is impractical to use the SDP image analysis of a current directly,
so there is still a gap in present research on the SDP combined with the motor current.
Furthermore, the SDP method is less robust with large noise glitches, which is one of the
reasons why it is unfavorable to use it for analyzing current signals. For the scatter images
obtained by SDP and its derivative methods, the KDE method offers the possibility to add
density information to them. Given the above considerations, this paper proposes a fault
detection method based on the LSDP and KDE color mapping that utilizes the fault features
implicit in the zero-sequence current distribution to distinguish between normal and fault
samples. That is to say, this method can overcome the effect of the current fundamental
frequency to plot a more robust scatter plot than the traditional SDP method. Furthermore,
compared to many fault detection methods based on Fourier transforms, this method does
not require a large number of complex calculations and has a fixed procedure, making
it valuable for designing integrated circuits for use in embedded devices. The method
proposed in this paper has a general mathematical framework and is not restricted to
specific software and programming environments. The main work is presented as follows:

1. The EMD method is used to eliminate the fundamental and low-frequency compo-
nents in the zero-sequence current, preserving the fault components in the current
signal and enhancing the representation of the difference between the normal and
fault samples.

2. The LSDP method is proposed to draw the zero-sequence current image to improve
the stability of the two-dimensional scatter image.

3. Combining the SDP and the LSDP with KDE enhances the visual information rep-
resentation difference to draw scatter images with colormaps. Through the test, the
effectiveness of the LSDP in fault detection is verified.

The rest of this paper is organized as follows. The second section briefly introduces
the method adopted in this paper and its rationale. The third section introduces the
experimental bench setup and discusses the relevant results. The fourth section states
the conclusions.
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2. Basic Method Framework
2.1. Zero-Sequence Current

Ideally, an induction motor is a symmetrical electromechanical system, and the three-
phase currents are equal in amplitude and 120◦ out of phase during a load operation. When
part of the motor fails, it will cause fluctuations in the physical characteristics such as
the load, impedance, and magnetic flux, which implies that the parameter balance of the
induction motor will be broken. The asymmetry of the three-phase current is the main
manifestation of the motor fault in the phase current.

Existing research shows that any three-phase mode can be decomposed into a unique
set of positive-sequence components, negative-sequence components, and zero-sequence
components, which indicates that any three-phase mode can be represented by this group
of composite bases. As shown in Figure 1, in an ideal three-phase power system, due to the
symmetry of the three phases, the amplitudes of the negative-sequence component and the
zero-sequence component are both zero. That is, only the positive-sequence component
exists. Theoretically, only the three-phase model of the system with faults is unbalanced,
and the non-zero negative sequence and zero-sequence components can be decomposed at
this time.
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It is almost impossible for a motor to achieve perfect parametric symmetry in practical
applications. In addition, with the noise and error of measurement, the negative sequence
current and the zero-sequence current are always objective and non-zero in value. In
addition to the noise caused by measurement, the zero-sequence and negative-sequence
currents reflect the fault state of a motor. Zero-sequence currents are sensitive to ground
faults and contain weak features that reflect other faults.

2.2. Empirical Mode Decomposition

EMD is an adaptive method for analyzing non-stationary signals. According to the
features of different scales in the time-series signal, the method separates the original signal
into signal components of different scales, called intrinsic mode functions (IMFs). IMFs
have two constraints:

• In the entire data segment, the number of extreme points and zero-crossing points
must be equal, or the difference cannot exceed one.

• At any time, the average value of the upper envelope formed by the local maximum
points and the lower envelope formed by the local minimum points is zero. That is,
the upper and lower envelopes are locally symmetrical with respect to the time axis.

The basic steps of EMD processing for time-series signals are as follows:

1. All of the extreme points of the original signal x(t) are found and the upper and lower
envelopes pass through these extreme points according to the cubic spline function.

2. The mean curve m1 of the upper and lower envelopes is calculated.
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3. The mean curve is subtracted from the original signal to obtain the intermediate signal
h1 = x(t) − m1.

4. It is judged whether the intermediate signal h1 satisfies the two constraints of the IMF.
If the constraints are satisfied, the signal is an IMF component. Otherwise, based on
the signal, the analysis of steps 1 to 4 is performed again. The acquisition of IMF
components usually requires several iterations.

