
����������
�������

Citation: Shalileh, S.; Mirkin, B.

Community Partitioning over

Feature-Rich Networks Using an

Extended K-Means Method. Entropy

2022, 24, 626. https://doi.org/

10.3390/e24050626

Academic Editor: Hocine Cherifi

Received: 29 March 2022

Accepted: 27 April 2022

Published: 29 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Community Partitioning over Feature-Rich Networks Using an
Extended K-Means Method

Soroosh Shalileh 1,*,† and Boris Mirkin 2,3,†

1 Center for Language and Brain, HSE University, Myasnitskaya Ulitsa 20, 101000 Moscow, Russia
2 Department of Data Analysis and Artificial Intelligence, HSE University, Pokrovsky Boulevard, 11,

101000 Moscow, Russia; bmirkin@hse.ru or mirkin@dcs.bbk.ac.uk
3 Department of Computer Science and Information Systems, Birkbeck University of London, Malet Street,

London WC1E 7HX, UK
* Correspondence: sr.shalileh@gmail.com; Tel.: +7-965-260-7370
† These authors contributed equally to this work.

Abstract: This paper proposes a meaningful and effective extension of the celebrated K-means
algorithm to detect communities in feature-rich networks, due to our assumption of non-summability
mode. We least-squares approximate given matrices of inter-node links and feature values, leading
to a straightforward extension of the conventional K-means clustering method as an alternating
minimization strategy for the criterion. This works in a two-fold space, embracing both the network
nodes and features. The metric used is a weighted sum of the squared Euclidean distances in the
feature and network spaces. To tackle the so-called curse of dimensionality, we extend this to a version
that uses the cosine distances between entities and centers. One more version of our method is based
on the Manhattan distance metric. We conduct computational experiments to test our method and
compare its performances with those by competing popular algorithms at synthetic and real-world
datasets. The cosine-based version of the extended K-means typically wins at the high-dimension
real-world datasets. In contrast, the Manhattan-based version wins at most synthetic datasets.

Keywords: node-attributed networks; feature-rich networks; community detection; cluster analysis;
data recovery; K-means clustering; nonsummability assumption

1. Introduction: The Problem and Our Approach

Community detection in networks is an activity oriented at various applications from
sociology to biology to computer science. The corresponding data structure is network,
or graph, of objects, called nodes, that are interconnected by pair-wise edges or links.
Additionally, a feature-rich (or node-attributed) network is supplied with a set of features
characterizing nodes [1–3].

We consider a community to be a set of relatively densely interconnected nodes which
also are similar in the feature space. The problem is regarded as such: given a feature-
rich network, find a partition of the node set such that each part is a community. Many
approaches have been proposed for identifying communities in feature-rich networks; for
recent reviews see, for example, [3–8].

In our view, they all can be classified into two categories: heuristics and data modelling.
Unlike heuristic approaches, those in data modelling involve an important characteristic:
evaluation of the degree of correspondence between the data and found solutions. In
this category, one may distinguish between theory-driven and data-driven approaches. A
theory-driven approach involves a model for data generation leading to a probabilistic
distribution, parameters of which can be recovered from the data (generative modelling).

In contrast, data-driven approaches involve no models for data generation but rather
focus on the dataset as is. The dataset in this set of approaches is considered as an array of
numbers to be recovered by decoding a model that “encodes” the data. As the author in [9]
described, some of the popular methods of data analysis such as K-means clustering and

Entropy 2022, 24, 626. https://doi.org/10.3390/e24050626 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24050626
https://doi.org/10.3390/e24050626
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-6226-4990
https://orcid.org/0000-0001-5470-8635
https://doi.org/10.3390/e24050626
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24050626?type=check_update&version=2

Entropy 2022, 24, 626 2 of 18

singular value decomposition based on principal component analysis naturally fall within
this category of methods.

This paper belongs to the data-driven modeling approach. Our data-driven model
conventionally assumes a hidden partition of the node-set in non-overlapping communities,
supplied with hidden parameters encoding the average link values in the network space
and central community points in the feature space. This model has been described in
our earlier publications [10,11], in which we developed a set of double-greedy algorithms.
These algorithms find clusters, a.k.a. communities, one-by-one, not simultaneously (a
‘greedy’ strategy) so that each community is built one-by-one also, so that at each step, only
one node is to be added to it (another ‘greedy’ strategy). Although quite competitive in
terms of cluster recovery, these computations are rather time consuming.

The goal of this paper is to propose a different algorithm to allow processing larger
datasets. Specifically, the paper develops an analogue to the popular K-means algorithm to
minimize the summary least-squares criterion for the models of both network link data and
feature matrix. We should point out that such a development became possible only because
we had introduced, in [11], what we call the nonsummability mode. According to this
model, the network data matrix is represented by community central vectors λk = (λkj)
which are similar to those in the feature space. Therefore, every community obtains a
two-fold center, one fold in the feature space, the other in the network space. Such a
representation allows us to develop a version of K-means in a combined data space as an
alternating minimization of the combined least-squares criterion.

The combined criterion’s dimension is the total number of network nodes and fea-
tures, which may be rather high indeed. That is usually a realm of the so-called curse of
dimensionality which leads us to develop two additional versions of the method using the
cosine distance and the Manhattan distance supplementing the squared Euclidean one. The
cosine distance has been experimentally proven to lead to superior results in recommender
systems (see, for example, [12]). The Manhattan distance has been comprehensively studied
in [13] for the Wi-Fi positioning algorithm, in which it appeared to be a proper distance
metric in some cases.

We conduct a comprehensive set of experiments to test the performance of the newly
proposed techniques. Our experiments show that this approach can indeed recover hidden
clusters in feature-rich networks. Moreover, it is competitive against existing state-of-the-art
algorithms.

A part of this work was presented at the 2021 Complex Networks and their Applica-
tions International Conference (30 November–2 December 2021) [14]. The current paper
differs, first of all, by the extent of detail reported so that the paper length has increased
five-fold. Second, the experimental part has been significantly expanded by adding three
larger real-world datasets and by increasing the number of synthetic datasets by 50%. Third,
one more version of the method has been added, that one using the Manhattan distance,
in addition to versions based on the cosine and squared Euclidean distances, to further
extend the experimental part.

The paper is structured as follows. Section 2 describes our proposed method. Section 3
describes the setting of our experiments for testing the algorithms. Sections 4 and 5 present
results of our experiments. We draw conclusions in Section 6.

1.1. Related Work
1.1.1. General

A wide variety of approaches have been developed for community detection so far. A
reviewing paper [4] proposes a nice system for distinguishing among them. It classifies all
the work on community detection in feature-rich networks according to the stage at which
the two data types, network and features, are merged together. This may occur before the
process of community detection begins (early fusion), within the process (simultaneous
fusion), and after the process (late fusion). While referring an interested reader to look at

Entropy 2022, 24, 626 3 of 18

the references in [4], we would like to add some details over here. We note that the methods
of our interest, i.e., model-based ones, naturally fall within the simultaneous fusion stage.

