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Abstract: To take into account the temporal dimension of uncertainty in stock markets, this paper
introduces a cross-sectional estimation of stock market volatility based on the intrinsic entropy
model. The proposed cross-sectional intrinsic entropy (CSIE) is defined and computed as a daily
volatility estimate for the entire market, grounded on the daily traded prices—open, high, low, and
close prices (OHLC)—along with the daily traded volume for all symbols listed on The New York
Stock Exchange (NYSE) and The National Association of Securities Dealers Automated Quotations
(NASDAQ). We perform a comparative analysis between the time series obtained from the CSIE
and the historical volatility as provided by the estimators: close-to-close, Parkinson, Garman–Klass,
Rogers–Satchell, Yang–Zhang, and intrinsic entropy (IE), defined and computed from historical
OHLC daily prices of the Standard & Poor’s 500 index (S&P500), Dow Jones Industrial Average
(DJIA), and the NASDAQ Composite index, respectively, for various time intervals. Our study uses
an approximate 6000-day reference point, starting 1 January 2001, until 23 January 2022, for both
the NYSE and the NASDAQ. We found that the CSIE market volatility estimator is consistently at
least 10 times more sensitive to market changes, compared to the volatility estimate captured through
the market indices. Furthermore, beta values confirm a consistently lower volatility risk for market
indices overall, between 50% and 90% lower, compared to the volatility risk of the entire market in
various time intervals and rolling windows.

Keywords: intrinsic entropy; cross-sectional study; stock market; volatility estimator

1. Introduction

Uncertainty in stock markets is intimately related to time. The temporal dimension of
uncertainty has traditionally been embedded in the volatility estimate of a given exchange-
traded security over a certain time frame. Additionally, the historical volatility of the
entire market can be derived from the volatility of a market index, which is more or less
comprehensive and more or less representative for the market as a whole. The volatility
dynamics of the securities market have challenged researchers and practitioners alike for
decades; directions of interest range from the analysis of time series of individual market
indices [1,2] to portfolio diversification (construction) strategies rooted in cross-sectional
volatility models that aim to discriminate between market and idiosyncratic volatility and
systemic and peculiar risks [3,4].

Cross-sectional volatility is defined as the dispersion of a set of stock returns over a
time interval [5]. For example, if the standard deviation of the returns of stocks is small, it
is concluded that the considered stocks behave similarly, and there is little opportunity to
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outperform the market [6,7]. In a contrasting scenario, high levels of cross-sectional volatil-
ity allow opportunities to be created to construct portfolios with significant differences in
performance, as Ankrim and Ding (2002) argue in [8].

In their cross-sectional study [9], Fama and French (1992) emphasized the empirical
contradiction that average returns on small-cap stocks are too high, given their beta estimate,
and that average returns on large stocks are too low. Resorting to such beta estimates
in cross-sectional studies is a natural and often-used approach, since it measures the
volatility of an individual stock compared to the systematic risk of the entire market or, for
simplification, the volatility risk of a market index. In statistical terms, the betas are the
slopes of the line through a regression of data points for different periods. If the volatility of
the market return is a systematic risk factor, the arbitrage pricing theory or a factor model
predicts that aggregate volatility should also be priced in the cross section of stocks.

Studies of the stock market in such a cross section have mainly concerned portfolio
construction, particularly on how to gauge the sensitivity of selected stocks to their expected
returns, with respect to innovations in aggregate volatility [10,11].

For example, Ang et al. substantiated that such multifactor risk models predict that
aggregate volatility should be a cross-sectional risk factor and consequently used changes
in the VIX index of the Chicago Board Options Exchange (CBOE) to proxy innovations in
aggregate volatility [12]. They investigated how the stochastic volatility of the market is
priced in the cross section of expected stock returns and empirically tested the hypothesis
that stocks with different sensitivities to innovations in aggregate volatility should have
different expected returns. They maintain that volatility has to be priced in the cross section
of stocks as well, should the volatility of market return be a systematic risk factor [13–15].

Many approaches to studying the market in the cross section revolve around exploring
the information content of the cross-sectional dispersion of stock returns to predict volatil-
ity [16–18]. In particular, the research interest has been directed towards incorporating in
volatility models the information provided by the dispersion of stock returns and testing
whether this additional information provides, statistically speaking, more accurate forecasts.
Forecasts could be related to the volatility of the entire market, industry, or sector-level
volatility [19]. Another direction of studies concerns how cross-sectional dispersion in the
returns of different stocks can help predict volatility of a market index, such as the S&P
500 [20].

Some cross-sectional investigations are also conducted to separate aggregate volatility
risk from idiosyncratic volatility, in the context of portfolio selection, and particularly to
hedge against individual or sector idiosyncratic risks, as in [21–24].

Studies in the cross section have also been conducted on the global stock market.
Zunino et al. [25] analysed the price returns of 48 stock market indices from different
countries with the aim of distinguishing the stage of each stock market development
(developed, emerging, or frontier countries) by using the Tarnopolski model representation
space [26]. The Tarnopolski representation space helps plot the number of turning points
of a time series versus its associated Abbe values [27].

Our study did not necessarily aim to directly assist portfolio selection but rather
to provide a comprehensive cross-sectional volatility estimator, constructed taking into
account all the symbols listed and traded on a given market or a subset of symbols built
based on the purpose for the study: sector, industry, localization, diversification, affinity,
etc. To our best knowledge, there is no cross-sectional volatility estimator that

(a) Takes into account all the listed and traded symbols of a given market;
(b) Includes in the model not only the daily OHLC prices, but also the traded volume.

This additional market information provided by the volume of transactions at a given
price level has been recognized and highlighted by Ausloos and Ivanova [28,29]. They pio-
neered a generalized momentum indicator and subsequently proposed a moving average of
the generalized momentum, which is volume-weighted. In doing so, they introduced some
analogy to a generalized Brownian particle’s “time-dependent mass” [30]. The number of
trades and the volume of transactions are measures that indicate investor considerations
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about the evolution of a given stock. In the 1970s, Philippatos and Wilson [31,32] considered
entropy to be a better statistical measure of risk than variance, since entropy does not make
assumptions about the underlying probability distribution. Horowitz and Horowitz [33]
attempted to conclude that entropy measures do contain worthwhile information otherwise
unavailable or rather unrecognized by standard statistical techniques, such as variance
or correlation analysis. Recently, Zhou et al. in [34] reviewed concepts and the principles
concerning entropy models for applications in the field of finance, especially in portfolio
selection and asset valuation. Regarding the traded volume data, in [35] we introduced an
intraday intrinsic entropy model as an indicator to dynamically gauge investors’ interest
in a given exchange-traded security. Therefore, for a given stock, the ratio between daily
volume traded and the overall volume traded in the period is intended to provide addi-
tional information on the history of the intercorrelations between the price and volume of
transactions during the considered time interval.

In such a framework, the research questions of our study are:

1. How does the cross-sectional intrinsic entropy (CSIE) market volatility estimator
of the NYSE and NASDAQ stock markets relate to the volatility evolution of the
corresponding indices, the S&P 500 Index (S&P500), Dow Jones Industrial Average
(DJIA), and the NASDAQ Composite, respectively?

2. Does the volatility of market indices follow the cross-sectional intrinsic entropy as a
volatility estimator for the entire market?

To answer the laid-out research questions, we used an approximate 6000 days of
reference points, starting with 1 January 2001, until 23 January 2022, for both the NYSE
and the NASDAQ. The cross-sectional intrinsic entropy volatility estimator was computed
on a daily basis for the entire data set of 5494 files, the equivalent of 21 years of daily
trading data for the NYSE and NASDAQ. We tested the covariance between the historical
volatility of the market indices S&P500, DJI, NASDAQ Composite, and the cross-sectional
intrinsic entropy (CSIE) volatility estimator. Since the cross-sectional intrinsic entropy
provides daily values, we conducted the tests for various time intervals by computing the
corresponding moving averages for the cross-sectional intrinsic entropy volatility estimator.
The comparison between historical volatility, based on time series, and the moving averages
for the cross-sectional intrinsic entropy volatility estimator was made through multiple
betas corresponding to multiple time intervals. These particular betas measure the risk
rate associated with the volatility of the market indices relative to the volatility risk that
accompanies the entire population of traded symbols provided by the cross-sectional
intrinsic entropy market volatility estimator.