5. The first IMF obtained using the above method is denoted as c1, the difference between
the original signal x(t) and c1 is used as the new original signal r1 = x(t) − c1, and the
analysis of steps 1 to 4 is continued. Then c2 can be obtained. This continues until the
residual signal of the nth order is decomposed into a monotonic function, the IMF
component can no longer be sieved, and the EMD decomposition is completed.

Compared with other time–frequency domain methods such as wavelet transform, the
EMD method decomposes adaptively by relying on the characteristics of the signal itself,
which overcomes the lack of self-adaptability of a given basis function. The IMF obtained
by decomposition contains the frequency components of the original signal from high to
low. Due to the inherent asymmetry of the motor and power system, the zero-sequence
current also contains a large frequency component of the power frequency and lower
frequency. By removing the IMFs of the irrelevant frequencies in the original signal, the
interference caused by the power frequency and the low frequency can be further reduced,
and the leakage of the signal energy can be effectively avoided at the same time.

2.3. Local Symmetrized Dot Pattern

The SDP method was first proposed by Pickover [23] and applied to the visual repre-
sentation of speech signals. In contrast to time–frequency analysis, this algorithm maps
the normalized time waveform to a symmetric point space, creating a scatter plot related
to the amplitude and frequency of the time series signal on a polar plot, as shown in
Figure 2. Therefore, as a method to convert a one-dimensional time series signal into a
two-dimensional graph, the SDP method can represent the changes in the amplitude and
frequency and the characteristics of the distribution of the time series signals in a more
understandable visual form, which provides a new perspective for fault diagnosis without
frequency domain analysis. Its definition formula is as follows [23]:

r(i) =
xi − xmin

xmax − xmin
(1)

Θ(i) = θ +
xi+l − xmin
xmax − xmin

g (2)

Φ(i) = θ − xi+l − xmin
xmax − xmin

g (3)

In the expression, r(i) is the radius of the ith point in polar coordinates, xi is the
amplitude of the ith sampling point of the original signal, xmin is the minimum value of
the original signal, xmax is the maximum value of the original signal, Θ(i) is the clockwise
deflection angle of the ith point along the mirror symmetry plane in polar coordinates,
l is the delay coefficient, θ is the rotation angle of the mirror symmetry plane, and g is the
deflection angle gain.

The breakthrough of the SDP is that a consistent time lag is adopted, with the consid-
eration that the signal autocorrelation feature may appear as a characteristic pattern at a
certain lag. However, regarding the choice of parameters, there is still a lack of established
methods for determining the appropriate SDP parameters in the existing literature, so the
trial-and-error method is still the most direct way to obtain stable patterns. At present, most
of the research literature on SDP methods for vibration and sound signals recommends
that the value of the delay coefficient should not exceed 10 [24]. However, due to the
consideration of the new object to study the current signal and high sampling rate, the
selection of this study is not limited to the suggested range. After several experiments, it is
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found that when l is around 1000, the image morphology is the best and is insensitive to
small-scale changes, so the following research takes l = 1000. The SDP of a single sample
signal appears as a pair of scatter arms symmetrical about the θ angle, which occupies
only a fraction of the area in polar coordinates. To facilitate the study of the signal char-
acteristics, either the scatter arm of a single sample is generally rotated multiple times to
cover the entire coordinate area, or multiple sample signals are drawn at different θ angles.
The differences in the SDP images are mainly reflected in the following aspects: (i) The
curvature change of the scatter arm. (ii) The thickness and shape characteristics of the
scatter arm. (iii) The geometric center of the scatter arm. (iv) The concentrated area of
the scatter. These differences are mainly affected by factors such as parameter settings,
sampling frequency, signal frequency, and noise distribution. Taking a single frequency
sinusoidal signal as an example, the SDP parameters l = 10, θ = 45◦, g = 30◦ are set. As
shown in Figure 3, for a sinusoidal signal y = sin(2πft) with a fixed sampling frequency fs,
the same image repeatedly appears as the signal frequency f increases. There are differ-
ences in the SDP images presented by the same frequency at different sampling frequencies.
Overall, for the case of f < fs, the scale of the SDP image changes with the increase in the
signal frequency f is negatively correlated with the value of fs. For a multi-frequency signal
y = sin(2π ∗ 300 ∗ t) + sin(2πft), the distribution pattern of the SDP image is significantly
affected by the frequency f of the superimposed signal, as shown in Figure 4. For the
case of a low sampling rate, the distribution pattern of the SDP image has no obvious
regularity with the increase in superposition frequency fs. Nevertheless, for the case of a
high sampling rate, the width and the internal distribution of the scatter arms show a trend
with the increase in the superposition frequency, which is beneficial for the visual analysis
of the signal.
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Figure 2. The principle of SDP. (a) Time−series signal before SDP transformation; (b) Scatter diagram
after SDP transformation.