In contrast, all methods related to the early fusion stage must be heuristic. Among
them, one should distinguish two streams of work related to the way of fusion. Indeed,
the two data sources can be converted, before detection of communities begin, into either
network-only format (this can be dubbed ‘network augmenting’) or features-only format
(this can be dubbed ‘network converting’). In the next two subsections, a brief review of
these approaches is given.

1.1.2. Augmenting the Network Structure

Methods in this category score similarities between features of nodes using various
metrics. Paper [15] uses a matching index similarity. Paper [16] considers three groups
of methods: (1) clustering coefficient similarity, (2) common neighbor similarity, (3) node
attribute similarity. Stochastic random walk methods are another popular tool in this
area [17–19]. In [20] Kohonen’s self-organizing maps are applied, whereas [21] uses
Pagerank [22] as the cornerstone.

In a nutshell, once the node-to-node similarities are determined, there are two ways for
augmenting the graph structure: either by (a) assigning greater weights to edges between
more similar nodes, or by (b) inserting additional nodes to create a more homogeneous
graph structure. After this, any graph-structuring algorithm can be applied, in a modified
form. Methods described in [8,21,23] are instances of this approach.

1.1.3. Converting the Network Structure into Feature Space

In [24], authors at first use a spectral analysis technique to map the network data
into a low-dimensional Euclidean space. Then, a DENsity-based CLUstEring algorithm
(DENCLUE) [25] runs to detect communities in the network. Paper [26] formulates the
community detection problem as a class separability problem, which allows the simultane-
ous handling of many classes of communities and a diverse set of structural properties. The
separability of classes provides information on the extent to which different communities
come from the same (or fundamentally different) distributions of feature values.

The so-called “signal diffusion process” converts the network structure into geomet-
rical relations of vectors in a Euclidean space in [27]. After this conversion, a modified
version of K-means algorithm applies to detect the communities. In [28], the authors
propose a quasi-isometric mapping to transform network structure into a time series, so
that the machinery of time-series can be applied, with a follow-up K-means clustering.

The so-called network embedding approaches (see [29,30]) fall within this category too.

1.1.4. Model-Based Community Detection

Here, we are going to give some references to papers developing model-based methods
for community detection in feature-rich networks.

In [31], a statistical joint clustering criterion is proposed. In [32], a discriminative
semi-supervised method is proposed.

The theory-driven approach may involve both the maximum likelihood and Bayesian
criteria for fitting a probabilistic models for data generation. Many methods in this cat-
egory involve stochastic block models (SBM) [33,34]. Methods in [1,2,35] are based on
Bayesian inferences. In [36], the authors propose a clustering criterion to statistically model
interrelation between the network structure and node attributes.

As for data-driven modeling, we can indicate the following works here. There ex-
ist several versions of non-negative matrix factorization for the problem of community
detection (see [37,38]). This category of methods approximates the data by using matrix
factorization techniques. Papers [39–41] propose combined criteria and corresponding
methods for finding suboptimal solutions. The criteria are based on the least-squares
approach applied to some derived data rather than the original ones. In contrast, Ref. [42]
summarizes the data as observed by using a different clustering criterion, the minimum

Entropy 2022, 24, 626 4 of 18

description length (MDL). Therefore our papers [10,11] fill in the gap by developing least-
squares methods oriented at recovery of the datasets as they are. This paper extends this
approach by developing a less computing-intensive version.

2. Least-Squares Criterion and Extended K-Means
2.1. The Summability and Non-Summability Assumptions

To model a community in a feature-rich network, one usually represents it by its
central ‘standard’ point in the feature space and a single aggregate intensity value over the
entire network data.

Let us denote the community set to be found by S = {S1, S2, . . . , SK}, and community
Sk’s standard point by ck = (ckv) (v ∈ V, k = 1, . . . , K). We define our model in the feature
space Y = (yiv) (where i ∈ I are the network nodes and v ∈ V, features) as:

yiv =
K

∑
k=1

ckvsik + fiv, i ∈ I, v ∈ V. (1)

where fiv are residuals which should be made as small as possible.
Let us denote the aggregate intensity weight of community Sk (k = 1, 2, . . . K), by λk.

Then the network link data matrix P = (pij) (i, j ∈ I) can be modeled as:

pij =
K

∑
k=1

λksiksjk + eij, i, j ∈ I, (2)

where eij are residuals to be minimized.
Equations (1) and (2) express the data-recovery essence of our model as follows. The

observed data, both feature values and network links, can be reconstructed from the
structure—the partition S and its parameters ck, λk—to be found, up to relatively small
residuals according to these equations. The data recovery (or data reconstruction) approach
currently has become a linchpin in data science.

In [10], we applied a combined least squares criterion to Equations (1) and (2) comple-
mented with an iterative extraction principle [43], to arrive at the so-called SEFNAC method,
which stands for Sequentially Extracting Feature-rich Network Addition Clustering, for
obtaining communities one-by-one.

At each step of the SEFNAC method, a single cluster represented by a binary 0/1
vector s = (si), i ∈ I, so that the cluster combines those i at which si = 1, is sought to
maximize criterion

G(s) = 2ρ ∑
i,v

yivcvsi − ρ ∑
v

c2
v ∑

i
s2

i

+2ξλ ∑
i,j

pijsisj − ξλ2 ∑
i

s2
i ∑

j
s2

j
(3)

over those i, j ∈ I that do not belong to the previously extracted clusters. Values ρ and ξ
are expert-driven constants to balance relative weights of the two sources of data, network
links and feature values.

In SEFNAC, criterion (3) is locally maximized by adding nodes one-by-one. SEFNAC
appears to be competitive in terms of cluster recovery. Moreover, it allows for deriving
the number of clusters from the data rather than by pre-specifying beforehand, in contrast
to other approaches. However, the SEFNAC algorithm is time-consuming and does not
allow processing large datasets, even in spite of the fact that it involves two simplifying
assumptions by admitting that both individual clusters and cluster partitions can be found
in a greedy one-by-one manner.

In [11], the authors introduced two different modes for interpreting link data: (a)
summability and (b) nonsummability. In the summability mode, all link scores are con-
sidered as measured in the same scale. The nonsummability mode relates to the case

Entropy 2022, 24, 626 5 of 18

at which each node’s links are considered as scored in different scales. An example of
nonsummability: consider two sets of internet sites—one to provide physics instruction,
the other to sell goods. These sets obviously differ both in the numbers of visitors and time
spent at them. The former is is greater at physics instruction, whereas the latter greater at
selling goods sites.