The remainder of the paper is organized as follows. In Section 2 we discuss the
historical data used in the study (Section 2.1) and define the cross-sectional intrinsic entropy
market volatility estimation model, along with its computational methodology (Section 2.2).
In Section 3 we present the results of or study through applications on the NYSE and
NASDAQ stock markets. Note that for readability purposes, we emphasize the NYSE in
the main text and report figures, tables, and notes on the NASDAQ in the Appendices.
Section 4 is dedicated to the analysis of the results, on the basis of which we provide
answers to the research questions. In addition to the cross-sectional intrinsic entropy
model that we propose, our presently main contribution to the field is provided from
the results presented in this article that show that the CSIE market volatility estimator is
consistently at least 10 times more sensitive to market changes, compared to the volatility
estimate captured through the market indices for both the NYSE and the NASDAQ. This
high variability of the market volatility estimate provided by the CSIE corroborates the
lower volatility risk traditionally associated with the market indices. Additionally, we
defined and calculated specific betas as ratios between the covariance of market index
volatility and market volatility estimates provided by CSIE in relation to the variance of
the cross-sectional intrinsic entropy of the market. The beta values confirm a consistently
lower volatility risk for the market indices compared to the entire market on multiple time
intervals and various rolling windows used for computing the volatility estimates: overall,
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between 50% and 90% lower volatility risk. Finally, in Section 5 we conclude our study and
indicate future research directions on volatility forecasting using a cross-sectional intrinsic
entropy model.

2. Materials and Methods
2.1. Discussion of the Historical Data Used in the Study

We conducted the study on end-of-day (EOD) data provided by eoddata.com—Historical
Stock Data—End of Day Data (https://www.eoddata.com, accessed on 28 January 2022) for
two securities markets: The New Your Stock Exchange (NYSE) and the National Association
of Securities Dealers Automated Quotations (NASDAQ). The EOD data consist of a daily
file containing the OHLC prices and volume for all the symbols listed and actually traded
on the market on any given day for the last 20 years. In this respect, we have available for
our research over 6000 days or reference points, starting on 1 January 2001, for both the
NYSE and the NASDAQ. The actual file structure and the data it contains are presented in
Table 1. The NYSE EOD data file for 21 January 2022, contains 3562 symbols; see Table 1
showing the first 12 and the last 12 of them.

Table 1. The beginning and end of the file that contains end-of-day (EOD) trading data for NYSE on
21 January 2022. The first and last 12 symbols are listed to provide an example of the data sample
studied. Prices are in USD, and volume is the number of shares traded throughout the day.

No. Symbol Open High Low Close Volume

1 A 139.54 140.49 137.49 137.51 1,878,600
2 AA 60.02 60.15 56.04 56.21 11,024,900
3 AAC 9.74 9.74 9.72 9.74 1,164,800
4 AAC.U 9.86 9.89 9.84 9.84 45,900
5 AAC.W 0.7202 0.7629 0.6122 0.668 336,900
6 AAI-B 24.88 24.9 24.85 24.9 600
7 AAI-C 25.1 25.1011 24.83 25.04 3100
8 AAIC 3.49 3.49 3.4 3.41 142,400
9 AAIN 25.14 25.14 24.92 24.92 2100
10 AAM-A 25.39 25.49 25.32 25.32 156,700
11 AAM-B 26.75 26.75 26.239 26.26 169,400
12 AAN 21.33 22.24 21 21.32 259,300
. . . . . . . . . . . . . . . . . . . . .

3551 ZH 4.38 4.48 4.15 4.21 1,606,700
3552 ZIM 60.5 61.17 57.1 58.12 5,136,500
3553 ZIP 21.11 21.22 19.87 20.04 739,200
3554 ZME 1.78 1.8999 1.69 1.78 156,900
3555 ZNH 33 33.29 32.28 32.28 12,700
3556 ZTO 29.19 29.24 28.33 28.76 3,125,200
3557 ZTR 9.46 9.48 9.25 9.32 191,700
3558 ZTS 203.11 203.71 200.28 200.33 2,632,900
3559 ZUO 16.18 16.79 15.96 15.96 1,817,700
3560 ZVIA 7.5 8.02 7.4 7.64 168,900
3561 ZWS 32.39 32.39 31.4 31.51 874,600
3562 ZYME 11.43 11.7 11 11.21 953,700

The EOD data for NASDAQ are organized in a similar way. It should be noted that
the historical data files provided by eoddata.com are adjusted for splits, but do not have
adjusted data for dividends. In the EOD data files, for both the NYSE and NASDAQ
markets, prices are in USD. The daily trading volume results from the number of shares
traded per day for each symbol.

It is relevant to note that the number of symbols listed and traded on a daily basis has
evolved considerably over time. Figure 1 shows that about 1000 symbols were listed on the
NYSE in the beginning of 2001, but in the beginning of 2022, over 3500 symbols were listed
and traded. In Appendix A, Figure A1 shows the fact that on the NASDAQ, a higher rate of

https://www.eoddata.com
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new listings has been recorded as well, from a few more than 750 symbols in the beginning
of 2001 to more than 5100 listed and daily traded symbols in the beginning of 2022.
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Figure 1. Evolution of the number of symbols traded on the NYSE over the last 21 years: from
1 January 2001, to 21 January 2022. The red horizontal line marks the number of 1008 symbols listed
on 1 January 2001.

Considering the methodology of our investigation, which uses EOD data for all
symbols listed on the market, this aspect must be taken into account. That is, the number
of symbols traded daily can be assimilated to the number of microstates that the stock
market, as an open system, may actually have. All of these microstates contribute to the
daily cross-sectional intrinsic entropy of the market. For example, Figure 2 shows the
distribution of the closing prices on the NYSE for 21 January 2022.

Entropy 2022, 24, x FOR PEER REVIEW 6 of 31 
 

 

the concept of adding new states (by coarse graining) to a system characterized by dis-

cernible microstates. 

 

Figure 2. The distribution of closing prices on the NYSE: 21 January 2022—only prices less than or 

equal to USD100 (3424 symbols out of 3562) are displayed. Closing prices above USD100 are skipped 

from this graphical representation for readability purposes. 

Within the market as a whole, listed companies (symbols) can hardly be clustered 

solely on the basis of the prices (OHLC) at which their stocks are traded on the exchange. 

They are traditionally grouped on the basis of their activity sector or other intimately pe-

culiar fundamentals. Alternatively, we performed a cluster analysis using OHLC prices 

as variables; see Table 1, for example, with the intention of identifying potential similari-

ties/differences between daily OHLC prices. 

For hierarchical cluster analysis, we employed an agglomerative algorithm, using the 

average clustering method, along with the correlation between variables as metrics [36].  

Figures 3 and 4 show the clusters identified among the OHLC prices over four consecutive 

days: 1–3 and 6 December 2021. 

  

(a) (b) 
Figure 3. The hierarchical clustering among daily prices on NYSE: (a) 1 December 2021; (b) 2 De-

cember 2021. 

Figure 2. The distribution of closing prices on the NYSE: 21 January 2022—only prices less than or
equal to USD100 (3424 symbols out of 3562) are displayed. Closing prices above USD100 are skipped
from this graphical representation for readability purposes.
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We comment that, due to scaling reasons, we consider for this display only prices
less than or equal to USD100 (3424 symbols out of 3562 that were traded on the day). We
skip the closing prices above USD100 since they are recorded for less than 4% of the total
number of traded symbols.

Therefore, a legitimate question would be the following: Are the daily intrinsic entropy
estimates comparable since the number of traded companies (microstates) may differ from
day to day? In fact, historically, a continuous increase in the number of listed and traded
symbols has generally been recorded on any given exchange. It is a natural process; more
and more private companies reach the size, complexity of their operations, and financial
needs that present the proposition of going public.

Securities markets are not isolated systems; symbols (companies) are listed, delisted,
traded, and restricted from being traded as part of the process of having an open and
dynamic marketplace. If we consider the listed companies as microstates within the stock
exchange as an unclosed system, then the extensive property of the entropy still holds only
if the constituents are distinguishable. This condition is in fact satisfied, since the system
constituents are very precisely defined entities, and the analogy is consistent with the
concept of adding new states (by coarse graining) to a system characterized by discernible
microstates.

Within the market as a whole, listed companies (symbols) can hardly be clustered
solely on the basis of the prices (OHLC) at which their stocks are traded on the exchange.
They are traditionally grouped on the basis of their activity sector or other intimately
peculiar fundamentals. Alternatively, we performed a cluster analysis using OHLC prices
as variables; see Table 1, for example, with the intention of identifying potential similari-
ties/differences between daily OHLC prices.

For hierarchical cluster analysis, we employed an agglomerative algorithm, using the
average clustering method, along with the correlation between variables as metrics [36].

Figures 3 and 4 show the clusters identified among the OHLC prices over four consec-
utive days: 1–3 and 6 December 2021.
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It should be noted that on 1 and 3 December 2021, the NYSE S&P 500 index closed
lower than the opening price, while on 2 and 6 December 2021, the index closed at a higher
price than the opening price.
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Therefore, the clusters identified among the OHLC prices reflect the similarities be-
tween Open and High, Close, and Low, respectively, for the days in which the index closed
lower than its opening. On the contrary, for the days in which the S&P 500 closed higher
than its opening, the clusters of OHLC prices reflect the similarities between Close and
High, Open, and Low, respectively. A cluster analysis of OHLC prices revealed that simi-
larities and differences among these prices can change on a daily basis, as a confirmation of
the way in which trading activity is driven by investors’ actions throughout the day.