During the experiment, it was found that due to the low signal-to-noise ratio in the
zero-sequence current, a few samples have some sampling points that deviate from the
overall distance and cause instability in the radial range of the scattered concentrated area
of the classic SDP image. Thus, a local symmetrized dot pattern method is proposed. By
setting the length of the calculation point correlation window, the oscillation range of the
scattered point concentration area is limited, and the influence of the direct removal of
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wild points on the adaptability of the SDP method is avoided. The definition formula is
as follows:

X(i) =
{

xj|i−
h
2
≤ j ≤ i +

h
2

, j ∈ N+

}
(4)

rL(i) =
xi −min(X(i))

max(X(i))−min(X(i))
(5)

ΘL(i) = θ +
xi+l −min(X(i))

max(X(i))−min(X(i))
g (6)

ΦL(i) = θ − xi+l −min(X(i))
max(X(i))−min(X(i))

g (7)

where h is the window length, i is the sampling point number with i ∈
[
1 + h

2 , L− h
2

]
,

L is the sample length, and X(i) is the set of all sampling points in the ith sampling
point window.
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The zero-sequence current is simulated to construct a noisy single frequency signal
y = sin(2π ∗ 50 ∗ t), where the noise is the Gaussian noise with a mean of zero and a
standard deviation of 1. Sampling points with large deviation values are inserted into the
noise signal, as shown in Figure 5. It can be seen from the figure that the scatter distribution
of the classic SDP image is greatly offset by the interference of wild points, and the local
SDP method can better avoid this effect.

2.4. Scatter Density Mapping Based on Kernel Density Estimation

Due to the limitation of the drawing method, the general SDP scatter image loses the
information for the distribution situation in the overlapping area of the scatter. In this study,
the density is mapped to a color map utilizing the scatter probability density estimation
to obtain a richer representation of the SDP visual information. KDE is a nonparametric
test method for estimating unknown density functions [25,26]. In contrast to parametric
methods, KDE methods are not affected by parametric model specification problems, and
these methods can obtain accurate estimates of existing samples without any distribution
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assumptions. The algorithm calculates the adaptive kernel function bandwidth according
to the given sample point set, considers the contribution of other points in the neighborhood
to the probability density of each point x in the bandwidth, and then solves the probability
density function of the sample distribution.
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Figure 5. Comparison of SDP and LSDP. (a) Noise with outliers; (b) Simulated zero sequence current
with outliers; (c) SDP image; (d) LSDP image.
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For a set of independent and identically distributed sample points X = {x1, x2, x3, . . . , xi},
the density estimate x is given by [27]:

f̂ (x) =
1

nh

n

∑
i=1

K
(

x− xi
h

)
(8)

where h(h > 0) is the bandwidth length, K(x) is the kernel function, and xi is the i sample
point. K(x) has to satisfy the following conditions:

K(x) ≥ 0∫
K(x)dx = 1∫

xK(x)dx = 0∫
x2K(x)dx > 0

(9)

Although the KDE method has the problem of kernel function selection, theoretically,
the probability density estimation obtained by any kernel function form is reliable when
the number of samples is large enough. Relevant research specifies that different kernel
functions have little effect on the asymptotic characteristics of the estimator, so the choice of
kernel function is not the focus of KDE. Since the current measurement noise approximates
a Gaussian distribution, the Gaussian kernel function is selected as the kernel function in
this work. The following equations give the kernel function and the KDE function.

K(x) =
1√
2π

exp(−1
2

x2) (10)

f̂ (x) =
1

nh

n

∑
i=1

1√
2π

exp

(
− (x− xi)

2

2h2

)
(11)

For the SDP image, the probability density estimate corresponding to each point is
obtained by combining the r(i) obtained from Equations (1)–(3) with Θ(i) and Φ(i) into a
bivariate matrix and inputting this into Equation (11). The colormap maps each scatter
point to a polar plot with a distinguishable color to obtain a visual representation of the
density of the SDP scatter point image.

2.5. Proposed Method

By combining the aforementioned basic principles, this paper proposes a visualization
method for fault detection based on LSDP and zero-sequence current power frequency
elimination through EMD. The flowchart is shown in Figure 6, and it mainly includes the
following steps:

1. The original signals of the three-phase current of the induction motor under different
working conditions are acquired.