The nonsummability mode requires modifying the network link partitioning model
by introducing column-dependent intensity weights λkj rather than just λk, so that the
following equations should hold:

pij =
K

∑
k=1

λkjsik + eij, i, j ∈ I. (4)

As shown in our papers [11,41], the nonsummability assumption allows one to some-
what reduce the computational intensity of the double-greedy iterative extraction approach
without decreasing the quality of cluster recovery, although not without some quirks, as
explored by the authors in [41]. Moreover, the there-developed algorithms still allow for
automatic derivation of the number of clusters. However, they cannot be consistently
applied at large datasets with thousands nodes because of their limited computational
capacity. In the next section, we are going to tackle this challenge.

2.2. The Criterion and Its Alternating Minimization

Let us apply the least-squares approach to Equations (1) and (4). A combined sum of
the squared residuals can be expressed as:

F(sik, ckv, λkj) = ρ ∑
i,v
(yiv −

K

∑
k=1

ckvsik)
2 + ξ ∑

i,j
(pij −

K

∑
k=1

λkjsik)
2. (5)

where factors ρ and ξ balance the relative weights of the two sources of data, network links
and feature values.

The goal is to recover a hidden membership matrix S = (sik), community centers
in the feature data space ck = (ckv), and community centers in the network data space
λk = (λkj), by minimizing criterion (5).

This can be reformulated by using matrix notation. Recall that Y is a N ×V feature
matrix and P is a N× N link matrix. Denote a K×V matrix of cluster centers in the feature
space by C = (ckv) and a K× n matrix of cluster centers in the space of network matrix, by
Λ = (λkj). Let S = (sik) be a 1/0 matrix of node belongingness to clusters. Then the model
expresses approximate matrix factorization equations Y = SC and P = SΛ, whereas the
least-squares criterion in (5) is F = ρTr[(Y − SC)T(Y − SC)] + ξTr[(P− SΛ)T(P− SΛ)],
where Tr(A) is the trace, the sum of diagonal entries, of matrix A.

Optimizing criterion (5) is computationally expensive and cannot be solved exactly
in reasonable time. We adopt the so-called alternating minimization strategy, which is
exemplified by the batch K-means algorithm in feature spaces [44]. This approach can be
applied here too, because the variables in the criterion (5) can be divided in two groups to
be sought separately. These groups are: (i) partition {Sk}, or corresponding belongingness
matrix S = (sik) in which sik = 1 if i ∈ Sk and sik = 0, otherwise; (ii) standard points
ck = (ckv) and λk = (λkj), k = 1, 2, . . . , K.

An alternating minimization method works in iterations consisting of two steps each:
(1) given centers ck, λk, find partition {Sk} minimizing criterion (5) with respect to S;
(2) given partition {Sk}, find centers ck, λk minimizing criterion (5) with respect to all
possible ck, λk, k = 1, . . . K.

To run step (1), let us define distances between nodes and centers. In the feature space,
node i ∈ I is expressed by vector yi = (yiv), v = 1, . . . , V, and in the network space, by i-th
row of matrix P, pi = (pij), j = 1, . . . , N. The squared Euclidean distances between node i

Entropy 2022, 24, 626 6 of 18

and standard vectors ck = (ckv) and λk = (λkj) are defined as de(yi, ck) = ∑v(yiv − ckv)
2

and de(pi, λk) = ∑j(pij − λkj)
2.

Substituting these expressions in the criterion (5) and recalling that, for any i ∈ I,
sik = 1 can be for one k only, we obtain

F(S, c, λ) =
K

∑
k=1

∑
i∈Sk

[ρde(yi, ck) + ξde(pi, λk)] (6)

To minimize (6), one needs to apply the following Minimum Distance rule for de-
termining an optimal partition at given standard points ck and λk. For any i ∈ I, assign
i to that cluster Sk for which the combined distance de(i, k) = ρde(yi, ck) + ξde(pi, λk) is
minimum.

The optimal standard points ck and λk are to be computed at a given partition {Sk} as
the within-cluster means:

ckv =
∑i∈Sk

yiv

|Sk|
, λkj =

∑i∈Sk
pij

|Sk|
. (7)

This is easily derived from the first-order optimality conditions for the criterion (5).
Now we may formulate an extension of K-means clustering algorithm:
K-Means Extended to Feature-Rich Networks (KEFRiN)

1. Data standardization: standardize the features and the network links (see Section 4.1).
2. Initialization:

- Choose a number of clusters, K > 1;
- Initialize seed centers: C = {ck}K

k=1, Λ = {λk}K
k=1, as described below.

3. Cluster update: given K centers in the feature space and K centers in the network
space, determine partition {S′k}

K
k=1 using the Minimum Distance rule above.

4. Stop-condition: Check whether S
′
k = Sk for all k = 1, . . . , K. If yes, stop and out-

put partition {Sk}K
k=1, and centers {ck}K

k=1, {λk}K
k=1. Otherwise, change Sk for S

′
k at

every k.
5. Center update: Given clusters {Sk}K

k=1, calculate within-cluster means according
to (7); go to Step 3.

To initialise the algorithm, we use a version of K-Means++ algorithm from [45] com-
bined with MaxMin method from [9]. Specifically, we generate initial seeds from the set of
nodes as follows.

Seed initialization

1. Start. Randomly choose an index r ∈ I and specify c1 = yr, r-th row of Y, and λ1 = pr,
r-th row of P.

2. General step.

(a) Given a set of already defined seeds, (c1, λ1), . . . , (ck, λk), compute the sum
of combined distances f (i) = de(i, 1) + de(i, 2) + · · ·+ de(i, k) for all remain-
ing i ∈ I. (Recall that de(i, k) = ρde(yi, ck) + ξde(pi, λk) for all i ∈ I and
k = 1, . . . , K.)

(b) Define the next, k + 1-th center using that node i for which f (i) is maximum.

3. If k + 1 is equal to K, halt. Otherwise, set k := k + 1 and go to the General step.

2.3. Using Manhattan Distance in KEFRiN

Given two vectors f = (ft) and g = (gt), t = 1, . . . , T, the Manhattan distance between
them is defined as

dm(f , g) = ∑
t
| ft − gt|. (8)

Entropy 2022, 24, 626 7 of 18

Using the Manhattan distance dm(.), the Equation (6) can be rewritten as
Fn(S, c, λ) = 2 ∑K

k=1 ∑i∈Sk
[ρdm(yi, ck) + ξdm(pi, λk)]. With this, we propose one more ver-

sion of K-means extended to feature-rich networks: using the Manhattan metric dm as the
distance in KEFRiN algorithm above.