2.2. The Cross-Sectional Intrinsic Entropy (CSIE) Model and Methodology

The CSIE model considers EOD data for various time intervals; therefore, the methodology
must take into account that the data are distributed in multiple files, each file containing the
EOD data for all the symbols that are traded in a given day di; di ∈ {d1, d2, d3, . . . , dk, . . . , dn},
where i is the number of days in the studied time interval, i ∈ {1, 2, 3, . . . , n}. Table 2
offers a systematised perspective of the data used in the model studied.

For each symbol xi listed and traded in the day dk, we have the following available:

- xO
i —the open (O) price;

- xH
i —the high (H) price;

- xL
i —the low (L) price;

- xC
i —the close (C) price;

- xV
i —the traded volume (V).

The values {m1, m2, m3, . . . , mk, . . . , mn} represent the number of the symbols listed
and traded on the market in the corresponding days {d1, d2, d3, . . . , dk, . . . , dn}.

The total value traded daily, considered at the end of each trading day dk, is given by
the following relation:

Sdk
=

mk

∑
i=1

xC
i xV

i , for k ∈ [1, n], (1)

xC
i and xV

i being the close price and the traded volume for the symbol xi. Therefore, for
each daily xi, the daily weight of a symbol’s value in the overall traded value Sdk

on day dk
is defined as:

ψ
xi
dk

=
xC

i xV
i

Sdk

, for i ∈ [1, mk], (2)
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where mk is the number of the symbols listed and traded on the market in the corresponding
day dk.

If we notate sxi
dk

= xC
i xV

i , ∀ xi ∈
{

x1, x2, x3, . . . , x mk

}
, f or k ∈ [1, n], then

ψ
xi
dk

=
sxi

dk

Sdk

, for i ∈ [1, mk]. (3)

Such ratios ψ
xi
dk

denote the portion of the traded value corresponding to the symbol xi in
the overall value Sdk

, the total amount of money exchanged on the market on day dk.

Table 2. Daily data (open, high, low, and close prices along with the traded volume) for each listed
symbol xi and trading day tk.

Day Symbol Open High Low Close Volume

d1

x1 . . .
x2 . . .
x3 . . .
. . . . . . . . . . . . . . . . . .
xm1 . . .

d2

x1 . . .
x2 . . .

. . .
. . . . . . . . . . . . . . . . . .
xm2 . . .

. . .

dk

x1 xO
1 xH

1 xL
1 xC

1 xV
1

x2 xO
2 xH

2 xL
2 xC

2 xV
2

. . . . . . . . . . . . . . . . . .
xmk xO

mk
xH

mk
xL

mk
xC

mk
xV

mk

. . .

dn

x1 . . .
x2 . . .
x3 . . .
. . . . . . . . . . . . . . . . . .
xmn . . .

With the above notation, the cross-sectional intrinsic entropy model is the following.

Hdk
=
(
1− fdk

)
HOC

dk
+ fdk

HOLHC
dk

(4)

The components HOC
dk

and HOLHC
dk

are defined as follows:

HOC
dk

= −
mk

∑
i=1

(
xC

i
xO

i
− 1

)
ψ

xi
dk

ln ψ
xi
dk

(5)

HOLHC
dk

= −
mk

∑
i=1

[(
xH

i
xO

i
− 1

)(
xH

i
xC

i
− 1

)
+

(
xL

i
xO

i
− 1

)(
xL

i
xC

i
− 1

)]
ψ

xi
dk

ln ψ
xi
dk

(6)

fdk
=

α− 1

α + mk+1
mk−1

(7)

∀ dk ∈ {d1, d2, d3, . . . , dn}, for mk ∈ {m1, m2, m3, . . . , mn}.
We comment that Equation (4) contains in the right-hand-side term a linear combi-

nation between the CSIE component weighted with the variation between the close the
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open prices HOC
dk

and the CSIE component weighted with OHLC variations HOLHC
dk

, in the
manner introduced for the intrinsic entropy (IE) volatility estimator [37].

The IE model is a time-series-based volatility estimator. It is conceived to use his-
torical daily OHLC prices available for any exchange traded securities: stocks, market
indices, commodities, ETFs, etc. The computation methodology is similar to all the others
variance-based historical volatility estimators: classical close-to-close, Garman–Klass [38],
Parkinson [39], Rogers–Satchell [40,41], Yang–Zhang [42].

The value of fdk
from (7) is consistent with the determination by Yang and Zhang. In

their influential paper on drift-independent volatility estimation using OHLC prices, they
searched for a value k (see Equation (11)) for which the variance of the volatility estimator
reaches the minimum [42]. Based on the work of Rogers and Satchel [40], who showed that
α ≤ 2 by using triangle inequality, Yang and Zhang calculated that α ≤ 1.5 for all drifts.
When the drift is zero, α reaches the minimum value. Therefore, based on the Garman and
Klass [38] formulas of moments, Yang and Zhang calculated the value 1.331 for α, when
the drift is zero. To optimize their volatility estimator for situations exhibiting a small drift,
Yang and Zhang suggested setting α = 1.34 in practice. Since the significance of the terms
HOC

dk
and HOLHC

dk
is similar to that of VOC and VRS from the Yang–Zhang volatility estimator

(11), we followed the same rationale for using α = 1.34 to calculate the weight fdk
.

The number of daily traded symbols, mk ∈ {m1, m2, m3, . . . , mn}, is not a stationary
value (see Figure 1); hence, it has to be assessed for each day, dk ∈ {d1, d2, d3, . . . , dn}
from the considered time interval. Since we cannot rely on the close price from the previous
day for each individual symbol, and since there is no guarantee that a given symbol is
traded every single day in the considered time frame, the daily CSIE relies only on the
symbols that are actually traded in that day and are contained in the corresponding daily
file. Not only is the size of the file not a constant, but its set of symbols content can also vary.

Unlike volatility estimation using the IE model that we introduced in [37], the value fdk

was used for weighting the component HOLHC
dk

, which quantifies the daily fine variations

between the OHLC prices, while the difference
(
1− fdk

)
was used for weighting HOC

dk
,

which accounts for the coarse variation between daily open and close prices.

3. Results

We now present our empirical results on the cross-sectional intrinsic entropy (CSIE)
for the NYSE and the NASDAQ. The daily CSIE for the NYSE between 1 January 2001 and
21 January 2022 is shown in Figure 5.

Along with the daily evolution of CSIE, 5295 reference points, Figure 5 depicts the
60-day moving average of CSIE for the entire time interval.

Furthermore, Figure 6 emphasizes the evolution of the number of symbols traded on
the NYSE, on a daily basis, for the entire time interval of available data used in our study,
21 years, between 1 January 2001 and 21 January 2022. This provides a perspective of the
daily volatility estimates for the NYSE, together with the evolution of the number of listed
and daily traded companies as microstates within the stock exchange.

We provide in Appendix A Figures A2–A4, which show the evolution of CSIE for the
NASDAQ in the same time interval, from 1 January 2001, to 21 January 2022, and the same
number of 5295 reference points.

We comment that the daily CSIE market volatility estimates exhibit significant day-to-
day variability on both the NYSE and the NASDAQ. To capture trends of market volatility
in shorter time windows, we computed moving averages of the CSIE for both the NYSE
and the NASDAQ.

Figure 7 shows the 60-day moving average of the cross-sectional intrinsic entropy
of the NYSE between 1 January 2001 and 21 January 2022. It is noticeable in Figure 7
that even smoothed through the moving average of 60 days, the variability of the CSIE is
considerably higher compared to the corresponding historical volatility estimates of the
SP&500 in the same time interval. In Figure 8, from top to bottom, we present the evolution
of daily closing prices of the S&P500 stock market index, along with historical volatility
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estimates provided by intrinsic entropy (IE), Yang–Zhang, Rogers–Satchell, Garman–Klass,
Parkinson, close-to-close (Raw) volatility estimators, and the traded volume.
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We now present our empirical investigation into the CSIE stock market volatility
estimator variability for the NYSE and the NASDAQ and relate it to the historical volatility
estimates computed for the representative indices of the two markets: S&P500, DJIA, and
the NASDAQ Composite index, respectively. For each estimator of historical volatility
and for various time intervals, we computed the variance and mean as follows. The
datasets for daily OHLC prices of the stock market indices for both the NYSE and the
NASDAQ, along with the daily traded volume, were sourced from Yahoo! Finance (https:
//finance.yahoo.com/, accessed on 28 January 2022). These are time series of historical
data, as opposed to cross-sectional data that we used in the model of the CSIE market
volatility estimator.

Var = σ2
V̂ =

1
n

n

∑
i=1

(
V̂i − V̂

)2
, Mean = V̂ =

1
n

n

∑
i=1

V̂i . (8)

To avoid cluttering the presentation, the historical volatility estimators that we consider for
our analysis are the classical close-to-close estimator, along with the advanced volatility
estimators Rogers–Satchell, Yang–Zhang, and the intrinsic entropy volatility estimator (IE).