2. The zero-sequence current is obtained by summing the three-phase currents of
each sample.

3. The power frequency components in the zero-sequence current and the frequency
components lower than the power frequency are extracted with EMD, and the cor-
responding IMFs are subtracted from the zero-sequence current signal to obtain the
zero-sequence current signal after eliminating the power frequency.

4. According to the mathematical framework of the LSDP method, an LSDP transfor-
mation is performed on the zero-sequence current signal of each sample, and the
symmetrical image is obtained in polar coordinate space, r(i), Θ(i) and Φ(i).

5. r(i) is combined with Θ(i) and Φ(i) to input the KDE function, calculate the density
estimation corresponding to each scatter point and map it to the color map and obtain
the LSDP image reflecting the probability distribution density of the scatter point.

6. The training set and the test set are randomly divided, and the average image of the
training set LSDP is calculated. The Manhattan distance of the image is obtained by
subtracting the average image from a single test image, and this distance is used as a
judgment index for fault detection.
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3. Experimental Conditions and Results Analysis
3.1. Experimental Platform and Acquisition Conditions

All of the motor current signal acquisition is carried out on the VALENIAN-PT600
motor fault simulation platform, as shown in Figure 7. The experimental platform consists
of two parts: a driving load system and data acquisition system, including the motor, drive
shaft, planetary gearbox, frequency converter, magnetic powder brake, current sensor,
signal acquisition and conditioning equipment, and computer. The main parameters of the
motor are shown in Table 1.
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Table 1. Induction motor parameters.

Power Poles Voltage Current Supply Frequency Speed

1.5 kW 4 220/380 V 6.4/3.7 A 50 Hz 1500 r/min

In the experiment, the current data of four typical faulty motors with three different
loads are collected, and four typical fault states are simulated:

• Normal.
• Broken bar; four rotor bars in the motor rotor are cut to simulate a broken bar fault while

compensating masses are added to correct the resulting unbalanced characteristics.
• Winding short circuit; one stator winding coil is drawn out of the motor junction box

and connected to simulate a short circuit.
• Bearing fault; in order to simplify the experimental conditions, the healthy bearings

on both sides of the motor are replaced with faulty bearings, in which the fan end is
the inner ring faulty bearing, and the drive end is the outer ring faulty bearing.

The signals for all motor fault states are obtained for three different load conditions
(0 HP at no load, 1 HP at half load, and 2 HP at full load), so 12 different cases are included
in the dataset. The sampling frequency of the acquisition system is set to 200 kHz, and
200 samples are collected for each fault state, each lasting 0.25 s (50,000 sampling points),
so there are 2400 samples in total.

3.2. Zero-Sequence Current Analysis and EMD De-Power Frequency Results

According to the implementation procedure proposed in Section 2, the zero-sequence
components are obtained by summing the three-phase current signals. It can be seen
in Figure 8 that the time-series signal of the zero-sequence current contains the power
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frequency of 50 Hz and cannot reflect the obvious fault characteristics. The power frequency
and its harmonics are more clearly reflected in the zero-sequence current power spectrum
shown in Figure 9. By decomposing the zero-sequence current with the EMD method,
the IMF components in multiple frequency ranges can be obtained. Taking the zero-
sequence current of the motor in the normal state as an example, Figure 10 shows the
power spectrum corresponding to each IMF component obtained with decomposition. The
frequency components of the first to sixth IMF components are complex, and their energy is
concentrated in the high-frequency components, while the energy of the seventh and eighth
IMF components is mainly concentrated in 50 Hz and its multiplication frequency. Because
the fault characteristic frequency of the motor is generally higher than the power frequency,
the influence of the power frequency component and the low-frequency component on
the detection result can be removed by subtracting the last four IMF components from
the original zero-sequence current signal. Figure 11 shows the zero-sequence current and
its power spectrum after eliminating the power frequency. It can be seen that the power
frequency component has been removed, but there is still no obvious fault characteristic
frequency in the power spectrum.
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3.3. Comparison of the SDP Method and the LSDP Method