2.4. Using Cosine Distance in KEFRiN

Given two vectors f = (ft) and g = (gt), t = 1, . . . , T, the cosine between them is
defined as

cos(f , g) =
< f , g >

‖ f ‖‖g‖ =
∑t ftgt√

∑t f 2
t

√
∑t g2

t

. (9)

One may say that the cosine of two vectors is just the inner product of them after
they had been normed. The cosine gives rise to what is referred to as the cosine distance
between f and g, dc(f , g) = 1− cos(f , g).

In fact, the cosine distance between f and g is a half squared Euclidean distance
between f and g after they had been normed. Indeed, assuming that f and g are normed,
‖ f ‖ = ‖g‖ = 1, we have de(f , g) = ∑t(ft − gt)2 = ∑t f 2

t + ∑t g2
t − 2 ∑t ftgt = ‖ f ‖2 +

‖g‖2 − 2 < f , g >= 2− 2cos(f , g) = 2dc(f , g).
Therefore, under the assumption that all vectors yi, ck, pi, and λk occurring in the

Equation (6) are normed, that equation can be rewritten as Fn(S, c, λ) = 2 ∑K
k=1 ∑i∈Sk

[ρdc(yi, ck)
+ ξdc(pi, λk)].

This leads us to propose one more version of K-means extended to feature-rich net-
works: that using the cosine metric dc as the distance in KEFRiN algorithm above.

To distinguish between the three versions, we use the abbreviation KEFRiNe based on
the squared Euclidean metric, KEFRiNm for the Manhattan distance case, and finally, the
abbreviation KEFRiNc for that based on the cosine distance.

It should be pointed out that the three versions are different indeed: the dc based
version of the criterion holds only at normed vectors. KEFRiNc algorithm assumes that all
the data should be preprocessed so that all vectors yi and pi are normed. Moreover, the
step of center updating in KEFRiNc involves a supplementary operation: after the vectors
of within-cluster means are found, they must be normed. The norming operation breaks
the property that the centers are optimal according to the least-squares criterion: they are
not any more, which may affect the algorithm’s convergence.

To further specify KEFRiN algorithms, we should choose the values of weights ρ and
ξ balancing the two data sources, features and network. In this paper, we take them to be
equal, say, to 1.

We publish our Python source code of the KEFRiN methods at https://github.com/
Sorooshi/KEFRiN, accessed on 2 April 2021.

3. Defining Experimental Framework for Testing KEFRiN

In this section, we specify our experimental setting. This includes: (1) the competing
algorithms; (2) the real-world and synthetic datasets to which the algorithms are evalu-
atated; (3) a set of criteria for evaluation of the results by an algorithm; (4) a set of data
pre-processing techniques.

3.1. Algorithms under Comparison

We compare the performance of our proposed methods with four algorithms of the
model-based approach, Communities from Edge Structure and Node Attributes (CESNA) [36],
Structure and inference in annotated networks (SIAN) [35], Sequential Extraction of At-
tributed Network Addition Clusters (SEANAC) [46] and, Deep Modularity Networks
(DMoN) [47]. Author-made codes of these algorithms are publicly available. We also
tested the algorithm PAICAN (Partial Anomaly Identification and Clustering in Attributed
Networks) from [1]. Unfortunately, the computational results obtained by this algorithm
were always less than satisfactory; therefore, we excluded PAICAN from this paper.

https://github.com/Sorooshi/KEFRiN
https://github.com/Sorooshi/KEFRiN

Entropy 2022, 24, 626 8 of 18

In the remainder of this subsection, we briefly describe CESNA, SIAN, SEANAC and
DMoN algorithms.

CESNA [36] overview: The authors define two generative models, one for the graph
and the other for attributes, and combine them together. They use equation Puv =
1− exp(−∑C

c=1 FucFvc) to model the probability of an edge between nodes u and v. Un-
known function Fuc represents the membership of node u to community c. Similar logistic
models, with parameter matrices W, are defined for binary attributes at nodes. Then values
of latent variables F and W are inferred by maximizing the likelihood of the observed data.
An author-supplied code for CESNA algorithm can be found at [48].

SIAN [35] overview: Assume that each node belongs to a community with the prob-
ability depending on the feature values at the node. Edges between nodes are formed
independently at random, according to a distribution involving the node degrees. The
likelihood is maximized with the Expectation-Maximisation (EM) algorithm. An author-
supplied code for SIAN algorithm can be found at [35].

SEANAC [46] overview: One cluster at a time strategy is pursued by minimization
of a least-squares criterion similar to that in in Equation (5), but applied for finding just
one cluster only. The authors derive a complementary optimality criterion, which is
locally optimized by adding nodes to cluster one-by-one [46]. A SEANAC code is publicly
available at [49].

DMoN [47] overview: The algorithm finds a soft cluster assignment matrix by using
Graph convolutional networks (GCNs) involving the given attribute matrix in the first layer
of the network. An objective function used is inspired by the Modularity criterion [47].

3.2. Datasets

We use both real-world and synthetic datasets. We describe them in the following
subsections.

3.2.1. Real World Datasets

Table 1 briefly summarizes the eight real-world data sets under consideration. All the
features are categorical, since two of the algorithms under comparison, CESNA and SIAN,
are applicable only at categorical features.

Table 1. Real world datasets.

Name Vertices Links Attributes Number of Communities Ground Truth Ref.

COSN 46 552 16 2 Region [50]
Lawyers 71 339 18 6 Derived out-of-office and status features [51]

World Trade 80 1000 16 5 Structural world system in 1980 features [52]
Malaria HVR6 307 6526 6 2 Cys Labels [53]

Parliament 451 11,646 108 7 Political parties [1]
Cora 2708 5276 1433 7 Computer Science research area [54]

SinaNet 3490 30,282 10 10 Users of same forum [8]
Amazon Photo 7650 71,831 745 8 Product categories [55]

Let us describe them in turn.
Consulting Organisational Social Network (COSN) dataset [50]: The nodes in this

network correspond to employees in a consulting company. The (asymmetric) edges are
formed in accordance with their replies to this question: “Please indicate how often you
have turned to this person for information or advice on work-related topics in the past
three months”. The answers are coded by 0 (I Do Not Know This Person), 1 (Never),
2 (Seldom), 3 (Sometimes), 4 (Often), and 5 (Very Often). Either of these 6 numerals is the
weight of the corresponding edge. The Region feature is considered as the ground truth.
More detail can be found in our papers [11,41].

Entropy 2022, 24, 626 9 of 18

Lawyers dataset [51]: The Lawyers dataset comes from a network study of corporate
law partnerships. It is available for download at [56]. There is a friendship network between
lawyers in the study. More detail can be found in our papers [11,41].

The combination of Office location and Status is considered the ground truth.
World-Trade dataset [52]: The World-Trade dataset contains data on trade between

80 countries in 1994. The link weights represent total imports by row-countries from
column-countries for the class of commodities designated as ’miscellaneous manufactures
of metal’ to represent high technology products or heavy manufacture.