We present briefly the historical volatility estimators based on daily OHLC prices and
traded volume using the following notation:

- Oi—the open price of day i;
- Ci−1—the closing price of the previous day i − 1;
- Hi—the high price of day i;
- Li—the low price of day i;
- Ci—the closing price of day i;
- qi—the traded volume (number of index contracts) of day i.

for i ∈ [1, n], n being the number of days in the time interval considered.
With this notation, we write the classical close-to-close volatility estimator,

VCC =

√
1
n

n

∑
i=1

ln
(

Ci
Ci−1

)
, (9)

the Rogers–Satchell Volatility Estimator,

VRS =

√
1
n

n

∑
i=1

[
ln
(

Hi
Oi

)
ln
(

Hi
Ci

)
+ ln

(
Li
Oi

)
ln
(

Li
Ci

)]
, (10)

and the Yang–Zhang volatility estimator.

VYZ =
√

V2
CO + k V2

OC + (1− k) V2
RS. (11)

where V2
CO is the overnight volatility, between the previous close and the current open, and

V2
OC is the open-to-close volatility of the current trading day.

V2
CO =

1
n

n

∑
i=1

[
ln
(

Oi
Ci−1

)
− µCO

]2
(12)

V2
OC =

1
n

n

∑
i=1

[
ln
(

Ci
Oi

)
− µOC

]2
(13)

The values µCO = 1
n ∑n

i=1 ln
(

Oi
Ci−1

)
and µOC = 1

n ∑n
i=1 ln

(
Ci
Oi

)
are corresponding averages

of the previous close to current open log-return and current open-to-close log-return in the

https://finance.yahoo.com/
https://finance.yahoo.com/
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considered time interval, respectively. Yang and Zhang chose the constant k to minimize
the variance of the VYZ estimator:

k =
0.34

1.34 + n+1
n−1

. (14)

The intrinsic entropy (IE) volatility estimator:

H = HCO + k HOC + (1− k) HOHLC, (15)

where the IE component HCO estimates the overnight volatility, the component HOC is the
open-to-close IE estimates weighted with k, and the IE HOHLC represents the fine estimate
of volatility during the day, weighted with (1 − k).

The IE components are written as follows:

HCO = −
n

∑
i=1

ln
(

Oi
Ci−1

)
pi−1 ln pi−1 , (16)

HOC = −
n

∑
i=1

ln
(

Ci
Oi

)
pi ln pi , (17)

HOHLC = −
n

∑
i=1

[
ln
(

Hi
Oi

)
ln
(

Hi
Ci

)
+ ln

(
Li
Oi

)
ln
(

Li
Ci

)]
pi ln pi , (18)

p1 =
q1

Q
, p2 =

q2

Q
, p3 =

q3

Q
, . . . , pn =

qn

Q
,

n

∑
i=1

pi = 1, Q =
n

∑
i=1

qi . (19)

Table 3 presents the mean values of the volatility estimates of the S&P500, provided
by the historical volatility estimators: close-to-close, Rogers–Satchell, Yang–Zhang, and
intrinsic entropy (IE). We comment that the time perspective goes backwards, starting
with 21 January 2022, all the way towards 1 January 2001, for various time intervals and
rolling windows. In the case of the cross-sectional intrinsic entropy (CSIE) of the NYSE
stock market, a window size equal to the indicated number of days was used to calculate
the corresponding moving average.

We note that the mean values of the CSIE market volatility estimate exhibit an order
of magnitude comparable to the historical volatility estimates of S&P500 provided by the
variance-based estimators: close-to-close, Rogers–Satchell, and Yang–Zhang. Intrinsic
entropy estimates of the volatility of the S&P500 volatility were consistently lower due to
the weight of the embedded traded volume. In Appendix B, Table A1 presents the mean
values of the volatility estimates of the NASDAQ Composite for similar time intervals and
rolling windows. In the case of CSIE of the NASDAQ stock market, a window size equal to
the indicated number of days was used to calculate the corresponding moving average.

Regarding the variability comparison, we present in Table 4 the variance of the volatil-
ity estimates of the S&P500 for various time intervals and rolling windows. For the CSIE of
the NYSE stock market, a window size equal to the indicated number of days was used to
calculate the corresponding moving average.

We point out that the variance exhibited by the volatility estimates provided by CSIE
of the NYSE stock market was consistently higher, with at least one order of magnitude,
than the estimates provided by the volatility estimators for SP&500, for all time intervals
and rolling windows/moving averages. As a statistical measure of the dispersion of data
points around the mean, the variance figures exhibited by the cross-sectional intrinsic
entropy estimate of market volatility show that CSIE captures volatility jumps that are not
reflected in the historical volatility estimates of the corresponding market indices.
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Table 3. Mean values of the volatility estimate of the S&P500, for various time intervals and rolling windows. For the cross-sectional intrinsic entropy of the NYSE
stock market, a window size equal to the indicated number of days was used to calculate the corresponding moving average.

Time Interval
(Days)

Rolling
Window/Moving
Averages (Days)

Close-to-Close
(S&P500)

Rogers–Satchell
(S&P500) Yang–Zhang (S&P500) Intrinsic

Entropy (S&P500)

Cross-Sectional
Intrinsic Entropy (NYSE

Stock Market)

30 5 0.00943 0.00736 0.00916 −0.00010 −0.00042
60 5 0.00825 0.00670 0.00842 0.00023 −0.00390

120 5 0.00734 0.00607 0.00755 0.00025 0.00115
260 5 0.00748 0.00615 0.00762 0.00031 0.00507
520 5 0.01156 0.00835 0.01143 0.00042 0.00644
780 5 0.01016 0.00754 0.01026 0.00038 0.00520

1300 5 0.00850 0.00654 0.00879 0.00035 0.00268
5295 5 0.00969 0.00755 0.00914 0.00013 0.00197

30 10 0.01031 0.00779 0.00910 0.00011 0.00031
60 10 0.00846 0.00663 0.00785 0.00042 −0.00148

120 10 0.00758 0.00615 0.00718 0.00038 0.00185
260 10 0.00783 0.00631 0.00734 0.00047 0.00550
520 10 0.01194 0.00851 0.01098 0.00057 0.00662
780 10 0.01054 0.00772 0.00988 0.00053 0.00538

1300 10 0.00883 0.00668 0.00844 0.00049 0.00273
5295 10 0.00999 0.00768 0.00876 0.00019 0.00198

30 20 0.01084 0.00782 0.00905 0.00039 −0.00149
60 20 0.00853 0.00657 0.00762 0.00079 0.00101

120 20 0.00777 0.00614 0.00701 0.00053 0.00265
260 20 0.00802 0.00642 0.00726 0.00067 0.00611
520 20 0.01228 0.00867 0.01090 0.00070 0.00681
780 20 0.01093 0.00792 0.00987 0.00064 0.00564

1300 20 0.00912 0.00683 0.00838 0.00061 0.00277
5295 20 0.01018 0.00779 0.00865 0.00023 0.00199

30 30 0.01055 0.00769 0.00886 0.00065 −0.00508
60 30 0.00876 0.00670 0.00770 0.00096 0.00061

120 30 0.00779 0.00611 0.00694 0.00062 0.00232
260 30 0.00802 0.00648 0.00726 0.00076 0.00618
520 30 0.01253 0.00879 0.01098 0.00077 0.00680
780 30 0.01121 0.00808 0.00998 0.00068 0.00571

1300 30 0.00929 0.00693 0.00843 0.00067 0.00273
5295 30 0.01031 0.00787 0.00866 0.00026 0.00198
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Table 4. Variance of the volatility estimates of the S&P500, for various time intervals and rolling windows. For the cross-sectional intrinsic entropy of the NYSE stock
market, a window size equal to the indicated number of days was used to calculate the corresponding moving average.