The setting θ = 60
◦
, g = 30

◦
, according to Formulas (1)–(3), the SDP coordinates

r(i), Θ(i) and Φ(i) can be obtained and drawn in polar coordinates. Figure 12 shows the
SDP images of some samples under full load conditions. It can be seen that the scatter
distribution of the normal samples is further away from the polar coordinate center than
the other three types of faults, but there are several fault samples whose distribution is
close to the normal samples, which is infaust to the distinction between normal samples
and fault samples. In addition, as mentioned above, due to the interference of wild points,
the size of the classic SDP image has obvious fluctuations.
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The setting θ = 60
◦
, g = 30

◦
and h = 4000, the LSDP coordinates rL(i), ΘL(i) and ΦL(i)

are calculated with Equations (4)–(7) and plotted in polar coordinates. Corresponding to
the samples illustrated in Figures 12 and 13 show the LSDP images for the same partial
sample set with the full load conditions. Compared with the SDP image, the LSDP image is
more stable in size and has better distinguishability for samples that are difficult to define
by the SDP, such as the last sample of the broken bar in Figure 12.
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By linearly stacking all sample images at each fault state, Figure 14 shows the com-
parison between the average images of SDP and LSDP. Although the LSDP sacrifices part
of the visually significant difference, the obtained sample images improve the stability.
Generally speaking, for the images drawn by the SDP method and the LSDP method, the
distribution patterns of the fault types are relatively similar, and the distance from the
normal sample to the polar coordinate center is often further than the fault sample, which
denotes that the fault characteristics are mainly reflected in the distribution of r(i). Since
both methods have simple linear mappings, it is possible to explain this phenomenon from
a distributional point of view easily. This study attempts to mine the fault information
hidden in the zero-sequence current through the SDP and its derived methods, which is
essential to identifying the fault characteristic frequency submerged in the noise. With the
assumption that a Gaussian noise is a measurement noise, the specific frequency sine signal
is a fault signal, and its independent distribution and mixture distribution are shown in
Figure 15b. The normally distributed noise signal is affected by the fault signal, and the
center of gravity of the distribution tends to spread out toward the ends of the range, which
is reflected in the SDP polar coordinate image as an increase in the number of points near
the origin and boundary. Therefore, when the fault characteristic frequency is present in
the zero-sequence current, there are more points near the center of the polar coordinates in
the SDP image.
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Figure 15. Influence of distribution on SDP image. (a) Time domain signal; (b) Distribution histogram
of sampling points; (c) SDP image.

By substituting the polar coordinate data obtained by the SDP and the LSDP into the
KDE function given in Equation (10), after obtaining the probability density estimation
value corresponding to each sample point, the SDP and LSDP scatter diagrams with
colormaps can be redrawn, as shown in Figures 16 and 17. Under full load conditions,
there are still obvious fluctuations in the size and distribution pattern of the normal sample
and three types of faults in the SDP scatter image mapped using KDE. The scatter density
image estimated with the LSDP and the kernel density has more consistent distribution
characteristics. The difference in the stability between the two methods is more pronounced
in the averaged images, as shown in Figure 18. The average image brightness of the LSDP
scatter density is higher with sharper edges.
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3.4. Fault Detection by Image Distance

The sample images under various working conditions are randomly divided into
training/test sets according to the proportion of 75/25, in which the training set is used to
calculate the average image. The Manhattan distance from the sample image to the average
image is directly obtained from the sum of the absolute values of the RGB differences of
the corresponding pixels. For an m × n image, the Manhattan distance formula is

dManhattan =
m

∑
i=1

n

∑
j=1

∣∣xij − yij
∣∣ (12)

where xij, yij are the values of the ith row and jth column of the two image matrices, respectively.
For the full load condition of 200 sample data (800 samples in total) in each fault state,

four average images are calculated according to the 150 sample images in each fault state,
and the Manhattan distance is calculated for the remaining 200 sample images. Figure 19
shows the needle diagram of the Manhattan distance from the 200 sample images of the
LSDP-KDE method to the average image under the full load, for which the first 50 samples
are normal. Since the distribution and the shape of normal and fault samples in the scatter
diagram have obvious reflected differences, a reliable index reference can be obtained
through simple image distance calculation. By randomly selecting 75% of the images as the
material for calculating the average image and the remaining images as the test samples,
fault detection accuracy is investigated. The fault state of the test image is determined
according to the minimum distance between the sample image and the four average images.
Ten tests are conducted for a single working condition and method. The statistical analysis
and the expected value are shown in Figure 20 and Table 2. Comparing the SDP and
LSDP methods, the detection accuracy of the LSDP method is more than 4% higher than
that of the SDP method under the same conditions. The average accuracy of the LSDP
method can reach 96.85% under the full load and 96.3% and 96.4% under no-load and
the half load, respectively, indicating that the LSDP has high effectiveness under different
working conditions. It is worth noting that although the method combined with KDE
makes the visual difference of the images more obvious, the detection effect is reduced.
The problem may be caused by the image distance metrics that are used being insensitive
to differences in color and shape. Capturing these features using machine learning-based
image recognition has the potential to improve the situation. In terms of distribution, the
ability of the LSDP method to improve the robustness of fault detection is reflected in both
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the more compact box lines in Figure 20 and the smaller standard deviations in Table 2. It
suggests that the SDP and SDP-KDE methods are more influenced by sample selection,
validating the previous analysis of SDP image instability. Overall, the combination with
the LSDP method can obtain better fault detection results.