The node attributes are Continent, Position in the Structural World System in 1980
qnd in 1994, GDP. The GDP categories are defined as follows: ‘Poor’: GDP USD 4406.9;
‘Mid-Range’: USD 4406.9 < GDP USD 21,574.5, and ‘Wealthy’: GDP USD 21,574.5.

The Structural World System Position in 1980, according to Smith and White [57], is
considered as the ground truth. More detail can be found in our papers [11,41].

Malaria data set [53]: The nodes are amino acid sequences containing six highly
variable regions (HVR) each. The edges are drawn between sequences with similar HVRs 6.
In this data set, there are two nominal attributes of nodes: (1) Cys Labels derived from a
highly variable region HVR6 sequence; and (2) Cys-PoLV labels derived from the sequences
adjacent to regions HVR 5 and 6.

The Cys Labels is considered as the ground truth.
Parliament dataset [1]: The 451 nodes correspond to members of the French Par-

liament. An edge is drawn if the corresponding MPs have signed a bill together. The
108 features are the constituency of MPs and their political party, as the authors describe it.
The latter is considered the ground truth.

Cora dataset [54]: This dataset is obtained by collecting 2708 scientific publications
and classifying them in seven categories. The citation network has 5429 links. The feature
set in this dataset is a dictionary to consist of 1433 unique words.

SinaNet dataset [8]: This dataset is a microblog user relationship network extracted
from the Sina-microblog website, http://www.weibo.com, accessed on 14 August 2009. The
authors at first selected 100 VIP Sina-microblog users from 10 significant forums including
finance and economics, literature and arts, etc. Then they extracted followers/followings
of these 100 users and their published micro-blogs. Using the depth-first search strategy,
they extracted three layers of user relationships and obtained 8452 users, 147,653 user
relationships, and 5.5 million micro-blogs in total. They merged all micro-blogs published
by a user to characterize the user interests. After removing users published less than
5000 words, they arrived at 3490 users and 30,282 relationships. They derived user topic
distribution in the 10 forums obtained by the LDA topic modeling–these are 10-dimensional
numerical features to characterize user interests.

Amazon photo dataset [55]: This dataset is a subset of the Amazon co-purchase graph
for its photo section. The nodes represent goods with edges between those frequently bought
together; node features are bag-of-word reviews. The class labels are product categories.

3.2.2. Generating Synthetic Data Sets

Our synthetic data generator coincides with that described in our paper [11]. Thus,
we describe further on rules for generating (a) network, (b) categorical features, and
(c) quantitative features by following the description in [11].

Generating network
First, the number of nodes, N, and the number of communities, K, are specified.

Then the cardinalities of communities are defined randomly subject two constraints (a) no
community should have less than a pre-specified number of nodes, so that probabilistic
approaches are applicable (in our experiments, this is set to 30); (b) and the total number of
nodes in all the communities sums to N. We consider two settings for N: (a) N = 200, for a
small-size network, and (b) N = 1000, for a medium-size network.

Given the community sizes, we populate them with nodes, that are specified just by
indices. Then we specify two probability values, p and q. Every within-community edge is

http://www.weibo.com

Entropy 2022, 24, 626 10 of 18

drawn with the probability p, independently of other edges. Every between-community
edge is drawn independently with the probability q.

Generating quantitative features
The K and cluster sizes are generated at the stage of network generation.
To model quantitative features, we apply the design proposed in [58]. Each cluster is

generated from a Gaussian distribution whose covariance matrix is diagonal with diagonal
values uniformly random in the range [0.05, 0.1], specifying the cluster’s spread. Each
component of the cluster center is generated uniformly random from the range α[−1,+1],
where α, a real between 0 and 1, controls the cluster intermix. The smaller the α, the greater
the chance that points from a cluster fall within the spreads of other clusters.

In addition to cluster intermix, the possibility of presence of noise in data is also taken
into account. Uniformly random noise features are generated within an interval defined by
the maximum and minimum values. In this way, 50% of the original data are replicated
with noise features.

Generating categorical features
The number of categories for each feature is randomly chosen from the set {2, 3, . . . , L}

where L = 10 for small-size networks and L = 15 for the medium-size networks. Then
cluster centers are generated by randomly selecting feature categories for each cluster
separately, with respect to the constraint that no two centers may coincide at more than
50% of features.

Given a center of k-th cluster, ck = (ckv), Nk entities of this cluster are generated as
follows. Given a pre-specified threshold of intermix, ε between 0 and 1, for every pair
(i, v), i = 1 : Nk; v = 1 : V, a uniformly random real value r between 0 and 1 is generated.
If r > ε, the entry xiv is set to be equal to ckv; otherwise, xiv is taken randomly from the
set of categories specified for feature v. Consequently, all entities in k-th cluster coincide
with its center, up to errors specified by ε. The smaller the ε, the less homogeneous is the
generated cluster.

A feature-rich network combining categorical and quantitative features is generated
with equal numbers of quantitative and categorical features.

3.3. The Adjusted Rand Index as an Evaluation Criterion

We use two popular metrics of similarity between partitions: (1) Adjusted Rand
Index (ARI) [59], and (2) Normalised Mutual Information (NMI) [60] for evaluation and
comparison of cluster recovery results. Since in our experiments, these two measures lead
to similar conclusions, for the sake of convenience, we report only ARI values.

To define the Adjusted Rand Index, let us recall the concept of contingency table
from statistics. Given two partitions, S = {S1, S2, . . . , SK} and T = {T1, T2, . . . , TL}, let
the former represent the ground truth, whereas the latter represents the found clusters. A
contingency table is a two-way table whose rows correspond to parts Sk (k = 1, 2, . . . , K) of
S, and its columns, to parts Tl (l = 1, 2, . . . , L) of T. The (k, l)-th entry is nkl = |Sk ∩ Tl |, the
frequency of (k, l) co-occurrence. The so-called marginal row a and marginal column b are
defined by ak = ∑L

l=1 nkl = |Sk| and bl = ∑K
k=1 nkl = |Tl |.

The Adjusted Rand Index is defined as:

ARI(S, T) =
∑k,l (

nkl
2)− [∑k (

ak
2)∑l (

bl
2)]/(

N
2)

1
2 [∑k (

ak
2) + ∑l (

bl
2)]− [∑k (

ak
2)∑l (

bl
2)]/(

N
2)]

(10)

The closer the value of ARI to unity, the better the match between the partitions;
ARI = 1.0 if and only if S = T. If one of the partitions consists of just one part, the set I
itself, then ARI = 0.

4. Computationally Testing KEFRiN Methods
4.1. Data Pre-Processing

The results of KEFRiN and SEANAC methods depend on data standardization.