Time Interval (Days)
Rolling

Window/Moving
Averages (days)

Close-to-Close
(S&P500)

Rogers–Satchell
(S&P500) Yang–Zhang (S&P500) Intrinsic

Entropy (S&P500)

Cross-Sectional
Intrinsic Entropy

(NYSE Stock Market)

30 5 0.00000759 0.00000592 0.00000696 0.00000114 0.00057896
60 5 0.00001730 0.00000758 0.00001067 0.00000101 0.00062291

120 5 0.00001468 0.00000680 0.00000966 0.00000079 0.00047097
260 5 0.00001604 0.00000718 0.00000962 0.00000089 0.00047996
520 5 0.00015079 0.00003773 0.00008895 0.00000619 0.00064512
780 5 0.00011313 0.00003009 0.00006726 0.00000470 0.00049370

1300 5 0.00008053 0.00002380 0.00005021 0.00000320 0.00044034
5295 5 0.00006418 0.00002518 0.00003782 0.00000109 0.00049417

30 10 0.00000404 0.00000281 0.00000332 0.00000124 0.00027476
60 10 0.00001236 0.00000506 0.00000667 0.00000083 0.00033828

120 10 0.00001000 0.00000440 0.00000588 0.00000069 0.00023856
260 10 0.00000990 0.00000523 0.00000627 0.00000080 0.00019848
520 10 0.00013097 0.00003460 0.00007445 0.00000654 0.00027691
780 10 0.00009804 0.00002763 0.00005633 0.00000507 0.00021626

1300 10 0.00007029 0.00002181 0.00004200 0.00000336 0.00021329
5295 10 0.00005541 0.00002323 0.00003182 0.00000113 0.00024167

30 20 0.00000148 0.00000066 0.00000099 0.00000060 0.00012659
60 20 0.00000831 0.00000276 0.00000367 0.00000055 0.00018233

120 20 0.00000635 0.00000251 0.00000335 0.00000044 0.00011421
260 20 0.00000526 0.00000354 0.00000395 0.00000039 0.00009808
520 20 0.00011745 0.00003120 0.00006522 0.00000769 0.00012978
780 20 0.00008751 0.00002478 0.00004916 0.00000584 0.00010777

1300 20 0.00006315 0.00001968 0.00003686 0.00000370 0.00010785
5295 20 0.00004976 0.00002152 0.00002834 0.00000119 0.00012040

30 30 0.00000053 0.00000016 0.00000016 0.00000038 0.00002969
60 30 0.00000448 0.00000143 0.00000191 0.00000035 0.00007546

120 30 0.00000407 0.00000165 0.00000219 0.00000032 0.00005117
260 30 0.00000362 0.00000267 0.00000284 0.00000031 0.00005592
520 30 0.00011057 0.00002859 0.00005993 0.00000720 0.00007168
780 30 0.00008181 0.00002254 0.00004499 0.00000533 0.00006723

1300 30 0.00005956 0.00001816 0.00003410 0.00000334 0.00006915
5295 30 0.00004683 0.00002042 0.00002657 0.00000106 0.00007920
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In Appendix B, Table A2 presents the variance of the volatility estimates of the NAS-
DAQ Composite for similar time intervals and rolling windows/moving averages. The
result data confirm that the volatility estimates provided by CSIE of the NASDAQ stock
market are consistently higher, with at least one order of magnitude, than the estimates
provided by the volatility estimators for the NASDAQ Composite index, for all time inter-
vals and rolling windows/moving averages. Comparative mean and variance results show
that the CSIE of both the NYSE and the NASDAQ exhibits a significantly higher sensitivity
to changes in volatility at the market level when we take into account all traded companies,
compared to the historical volatility estimates of the corresponding market indices.

4. Discussion

In addition to variance and mean as indicators that individually characterize volatility
estimators, we tested the overall correlation between the CSIE volatility estimates and the
volatility estimates of the market indices, namely the S&P500 of the NYSE. Estimators
concerning historical volatility, close-to-close, Parkinson, Garman–Klass, Rogers–Satchell,
and Yang–Zhang, were defined and computed based on the OHLC prices time series of
market indices. The intrinsic entropy (IE) volatility estimator also used the daily OHLC
prices of the market indices, along with the daily traded volume.

In contrast to the time series used for historical volatility estimates of market indices,
the CSIE market volatility estimator used cross-sectional data, that is, daily OHLC prices
for all traded stocks on the market, to compute daily CSIE estimates. We now present the
correlation between the volatility estimates for the S&P500 and the CSIE of the NYSE stock
market, computed for multiple time intervals and rolling windows. In the case of the CSIE
market volatility estimate of the NYSE, a window size equal to the indicated number of
days was used to calculate the corresponding moving average.

We underline that the weighting components of the entropic model in Equations (4)–(6)
and (15)–(18) can generate positive values under the sum and, therefore, negative values
for the CSIE market volatility estimate (see the mean values in Table 3, Figures 5–7 and
the following). It is the same feature exhibited by the IE on time series. We provide
an interpretation of this feature in [31,33], which holds for all intrinsic entropy models
(intraday IE, IE as historical volatility estimator, and CSIE market volatility estimator),
namely: a negative value indicates a preponderantly sell movement in the market for the
considered exchange-traded security, while a positive value indicates an inclination to buy.

To work with comparable entities, the IE volatility estimate of the market index and the
cross-sectional intrinsic entropy, as a volatility estimate of the whole market, are computed
in such a way as to produce positive values. Therefore, the relation (4) to calculate the CSIE
estimate of market volatility becomes:

Hdk
=
(
1− fdk

)∣∣∣HOC
dk

∣∣∣+ fdk

∣∣∣HOLHC
dk

∣∣∣ (20)

Similarly, departing from relation (15), the intrinsic entropy (IE) estimate of the market
index volatility estimate becomes as follows:

H =
∣∣∣HCO

∣∣∣+ k
∣∣∣HOC

∣∣∣+ (1− k)
∣∣∣HOHLC

∣∣∣ (21)

Table 5 presents the Pearson correlation coefficient values between the volatility estimates
for the S&P500 and the CSIE of the NYSE stock market. In the case of the CSIE of the NYSE
stock market, a window size equal to the indicated number of days was used to calculate
the corresponding moving average. The detailed results presented in Table 5 are shown in
Figure 9.

Overall, we noticed a consistent correlation between the CSIE volatility estimate of the
NYSE market and the historical volatility estimates of the S&P500, for all considered time
intervals and rolling windows/moving averages.
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of 5, 10, 20, and 30 days (see Table 6).

The least correlation with the CSIE volatility estimates of the NYSE market is shown
by the volatility estimate of the S&P500 provided by the intrinsic entropy (IE). We comment
that the IE estimates of the volatility of the S&P500 volatility are consistently lower due
to the weight of the embedded traded volume. Consequently, the volume weighting in
the IE volatility estimate, concerning the trading of S&P500, does not follow the volume
weighting in the CSIE market volatility estimates, since it concerns the traded volume of
each listed stock on the NYSE.

We now present the betas, defined ad hoc and computed as ratios between the co-
variances of market index volatility and market volatility estimates provided by CSIE, in
relation to the variance of the cross-sectional intrinsic entropy of the market.

βindex
E,t,w =

Cov
(

Vindex
E,t,w , Vmarket CSIE

t,w

)
Var

(
Vmarket CSIE

t,w

) (22)

where Vindex
E,t,w is the index volatility estimates, computed based on rolling windows of w-day,

within the t-day time interval, and Vmarket CSIE
t,w is volatility estimates of the entire market

based on the cross-sectional intrinsic entropy and computed for the same t-day time interval.
Index volatility estimates E are provided by the estimators, close-to-close, Parkinson,
Garman–Klass, Rogers–Satchell, Yang–Zhang, and intrinsic entropies are defined and
calculated based on historical OHLC daily prices of the S&P500 market index. We computed
the beta values for time intervals of 30, 60, 120, 260, 520, 780, 1300, and 5295 days and
rolling windows/moving averages of 5, 10, 20, and 30 days.

Table 6 presents the beta of the volatility estimates for the S&P500, relative to the CSIE
of the NYSE stock market. In the case of the cross-sectional intrinsic entropy of the NYSE
stock market, a window size equal to the indicated number of days was used to calculate
the corresponding moving average. Figure 10 shows the beta values for the volatility
estimates of the S&P500, relative to the CSIE of the NYSE stock market. We point out that



Entropy 2022, 24, 623 18 of 32

for each time interval, there are four rolling windows/moving averages of 5, 10, 20, and
30 days (see Table 6).

Table 5. Pearson’s correlation coefficient between volatility estimates for the S&P500 and the cross-
sectional intrinsic entropy of the NYSE stock market. For the cross-sectional intrinsic entropy of the
NYSE stock market, a window size equal to the indicated number of days was used to calculate the
corresponding moving average.

Time Interval
(Days)

Rolling
Window/Moving
Averages (days)

Close-to-Close
(S&P500) Relative
to Cross-Sectional
Intrinsic Entropy

Rogers–Satchell
(S&P500) Relative
to Cross-Sectional
Intrinsic Entropy

Yang–Zhang
(S&P500) Relative
to Cross-Sectional
Intrinsic Entropy

Intrinsic Entropy
(S&P500) Relative
to Cross-Sectional
Intrinsic Entropy

30 5 0.445 0.470 0.619 0.423
60 5 0.589 0.629 0.712 0.547

120 5 0.545 0.518 0.586 0.425
260 5 0.562 0.500 0.540 0.218
520 5 0.684 0.724 0.715 0.508
780 5 0.704 0.749 0.735 0.498

1300 5 0.740 0.787 0.776 0.525
5295 5 0.802 0.774 0.802 0.481

30 10 0.723 0.619 0.746 0.811
60 10 0.597 0.578 0.659 0.672

120 10 0.656 0.602 0.673 0.539
260 10 0.613 0.618 0.645 0.394
520 10 0.800 0.820 0.816 0.526
780 10 0.803 0.833 0.820 0.498

1300 10 0.826 0.860 0.848 0.517
5295 10 0.861 0.841 0.855 0.492

30 20 0.912 0.774 0.908 0.676
60 20 0.642 0.655 0.707 0.484

120 20 0.719 0.694 0.753 0.631
260 20 0.702 0.742 0.756 0.438
520 20 0.860 0.884 0.881 0.699
780 20 0.849 0.883 0.868 0.634

1300 20 0.865 0.900 0.887 0.619
5295 20 0.890 0.879 0.885 0.514

30 30 0.601 0.144 0.536 0.362
60 30 0.714 0.592 0.664 −0.163

120 30 0.817 0.757 0.817 0.603
260 30 0.756 0.798 0.804 0.441
520 30 0.858 0.886 0.880 0.729
780 30 0.845 0.883 0.866 0.667

1300 30 0.863 0.903 0.886 0.643
5295 30 0.895 0.890 0.891 0.524
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Table 6. Beta of volatility estimates for the S&P500, relative to the cross-sectional intrinsic entropy of
the NYSE stock market. For the cross-sectional intrinsic entropy of the NYSE stock market, a window
size equal to the indicated number of days was used to calculate the corresponding moving average.