Entropy 2022, 24, x FOR PEER REVIEW 20 of 22 
 

 

the more compact box lines in Figure 20 and the smaller standard deviations in Table 2. It 
suggests that the SDP and SDP-KDE methods are more influenced by sample selection, 
validating the previous analysis of SDP image instability. Overall, the combination with 
the LSDP method can obtain better fault detection results. 

 
Figure 19. Manhattan distance from sample image to average image. 

 
Figure 20. Histogram boxplot for fault detection using Manhattan distance. 

  

6

7

8

9

10

11

12

13

14
106

0 20 40 60 80 100 120 140 160 180 200
Test Sample Number

Normal
Broken Bar
Winding Short
Bearing Fault

92.1 96.3 85.7 94.35 91.85 96.4 87.85 94.4 90.05 96.85 85.35 94.95
No Load Half Load Full load

80%

85%

90%

95%

100%
SDP LSDP SDP-KDE LSDP-KDE

Figure 19. Manhattan distance from sample image to average image.

Entropy 2022, 24, x FOR PEER REVIEW 20 of 22 
 

 

the more compact box lines in Figure 20 and the smaller standard deviations in Table 2. It 

suggests that the SDP and SDP-KDE methods are more influenced by sample selection, 

validating the previous analysis of SDP image instability. Overall, the combination with 

the LSDP method can obtain better fault detection results. 

 

Figure 19. Manhattan distance from sample image to average image. 

 

Figure 20. Histogram boxplot for fault detection using Manhattan distance. 

  

Figure 20. Histogram boxplot for fault detection using Manhattan distance.



Entropy 2022, 24, 614 20 of 21

Table 2. Correct rate and its standard deviation for fault detection using Manhattan distance.

Working Condition SDP LSDP SDP-KDE LSDP-KDE

No load
average 92.10% 96.30% 85.70% 94.35%

standard deviation 0.0124 0.0116 0.0203 0.0075

Half load
average 91.85% 96.40% 87.85% 94.40%

standard deviation 0.0200 0.0124 0.0176 0.0117

Full load
average 90.05% 96.85 85.35% 94.95%

standard deviation 0.0134 0.0106 0.0199 0.0090

4. Conclusions

In response to the shortage of easy-to-understand feature extraction methods for
various signal analysis techniques, this paper introduces a visual fault detection method
that combines the LSDP and a zero-sequence current. First, the fundamental frequency and
low-frequency IMF components in the zero-sequence current are subtracted with EMD to
eliminate the influence of the fundamental frequency in the original signal. Then, the time
series of zero sequence current is mapped to polar coordinates with the LSDP method, and
the point density is estimated using the KDE method and mapped to a color map to obtain
the sample image with more apparent brightness and edge features. Finally, the Manhattan
distance between the sample image and the average image is used to detect whether there
is a fault.

The test results show that the LSDP method has a better adaptive capability for
outlier points than the classical SDP method. The correct rate of fault detection with
the Manhattan distance can reach up to 99%, and the fault detection rate under different
working conditions is no less than 92%.

This method analyzes the fault characteristics by visualizing the zero-sequence current
and obtains the distribution shape difference between the normal and fault samples. The
use of the KDE method further reinforces this difference while having the potential to
apply machine learning for image recognition. Compared with the SDP, the LSDP method
has better robustness and stability, and it is more effective in detecting motor faults under
different operating conditions. Based on this research, our next work will use SDP images to
enrich the representation of motor current information, combine the advantages of machine
learning in image recognition to further improve the detection performance, and explore
the possibility of classifying faults with these methods. What is more, we believe that this
method still has space for advancement in robustness and feature enhancement, so we will
also focus on further improvement of the method in future work.
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