Entropy 2022, 24, 626 11 of 18

For feature data, we consider two popular standardization methods: (R)Range stan-
dardization: each of the features is centered by subtraction of its mean from all its values,
and then normalized by dividing over its range, the difference between its maximum and
minimum by (Z) Z-scoring: each of the features is centered by subtraction of its mean from
all its values, and then normalized by dividing over its standard deviation;

We apply the two following network standardization methods:
(M) Modularity: Given an N × N similarity matrix P = (pij), compute summary

values pi+ = ∑N
j=1 pij, p+j = ∑N

i=1 pij, p++ = ∑N
i,j=1 pij and random interaction scores

rij = pi+p+j/p++. Clear link weights from random interactions by changing pij for
pij − rij.

(S) Scale shift: Compute the mean link score π = ∑N
i,j=1 pij/N2; change all pij for

pij − π.
Based on a systematic experimental study of effects of various standardization options,

we selected options: (Z) for feature data and (M) for network link data, as those leading
to, generally, best results at KEFRiN algorithms. The only exception to this rule applies
when categorical features are present: then option (S) rather than (M) is used for network
link data.

4.2. Experimental Validation of KEFRiN Methods at Synthetic Feature-Rich Networks
4.2.1. KEFRiN on Synthetic Networks with Quantitative Features

Table 2 shows performance of KEFRiN methods at the selected pre-processing options
over small-size networks with quantitative features only.

Table 2. KEFRiN’s Performance at small-size networks with quantitative features only: the average
and standard deviation of ARI index over 10 different data sets. Both cases, with and without noise,
are considered. The best results are bold-faced.

No Noise With Noise

p, q, α KEFRiNe KEFRiNc KEFRiNm KEFRiNe KEFRiNc KEFRiNm

0.9, 0.3, 0.9 0.818(0.163) 0.920(0.132) 0.951(0.102) 0.847(0.185) 0.971(0.086) 0.926(0.115)
0.9, 0.3, 0.7 0.823(0.119) 0.904(0.117) 0.925(0.117) 0.866(0.112) 0.837(0.138) 0.862(0.143)
0.9, 0.6, 0.9 0.792(0.179) 0.737(0.124) 0.866(0.157) 0.765(0.092) 0.738(0.174) 0.770(0.176)
0.9, 0.6, 0.7 0.796(0.180) 0.865(0.135) 0.802(0.184) 0.800(0.180) 0.765(0.162) 0.806(0.177)
0.7, 0.3, 0.9 0.849(0.128) 0.909(0.119) 0.880(0.152) 0.786(0.178) 0.915(0.125) 0.845(0.133)
0.7, 0.3, 0.7 0.809(0.098) 0.803(0.132) 0.935(0.100) 0.831(0.142) 0.760(0.200) 0.944(0.112)
0.7, 0.6, 0.9 0.499(0.184) 0.753(0.162) 0.303(0.086) 0.558(0.174) 0.544(0.164) 0.316(0.150)
0.7, 0.6, 0.7 0.595(0.189) 0.742(0.125) 0.306(0.114) 0.462(0.129) 0.534(0.100) 0.279(0.141)

Average 0.748 0.830 0.831 0.740 0.758 0.718

At no noise cases, KEFRiNm and KEFRiNc win four settings each. It is noteworthy that,
on average, KEFRiNc obtains better results. Specifically, at the worst combinations of p, q, α
parameters, it wins the competition with the ARI values of about 0.75. In the presence of
noise, KEFRiNe wins two settings. These patterns are extended at medium-sized networks
with quantitative features only (for the sake of brevity, the results are omitted).

4.2.2. KEFRiN at Synthetic Networks with Categorical Features

Table 3 shows KEFRiN’s performance over small-sized and medium-sized networks
with categorical features (at the selected standardization techniques).

In both cases, the small-sized data and medium-sized data, KEFRiNm wins overall. A
maximum value, 0.787, by KEFRiNe at small-sized data looks like just a random splash
balanced by a low value, 0.279, at its counter-part at medium-sized data, due to the ran-
domness of the data. Still, one cannot help but notice that the performances are somewhat
worse at the medium-sized data.

Entropy 2022, 24, 626 12 of 18

Table 3. KEFRiN’s performance at small-sized and medium-sized synthetic networks with categorical
features: The average and standard deviation of ARI index over 10 different data sets. The best results
are highlighted in bold-face.

Small Medium

p, q, α KEFRiNe KEFRiNc KEFRiNm KEFRiNe KEFRiNc KEFRiNm

0.9, 0.3, 0.9 0.855(0.145) 0.922(0.119) 0.961(0.079) 0.508(0.205) 0.724(0.097) 0.863(0.089)
0.9, 0.3, 0.7 0.795(0.149) 0.819(0.142) 0.863(0.138) 0.777(0.129) 0.742(0.182) 0.762(0.184)
0.9, 0.6, 0.9 0.787(0.149) 0.726(0.097) 0.893(0.147) 0.279(0.204) 0.652(0.110) 0.894(0.074)
0.9, 0.6, 0.7 0.588(0.173) 0.711(0.145) 0.821(0.120) 0.766(0.180) 0.733(0.083) 0.819(0.053)
0.7, 0.3, 0.9 0.827(0.141) 0.877(0.130) 0.951(0.099) 0.364(0.247) 0.641(0.111) 0.791(0.119)
0.7, 0.3, 0.7 0.794(0.144) 0.795(0.117) 0.877(0.137) 0.829(0.085) 0.797(0.088) 0.759(0.092)
0.7, 0.6, 0.9 0.399(0.094) 0.819(0.142) 0.865(0.119) 0.426(0.246) 0.591(0.094) 0.859(0.083)
0.7, 0.6, 0.7 0.074(0.047) 0.834(0.132) 0.392(0.121) 0.671(0.196) 0.773(0.070) 0.695(0.074)

Average 0.640 0.812 0.828 0.578 0.710 0.810

4.2.3. KEFRiN at Synthetic Networks Combining Quantitative and Categorical Features

Tables 4 and 5 present the performance of KEFRiN methods, in respect, over small-size
and medium-size networks at which both quantitative and categorical features are present.

Table 4. The average and standard deviation of ARI index over 10 different data sets for KEFRiN
results at small-size networks combining quantitative and categorical features, with and without
noise. The best results are highlighted in bold-face.