Time Interval
(Days)

Rolling
Window/Moving
Averages (Days)

Close-to-Close
(S&P500) Relative
to Cross-Sectional
Intrinsic Entropy

Rogers–Satchell
(S&P500) Relative
to Cross-Sectional
Intrinsic Entropy

Yang–Zhang
(S&P500) Relative
to Cross-Sectional
Intrinsic Entropy

Intrinsic Entropy
(S&P500) Relative
to Cross-Sectional
Intrinsic Entropy

30 5 0.1002 0.0947 0.1349 0.0197
60 5 0.1121 0.0793 0.1060 0.0150

120 5 0.1138 0.0736 0.0993 0.0125
260 5 0.1021 0.0608 0.0759 0.0059
520 5 0.2748 0.1447 0.2201 0.0360
780 5 0.2623 0.1422 0.2111 0.0326

1300 5 0.2592 0.1496 0.2142 0.0315
5295 5 0.2343 0.1416 0.1799 0.0167

30 10 0.0989 0.0777 0.0992 0.0404
60 10 0.1319 0.0809 0.1060 0.0234

120 10 0.1531 0.0932 0.1204 0.0207
260 10 0.1235 0.0894 0.1025 0.0151
520 10 0.3567 0.1868 0.2743 0.0474
780 10 0.3231 0.1749 0.2493 0.0404

1300 10 0.3075 0.1779 0.2436 0.0375
5295 10 0.2551 0.1615 0.1922 0.0197

30 20 0.1099 0.0624 0.0893 0.0282
60 20 0.2100 0.1240 0.1541 0.0260

120 20 0.1965 0.1189 0.1492 0.0337
260 20 0.1474 0.1271 0.1372 0.0199
520 20 0.4206 0.2212 0.3205 0.0830
780 20 0.3642 0.1978 0.2778 0.0649

1300 20 0.3382 0.1960 0.2642 0.0553
5295 20 0.2676 0.1738 0.2009 0.0237

30 30 0.1006 0.0131 0.0479 0.0351
60 30 0.2969 0.1363 0.1785 −0.0125

120 30 0.2271 0.1329 0.1661 0.0384
260 30 0.1501 0.1371 0.1427 0.0224
520 30 0.4459 0.2322 0.3364 0.0904
780 30 0.3779 0.2043 0.2862 0.0697

1300 30 0.3488 0.2011 0.2706 0.0586
5295 30 0.2709 0.1781 0.2035 0.0242

We comment that the betas show, for all time intervals and rolling windows for the
historical volatility estimates of the S&P500, that the associated volatility risk to the market
index is generally significantly lower than the volatility risk associated to the entire NYSE
market. Moreover, the volatility risk shows lower levels on shorter time intervals: over
90% lower for a 30-day period and over 75% lower for a 60-day period. We point out that
the time perspective goes backward, starting with 21 January 2022, all the way towards
1 January 2001, for various time intervals and rolling windows.
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5. Conclusions

The temporal dimension of the uncertainty of the stock market has traditionally been
derived from the historical volatility of one or several market indices. This straightforward
approach relies more or less on how comprehensive the index is constructed, and hence on
how representative its volatility estimate is for the market as a whole. This paper introduces
a cross-sectional estimation of stock market volatility based on the intrinsic entropy model.
The proposed CSIE is defined and calculated as a daily value for the entire market, based on
the daily traded OHLC prices, along with the daily traded volume for all symbols listed on
The New York Stock Exchange (NYSE) and The National Association of Securities Dealers
Automated Quotations (NASDAQ).

We performe a comparative analysis between the time series obtained from the CSIE
market volatility estimator and the historical volatility provided by the estimators close-
to-close, Parkinson, Garman–Klass, Rogers–Satchell, Yang–Zhang, and intrinsic entropy
(IE), defined and computed from historical OHLC daily prices of the Standard & Poor’s
500 index (S&P500), Dow Jones Industrial Average (DJIA), and the NASDAQ Composite
index, respectively, for various time intervals. The empirical results presented in this
article show that the CSIE market volatility estimator is consistently at least 10 times more
sensitive to market changes than the volatility estimates captured through the market
indices for both the NYSE and the NASDAQ. This high variability of the market volatility
estimate provided by the CSIE corroborates the lower volatility risk traditionally associated
with market indices. The results answer the first research question of our study—how
does the cross-sectional intrinsic entropy (CSIE) market volatility estimator of the NYSE
and NASDAQ stock markets relate to the volatility evolution of the corresponding indices,
the S&P 500 Index (S&P500), Dow Jones Industrial Average (DJIA), and the NASDAQ
Composite, respectively?

In order to answer the second research question of our study—does the volatility of
market indices follow the cross-sectional intrinsic entropy as a volatility estimator for the
entire market?—we define and calculate specific betas. These ad hoc defined betas are
computed as ratios between the covariance of market index volatility and market volatility
estimates provided by CSIE and the variance of the cross-sectional intrinsic entropy of the
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market. The beta values confirm a consistently lower volatility risk for the market indices
compared to the entire market on the various lengths so investigated time intervals and
various rolling windows used for computing the volatility estimates: overall between 50%
and 90% lower volatility risk.

Furthermore, the CSIE volatility estimate provides a novel and comprehensive perspec-
tive on the evolution of volatility for the entire stock market. For example, Figure 11 shows
the evolution of the cross-sectional intrinsic entropy of the NYSE between 1 June 2018 and
21 January 2022, along with its moving average of 30 days.

To have a comparison with the results shown in Figure 6, the diameters of the bubbles
highlight the evolution of the number of symbols traded daily.

Additionally, we plotted only the 30-day moving average of CSIE for the NYSE
(Figure 12) and compared it with the evolution of the S&P500 index and its IE volatility
estimate for the same time interval, between 1 June 2018 and 21 January 2022 (Figure 13).
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Figure 11. Evolution of cross-sectional intrinsic entropy of the NYSE between 1 June 2018 and
21 January 2022, along with its 30-day moving average. The diameters of the bubbles highlight the
evolution of the number of symbols traded daily.
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Figure 12. The 30-day moving average of the cross-sectional intrinsic entropy of the NYSE between
1 June 2018 and 21 January 2022. The CSIE volatility estimator for the entire NYSE market shows that
there was a peak around the end of January 2021, followed by a continuous downward trend since
then, until 21 January 2022.
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Figure 13. The 30-day rolling window of intrinsic entropy volatility estimates for the S&P500 stock
market index between 1 June 2018 and 21 January 2022.

We point out that, while the S&P500 prices had roughly a continuous ascension after
the low reached at the beginning of the SARCOV-19 pandemic in early March 2020, the cross-
sectional intrinsic entropy market volatility estimate emphasizes a significantly different
evolution of the whole NYSE market’s volatility: there was a peak around the end of
January 2021, followed by a continuous downward trend since then, until 21 January 2022,
the last day we included in our study.

The CSIE market volatility estimate model may have multiple applications that have
not been explored in the current study:

(a) It can be employed for volatility estimate of portfolios of various number of exchange-
traded securities, providing a convenient and effective manner to make comparisons
to the volatility of the entire market or market indices;

(b) The CSIE market volatility estimate can rely on various approaches when it comes to
grouping companies listed on the market, at the sector level or in industries.

We comment that for short to medium time intervals and narrow windows for moving
averages, the CSIE market volatility estimate can capture insightful perspectives of the
market, which may provide a novel ground for volatility forecasting through GARCH-like
models. For example, the evolution of the cross-sectional intrinsic entropy of the NYSE
between 17 September 2021 and 21 January 2022 shows intense market volatility accompa-
nied by not-negligible variability in the daily traded value of the market (Figure 14). Unlike
Figures 6 and 11, in Figure 14 the diameter of the bubbles denotes the daily market value.

In addition to the market volatility estimate in absolute terms, the peculiar property
of the intrinsic entropy model of allowing negative values for the volatility estimate is
present in the cross-sectional intrinsic entropy of the stock market as well. Similarly, in
Figures 7 and 12, Figure 15 depicts the five-day moving average of the cross-sectional
intrinsic entropy of the NYSE between 17 September 2021 and 21 January 2022, and
emphasizes market volatility associated with preponderant selling activity.
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Figure 14. Evolution of the cross-sectional intrinsic entropy of the NYSE between 17 September 2021
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daily value of the market.
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Appendix A

Similarly, to the NYSE stock market, for the NASDAQ, we present the evolution of
the number of listed and traded symbols (Figure A1), the evolution of the CSIE estimates
(Figures A2 and A3), and the 60-day moving average of the CSIE for the NASDAQ between
1 January 2001 and 21 January 2022.

Entropy 2022, 24, x FOR PEER REVIEW 24 of 31 
 

 

 

Figure A1. Evolution of the number of symbols traded on the NASDAQ over the last 21 years, from 

1 January 2001, to 21 January 2022. The red horizontal line marks the number of 763 symbols listed 

on 1 January 2001. 

 

Figure A2. Evolution of the cross-sectional intrinsic entropy estimates of the NASDAQ between 1 

January 2001 and 21 January 2022, along with its moving average of 60 days. 

Figure A1. Evolution of the number of symbols traded on the NASDAQ over the last 21 years, from
1 January 2001, to 21 January 2022. The red horizontal line marks the number of 763 symbols listed
on 1 January 2001.

Entropy 2022, 24, x FOR PEER REVIEW 24 of 31 
 

 

 

Figure A1. Evolution of the number of symbols traded on the NASDAQ over the last 21 years, from 

1 January 2001, to 21 January 2022. The red horizontal line marks the number of 763 symbols listed 

on 1 January 2001. 

 

Figure A2. Evolution of the cross-sectional intrinsic entropy estimates of the NASDAQ between 1 

January 2001 and 21 January 2022, along with its moving average of 60 days. 
Figure A2. Evolution of the cross-sectional intrinsic entropy estimates of the NASDAQ between
1 January 2001 and 21 January 2022, along with its moving average of 60 days.



Entropy 2022, 24, 623 25 of 32Entropy 2022, 24, x FOR PEER REVIEW 25 of 31 
 

 

 

Figure A3. Evolution of cross-sectional intrinsic entropy for the NASDAQ between 1 January 2001 

and 21 January 2022, along with its moving average of 60-days. The diameter of the bubbles high-

lights the evolution of the number of symbols traded daily. 

Figure A4 shows the 60-day moving average of the cross-sectional intrinsic entropy 

of the NASDAQ between 1 January 2001 and 21 January 2022. It is noticeable in Figure A4 

that even smoothed out through the moving average of 60 days, the variability of the CSIE 

market volatility estimate is considerably higher compared to the corresponding historical 

volatility estimates of the NASDAQ Composite index in the same time interval (Figure 

A5). 

 

Figure A4. The 60-day moving average of the cross-sectional intrinsic entropy of the NASDAQ be-

tween 1 January 2001 and 21 January 2022. 

We note that daily CSIE market volatility estimates also exhibit significant day–to–

day variability on the NASDAQ stock market. 

Figure A3. Evolution of cross-sectional intrinsic entropy for the NASDAQ between 1 January 2001
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the evolution of the number of symbols traded daily.

Figure A4 shows the 60-day moving average of the cross-sectional intrinsic entropy of
the NASDAQ between 1 January 2001 and 21 January 2022. It is noticeable in Figure A4
that even smoothed out through the moving average of 60 days, the variability of the CSIE
market volatility estimate is considerably higher compared to the corresponding historical
volatility estimates of the NASDAQ Composite index in the same time interval (Figure A5).
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between 1 January 2001 and 21 January 2022.

We note that daily CSIE market volatility estimates also exhibit significant day–to–day
variability on the NASDAQ stock market.
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Figure A5. Sixty-day rolling window, from the top: intrinsic entropy-based estimates, Yang–Zhang,
Rogers–Satchell, Garman–Klass, Parkinson, and close-to-close (Raw) volatility estimates for the
NASDAQ Composite stock market index between 1 January 2001 and 21 January 2022.

It is particularly revealing the high volatility during the dot-com bubble in the begin-
ning of 2000, followed by its bursting in 2002. On the contrary, the period around the 2008
subprime mortgage crisis exhibits relatively low market volatility for the NASDAQ stock
market, where most companies are listed in technology-oriented industries.

Appendix B

For the NASDAQ Composite index, we list here the mean values of the volatility
estimate (Table A1) and the variance of the volatility estimates (Table A2). To preserve the
basis for the comparison with the NYSE S&P500 results listed in Tables 3 and 4, we focus
on the classical close-to-close estimator, the advanced volatility estimators Rogers–Satchell,
Yang–Zhang, and the IE volatility estimator for the NASDAQ Composite, along with the
CSIE volatility estimator for the entire NASDAQ stock market.

Similarly to the NYSE S&P500 results listed in Tables 3 and 4, we present for the
NYSE DJIA index the mean values of the volatility estimate (Table A3) and the variance
of the volatility estimates (Table A4). To preserve the basis for the comparison with the
NYSE S&P500 results, the data concern the classical close-to-close estimator, the advanced
volatility estimators Rogers–Satchell, Yang–Zhang, and the IE for the NYSE DJIA, along
with the CSIE volatility estimator for the entire NYSE stock market.

The detailed results presented in Table A4 confirm for the NYSE DJIA index what
was revealed for the S&P500 index as well, namely, that the variance of the CSIE market
volatility estimate of the NYSE is on average 10 times higher compared to the historical
volatility estimates of DJIA, for all considered time intervals and rolling windows/moving
averages.
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Table A1. Mean values of the volatility estimate of the NASDAQ Composite for various time intervals and rolling windows. For the cross-sectional intrinsic entropy
of the NASDAQ stock market, a window size equal to the indicated number of days was used to calculate the corresponding moving average.

Time Interval
(Days)

Rolling
Window/Moving
Averages (Days)

Close-to-Close
(NASDAQ Composite)

Rogers–Satchell
(NASDAQ Composite)

Yang–Zhang
(NASDAQ Composite)

Intrinsic Entropy
(NASDAQ Composite)

Cross-Sectional Intrinsic
Entropy (NASDAQ

Stock Market)

30 5 0.01460 0.01039 0.01430 −0.00068 0.00449
60 5 0.01216 0.00934 0.01283 0.00014 0.01183

120 5 0.00993 0.00781 0.01086 0.00022 0.02020
260 5 0.01036 0.00820 0.01161 0.00049 0.02367
520 5 0.01382 0.01033 0.01531 0.00061 0.02450
780 5 0.01234 0.00922 0.01365 0.00056 0.01950

1300 5 0.01058 0.00805 0.01172 0.00051 0.01190
5295 5 0.01201 0.00896 0.01258 0.00029 0.00309

30 10 0.01524 0.01085 0.01404 −0.00059 0.00544
60 10 0.01217 0.00927 0.01199 0.00032 0.01877

120 10 0.01011 0.00790 0.01032 0.00033 0.02128
260 10 0.01070 0.00838 0.01112 0.00072 0.02438
520 10 0.01422 0.01050 0.01467 0.00085 0.02470
780 10 0.01273 0.00941 0.01312 0.00079 0.01965

1300 10 0.01096 0.00820 0.01125 0.00071 0.01201
5295 10 0.01241 0.00910 0.01204 0.00041 0.00309

30 20 0.01510 0.01082 0.01379 −0.00022 0.00804
60 20 0.01177 0.00894 0.01140 0.00091 0.02516

120 20 0.01009 0.00782 0.01001 0.00053 0.02319
260 20 0.01082 0.00845 0.01093 0.00100 0.02543
520 20 0.01452 0.01066 0.01452 0.00106 0.02507
780 20 0.01312 0.00960 0.01306 0.00097 0.01990

1300 20 0.01125 0.00836 0.01116 0.00089 0.01220
5295 20 0.01265 0.00923 0.01190 0.00051 0.00306

30 30 0.01445 0.01060 0.01341 0.00026 0.00794
60 30 0.01177 0.00884 0.01125 0.00117 0.02592

120 30 0.00990 0.00773 0.00986 0.00069 0.02429
260 30 0.01082 0.00849 0.01090 0.00120 0.02588
520 30 0.01473 0.01079 0.01459 0.00119 0.02519
780 30 0.01339 0.00976 0.01317 0.00107 0.01992

1300 30 0.01141 0.00846 0.01120 0.00100 0.01220
5295 30 0.01280 0.00932 0.01192 0.00058 0.00305
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Table A2. Variance of the volatility estimate of the NASDAQ Composite for various time intervals and rolling windows. For the cross-sectional intrinsic entropy of
the NASDAQ stock market, a window size equal to the indicated number of days was used to calculate the corresponding moving average.