No Noise With Noise

p, q, α KEFRiNe KEFRiNc KEFRiNm KEFRiNe KEFRiNc KEFRiNm

0.9, 0.3, 0.9 0.823(0.125) 0.752(0.096) 0.869(0.132) 0.862(0.140) 0.810(0.153) 0.859(0.146)
0.9, 0.3, 0.7 0.840(0.133) 0.769(0.101) 0.944(0.114) 0.864(0.137) 0.858(0.143) 0.873(0.130)
0.9, 0.6, 0.9 0.756(0.171) 0.809(0.138) 0.817(0.179) 0.733(0.184) 0.717(0.130) 0.923(0.106)
0.9, 0.6, 0.7 0.831(0.185) 0.716(0.122) 0.754(0.193) 0.708(0.223) 0.549(0.186) 0.845(0.150)
0.7, 0.3, 0.9 0.872(0.129) 0.750(0.078) 0.897(0.129) 0.713(0.185) 0.881(0.109) 0.851(0.152)
0.7, 0.3, 0.7 0.782(0.155) 0.681(0.078) 0.848(0.152) 0.840(0.130) 0.647(0.143) 0.899(0.125)
0.7, 0.6, 0.9 0.583(0.143) 0.704(0.139) 0.389(0.122) 0.576(0.104) 0.520(0.118) 0.244(0.130)
0.7, 0.6, 0.7 0.473(0.095) 0.540(0.135) 0.207(0.098) 0.370(0.123) 0.421(0.106) 0.183(0.059)

Average 0.745 0.715 0.716 0.708 0.675 0.710

Table 5. The average and standard deviation of ARI index over 10 different data sets for KEFRiN
results at medium-size networks combining quantitative and categorical features, with and without
noise. The best results are highlighted in bold-face.

No Noise With Noise

p, q, α KEFRiNe KEFRiNc KEFRiNm KEFRiNe KEFRiNc KEFRiNm

0.9, 0.3, 0.9 0.570(0.121) 0.834(0.044) 0.697(0.122) 0.541(0.122) 0.790(0.102) 0.777(0.116)
0.9, 0.3, 0.7 0.540(0.158) 0.801(0.051) 0.686(0.124) 0.784(0.110) 0.733(0.103) 0.768(0.131)
0.9, 0.6, 0.9 0.641(0.068) 0.747(0.071) 0.601(0.075) 0.699(0.085) 0.645(0.061) 0.641(0.069)
0.9, 0.6, 0.7 0.672(0.082) 0.722(0.059) 0.573(0.061) 0.655(0.091) 0.617(0.046) 0.624(0.074)
0.7, 0.3, 0.9 0.614(0.085) 0.853(0.048) 0.578(0.134) 0.556(0.113) 0.739(0.117) 0.551(0.104)
0.7, 0.3, 0.7 0.543(0.081) 0.773(0.060) 0.574(0.113) 0.753(0.084) 0.708(0.078) 0.658(0.108)
0.7, 0.6, 0.9 0.385(0.120) 0.726(0.058) 0.180(0.139) 0.640(0.106) 0.593(0.135) 0.077(0.105)
0.7, 0.6, 0.7 0.255(0.050) 0.608(0.037) 0.102(0.079) 0.512(0.057) 0.483(0.021) 0.035(0.010)

Average 0.528 0.758 0.499 0.642 0.664 0.516

In Table 4, KEFRiNm generally wins in both cases, with and without noise. Moreover,
one can see that presence of the noise does not much affect the performance of KEFRiN

Entropy 2022, 24, 626 13 of 18

algorithms at the mixed scale data case. It looks that addition of categorical features to
quantitative features acts as similar to addition of quantitative noise features to them.

KEFRiNc outperforms the competitors in the case of medium-size networks with
no noise. In the presence of noise, KEFRiNc remains the winner on average, although it
slightly loses to KEFRiNe in five out of the eight settings.

Overall, one may conclude that KEFRiNm mostly wins over KEFRiNe and KEFRiNc
at synthetic datasets, with one notable exception: KEFRiNc wins at the medium-size
mixed-scale feature datasets.

5. Experimental Comparison of Selected Methods

In this section, we describe our experimental results at comparison of the proposed
methods with those selected as competition. In the first subsection, we compare the
methods with synthetic datasets. We consider here only categorical features generated for
the network nodes because some competing algorithms work only at this restriction. The
second subsection is devoted to comparison of the methods at the real world feature-rich
networks.

5.1. Comparison of Methods over Synthetic Networks with Categorical Features

Tables 6 and 7 compare the performance of the algorithms under consideration
at synthetic networks with categorical features, those small-sized and medium-sized,
respectively.

Table 6. Comparison of CESNA, SIAN, DMoN, SEANAC and KEFRiN algorithms on small-size
synthetic networks with categorical features: The average and standard deviation of ARI index over
10 different data sets. The best results are shown in bold-face and the second-best ones are underlined.

Dataset CESNA SIAN DMoN SEANAC KEFRiNe KEFRiNc KEFRiNm

0.9, 0.3, 0.9 1.00(0.00) 0.554(0.285) 0.709(0.101) 0.994(0.008) 0.886(0.116) 0.922(0.119) 0.895(0.173)
0.9, 0.3, 0.7 0.948(0.105) 0.479(0.289) 0.380(0.107) 0.974(0.024) 0.835(0.138) 0.819(0.142) 0.891(0.135)
0.9, 0.6, 0.9 0.934(0.075) 0.320(0.255) 0.412(0.109) 0.965(0.013) 0.963(0.072) 0.726(0.097) 0.868(0.202)
0.9, 0.6, 0.7 0.902(0.063) 0.110(0.138) 0.213(0.051) 0.750(0.117) 0.694(0.096) 0.711(0.145) 0.791(0.191)
0.7, 0.3, 0.9 0.965(0.078) 0.553(0.157) 0.566(0.105) 0.975(0.018) 0.788(0.117) 0.877(0.130) 0.937(0.124)
0.7, 0.3, 0.7 0.890(0.138) 0.508(0.211) 0.292(0.077) 0.870(0.067) 0.836(0.115) 0.795(0.117) 0.824(0.191)
0.7, 0.6, 0.9 0.506(0.101) 0.047(0.087) 0.345(0.064) 0.896(0.067) 0.762(0.169) 0.834(0.132) 0.379(0.174)
0.7, 0.6, 0.7 0.202(0.081) 0.030(0.040) 0.115(0.058) 0.605(0.091) 0.574(0.142) 0.540(0.107) 0.184(0.098)

Table 7. Comparison of CESNA, SIAN, DMoN, SEANAC, and KEFRiN algorithms over medium-size
synthetic networks with categorical features; average and standard deviation of ARI index over
10 different datasets. The best results are shown in bold-face and second ones are underlined.