Time Interval
(Days)

Rolling
Window/Moving
Averages (Days)

Close-to-Close
(NASDAQ Composite)

Rogers–Satchell
(NASDAQ Composite)

Yang–Zhang
(NASDAQ Composite)

Intrinsic Entropy
(NASDAQ Composite)

Cross-Sectional Intrinsic
Entropy (NASDAQ

Stock Market)

30 5 0.00001582 0.00000790 0.00001444 0.00000358 0.00085564
60 5 0.00002696 0.00000991 0.00001944 0.00000315 0.00106784

120 5 0.00002533 0.00000921 0.00001777 0.00000274 0.00148638
260 5 0.00002978 0.00001274 0.00002245 0.00000410 0.00136367
520 5 0.00014459 0.00004446 0.00011545 0.00001076 0.00109941
780 5 0.00011242 0.00003605 0.00008971 0.00000845 0.00088232

1300 5 0.00008453 0.00002859 0.00006904 0.00000588 0.00088522
5295 5 0.00007871 0.00003013 0.00006107 0.00000489 0.00046607

30 10 0.00000438 0.00000306 0.00000550 0.00000363 0.00038691
60 10 0.00001798 0.00000695 0.00001222 0.00000298 0.00102901

120 10 0.00001754 0.00000645 0.00001142 0.00000273 0.00083596
260 10 0.00002108 0.00000984 0.00001575 0.00000396 0.00076180
520 10 0.00012085 0.00004024 0.00009463 0.00001184 0.00059275
780 10 0.00009399 0.00003270 0.00007366 0.00000959 0.00050102

1300 10 0.00007092 0.00002594 0.00005682 0.00000638 0.00053022
5295 10 0.00006710 0.00002779 0.00005080 0.00000464 0.00027165

30 20 0.00000091 0.00000065 0.00000133 0.00000204 0.00006960
60 20 0.00001392 0.00000513 0.00000822 0.00000259 0.00067924

120 20 0.00001178 0.00000427 0.00000729 0.00000189 0.00041059
260 20 0.00001474 0.00000740 0.00001111 0.00000224 0.00041722
520 20 0.00010475 0.00003574 0.00008098 0.00001372 0.00030681
780 20 0.00008111 0.00002891 0.00006285 0.00001090 0.00029269

1300 20 0.00006142 0.00002310 0.00004896 0.00000695 0.00033391
5295 20 0.00006044 0.00002593 0.00004515 0.00000424 0.00017057

30 30 0.00000116 0.00000032 0.00000047 0.00000134 0.00001840
60 30 0.00000880 0.00000371 0.00000558 0.00000180 0.00038897

120 30 0.00000917 0.00000326 0.00000530 0.00000123 0.00023472
260 30 0.00001186 0.00000607 0.00000855 0.00000172 0.00026766
520 30 0.00009675 0.00003232 0.00007295 0.00001280 0.00019336
780 30 0.00007431 0.00002606 0.00005659 0.00000983 0.00021156

1300 30 0.00005684 0.00002116 0.00004475 0.00000618 0.00026190
5295 30 0.00005771 0.00002485 0.00004253 0.00000360 0.00013486
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Table A3. Mean values of the volatility estimate of the DJIA index for various time intervals and rolling windows. For cross-sectional intrinsic entropy of the NYSE
stock market, a window size equal to the indicated number of days was used to compute the corresponding moving average.

Time Interval
(Days)

Rolling Window
(Days)

Close-to-Close
(DJIA)

Rogers–Satchell
(DJIA) Yang–Zhang (DJIA) Intrinsic

Entropy (DJIA)
Cross-Sectional

Intrinsic Entropy (NYSE Stock Market)

30 5 0.00702 0.00676 0.00793 −0.00005 −0.00042
60 5 0.00709 0.00623 0.00752 0.00008 −0.00390

120 5 0.00698 0.00603 0.00717 0.00013 0.00115
260 5 0.00696 0.00622 0.00729 0.00016 0.00507
520 5 0.01176 0.00866 0.01160 0.00029 0.00644
780 5 0.01031 0.00780 0.01040 0.00026 0.00520

1300 5 0.00866 0.00680 0.00894 0.00029 0.00268
5295 5 0.00927 0.00756 0.00904 0.00009 0.00197

30 10 0.00843 0.00698 0.00780 0.00018 0.00031
60 10 0.00754 0.00612 0.00699 0.00020 −0.00148

120 10 0.00729 0.00607 0.00679 0.00021 0.00185
260 10 0.00736 0.00636 0.00702 0.00024 0.00550
520 10 0.01218 0.00881 0.01116 0.00039 0.00662
780 10 0.01072 0.00799 0.01004 0.00035 0.00538

1300 10 0.00902 0.00694 0.00860 0.00040 0.00273
5295 10 0.00958 0.00769 0.00866 0.00012 0.00198

30 20 0.00965 0.00703 0.00789 0.00027 −0.00149
60 20 0.00797 0.00614 0.00688 0.00042 0.00101

120 20 0.00765 0.00612 0.00670 0.00030 0.00265
260 20 0.00763 0.00647 0.00694 0.00036 0.00611
520 20 0.01259 0.00900 0.01114 0.00044 0.00681
780 20 0.01116 0.00820 0.01006 0.00037 0.00564

1300 20 0.00934 0.00709 0.00856 0.00048 0.00277
5295 20 0.00978 0.00780 0.00856 0.00015 0.00199

30 30 0.00972 0.00696 0.00784 0.00037 −0.00508
60 30 0.00837 0.00637 0.00708 0.00056 0.00061

120 30 0.00778 0.00616 0.00670 0.00036 0.00232
260 30 0.00766 0.00653 0.00695 0.00044 0.00618
520 30 0.01288 0.00914 0.01128 0.00045 0.00680
780 30 0.01146 0.00837 0.01020 0.00036 0.00571

1300 30 0.00953 0.00721 0.00863 0.00052 0.00273
5295 30 0.00991 0.00788 0.00857 0.00016 0.00198
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Table A4. Variance of the volatility estimate of the DJIA index for various time intervals and rolling windows. For cross-sectional intrinsic entropy of the NYSE stock
market, a window size equal to the indicated number of days was used to compute the corresponding moving average.

Time
Interval (Days)

Rolling
Window/Moving
Averages (Days)

Close-to-Close
(NASDAQ
Composite)

Rogers–Satchell
(NASDAQ
Composite)

Yang–Zhang (NASDAQ
Composite)

Intrinsic Entropy
(NASDAQ
Composite)

Cross-Sectional Intrinsic
Entropy (NASDAQ

Stock Market)

30 5 0.00000849 0.00000349 0.00000415 0.00000063 0.00057896
60 5 0.00001622 0.00000499 0.00000776 0.00000080 0.00062291

120 5 0.00001259 0.00000546 0.00000750 0.00000053 0.00047097
260 5 0.00001396 0.00000498 0.00000648 0.00000049 0.00047996
520 5 0.00017214 0.00004357 0.00011557 0.00000827 0.00064512
780 5 0.00012768 0.00003395 0.00008481 0.00000602 0.00049370

1300 5 0.00009017 0.00002740 0.00006194 0.00000400 0.00044034
5295 5 0.00005992 0.00002515 0.00003904 0.00000116 0.00049417

30 10 0.00000671 0.00000192 0.00000231 0.00000081 0.00027476
60 10 0.00001185 0.00000345 0.00000491 0.00000067 0.00033828

120 10 0.00000861 0.00000366 0.00000466 0.00000042 0.00023856
260 10 0.00000843 0.00000344 0.00000401 0.00000043 0.00019848
520 10 0.00015278 0.00004053 0.00009751 0.00000839 0.00027691
780 10 0.00011287 0.00003158 0.00007160 0.00000618 0.00021626

1300 10 0.00007997 0.00002535 0.00005215 0.00000406 0.00021329
5295 10 0.00005191 0.00002325 0.00003284 0.00000121 0.00024167

30 20 0.00000341 0.00000049 0.00000098 0.00000033 0.00012659
60 20 0.00000698 0.00000170 0.00000254 0.00000035 0.00018233

120 20 0.00000519 0.00000198 0.00000251 0.00000024 0.00011421
260 20 0.00000372 0.00000210 0.00000224 0.00000023 0.00009808
520 20 0.00013851 0.00003681 0.00008585 0.00000971 0.00012978
780 20 0.00010190 0.00002863 0.00006298 0.00000704 0.00010777

1300 20 0.00007256 0.00002306 0.00004609 0.00000449 0.00010785
5295 20 0.00004667 0.00002149 0.00002920 0.00000131 0.00012040

30 30 0.00000091 0.00000006 0.00000009 0.00000017 0.00002969
60 30 0.00000324 0.00000079 0.00000108 0.00000020 0.00007546

120 30 0.00000273 0.00000110 0.00000136 0.00000016 0.00005117
260 30 0.00000212 0.00000142 0.00000142 0.00000019 0.00005592
520 30 0.00013081 0.00003391 0.00007906 0.00000906 0.00007168
780 30 0.00009591 0.00002622 0.00005796 0.00000648 0.00006723

1300 30 0.00006879 0.00002142 0.00004285 0.00000412 0.00006915
5295 30 0.00004389 0.00002036 0.00002735 0.00000120 0.00007920
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