Dataset CESNA SIAN DMoN SEANAC KEFRiNe KEFRiNc KEFRiNm

0.9, 0.3, 0.9 0.894(0.053) 0.000(0.000) 0.512(0.137) 1.000(0.000) 0.508(0.205) 0.724(0.097) 0.863(0.089)
0.9, 0.3, 0.7 0.849(0.076) 0.000(0.000) 0.272(0.073) 0.996(0.005) 0.777(0.129) 0.742(0.182) 0.762(0.184)
0.9, 0.6, 0.9 0.632(0.058) 0.000(0.000) 0.370(0.063) 0.998(0.002) 0.279(0.204) 0.652(0.110) 0.894(0.074)
0.9, 0.6, 0.7 0.474(0.089) 0.000(0.000) 0.168(0.030) 0.959(0.032) 0.766(0.180) 0.733(0.083) 0.819(0.053)
0.7, 0.3, 0.9 0.764(0.068) 0.026(0.077) 0.446(0.099) 1.000(0.001) 0.364(0.247) 0.641(0.111) 0.791(0.119)
0.7, 0.3, 0.7 0.715(0.128) 0.000(0.000) 0.228(0.077) 0.993(0.002) 0.829(0.085) 0.797(0.088) 0.759(0.092)
0.7, 0.6, 0.9 0.060(0.024) 0.000(0.000) 0.332(0.051) 0.998(0.001) 0.426(0.246) 0.591(0.094) 0.859(0.083)
0.7, 0.6, 0.7 0.016(0.008) 0.000(0.000) 0.133(0.016) 0.909(0.035) 0.671(0.196) 0.773(0.070) 0.695(0.074)

Two methods, SEANAC and CESNA, dominate the Table 6 at small-size networks.
However, at the “difficult” settings for (p, q, ε) in the last two rows, our methods SEANAC,
KEFRiNc and KEFRiNe show much better performances. SEANAC remains the only
winner at medium-sized networks, see Table 7, whereas CESNA’s performance decisively
declines at the settings of the last two rows. DMoN and SIAN show relatively poor

Entropy 2022, 24, 626 14 of 18

performances, especially at the medium-size datasets at which the performance of SIAN is
undermined by the convergence issues. KEFRiN methods, especially KEFRiNm, perform
relatively well getting the second-best position at many settings. One should also notice
their relatively low computational cost.

5.2. Comparison of the Algorithms over Real-World Feature-Rich Network Data

Those pre-processing methods that lead, on average, to the largest ARI values have
been chosen for the least-squares methods at each of the datasets. They are presented in
Table 8.

Table 8. The selected standardization options for the least-squares community detection methods at
the real world datasets. Symbols R, Z, S, M, N stand for Range standardization, Z-scoring, Scale shift,
Modularity and No Pre-processing, respectively.

Dataset SEANAC KEFRiNe KEFRiNc KEFRiNm
Y P Y P Y P Y P

Malaria HVR6 Z U R R N N Z M
Lawyers R S Z N Z N Z M

World Trade R R N N Z M R M
Parliament Z M N N Z N R M

COSN Z N Z N Z N R M
Cora Z M N N N N Z M

SinaNet Z M Z Z Z N Z M
Amazon Photo N|A Z S N N Z M

Computational results by the algorithms under consideration over the real-world
datasets are presented in Table 9.

Table 9. Comparison of CESNA, SIAN, DMoN, SEANAC, KEFRiNe and KEFRiNc algorithms with
Real-world data sets; average values of ARI are presented over 10 random initializations. The best
results are highlighted in bold-face; those second-best are underlined.

Dataset CESNA SIAN DMoN SEANAC KEFRiNe KEFRiNc KEFRiNm

HRV6 0.20(0.00) 0.39(0.29) 0.64(0.00) 0.49(0.11) 0.34(0.02) 0.69(0.38) −0.056(0.004)
Lawyers 0.28(0.00) 0.59(0.04) 0.60(0.04) 0.60(0.09) 0.43(0.13) 0.44(0.14) 0.415(0.085)

World Trade 0.13(0.00) 0.10(0.01)) 0.13(0.02) 0.29(0.10) 0.27(0.17) 0.40(0.11) 0.048(0.013)
Parliament 0.25(0.00) 0.79(0.12) 0.48(0.02) 0.28(0.01) 0.15(0.09) 0.41(0.05) −0.035(0.001)

COSN 0.44(0.00) 0.75(0.00) 0.91(0.00) 0.72(0.02) 0.65(0.18) 1.00(0.00) 0.493(0.056)
Cora 0.14(0.00) 0.17(0.03) 0.37(0.04) 0.00(0.00) 0.00(0.00) 0.21(0.01) −0.000(0.000)

SinaNet 0.09(0.00) 0.17(0.02) 0.28(0.01) 0.21(0.03) 0.31(0.02) 0.34(0.02) 0.001(0.000)
Amazon Photo 0.19(0.000) N|A 0.44(0.04) N|A 0.06(0.01) 0.43(0.06) 0.030(0.001)

Two algorithms dominate the Table 9, KEFRiNc and DMoN. In contrast, results by
CESNA and KEFRiNm are obviously inferior here. The SIAN algorithm, which generally
under-performed, unexpectedly produced the best—and a rather good—result at the
Parliament dataset.

It should be noted that our results for DMoN at the Cora and Amazon photo datasets
somewhat differ from those in [47], probably because we use the entire Cora and Amazon
photo datasets, whereas [47] used subsets of them.

5.3. Comparison of Methods over Computational Complexity

The complexity of k-means method has been extensively studied (see [61] for a review).
It is known that a single iteration of the method is rather computationally effective, taking,
on average, no more steps than of the order of the squared number of objects, which
can be reduced, with simple heuristics, to the order of the number of objects. However,

Entropy 2022, 24, 626 15 of 18

the number of iterations, in a worst-case scenario, can be really high: its lower bound is
super-polynomial. This theory, however is not supported by real-life computations.

Specifically, we ran a series of computations with algorithms under consideration to
compare their performances in time needed to compute. Table 10 reports time, in seconds,
taken by each of them over synthetic networks with categorical features over the easiest
and the most challenging settings. The reported times have been achieved at a desktop
computer Intel(R) (Core(TM) i9-9900K CPU /@ 3.60GHz, RAM: 64 GB, HD: 1TB SSD) under
Ubuntu 18.0 Operating System).

Table 10. The execution time of methods under consideration at medium-size synthetic networks
with categorical features at the nodes. The average of 10 different data sets at the same setting is
reported in second. The fastest algorithm is shown in bold-face.

p, q, α CESNA SIAN DMoN SEANAC KEFRiNe KEFRiNc KEFRiNm

0.9, 0.3, 0.9 38.265 856.785 124.698 492.006 2.434 2.389 0.1946
0.7, 0.6, 0.7 83.961 2674.541 207.541 476.251 2.859 3.131 0.2261

As one can see, both KEFRiNm and KEFRiNc work much faster than the competi-
tion. This fast performance may have two reasons: (1) K-Means ++ seeds initialization
leads to faster convergence; (2) the non-summability models have been implemented in a
vectorized form.

Among our four competitors under consideration, CESNA and SIAN, in respect, can
be considered the fastest and slowest competitors.

6. Conclusions

In this paper, we abandon our double-greedy approach for community detection
in feature-rich networks [11,41]. We apply a different strategy here by exploiting our
Nonsummability assumption for the network link data [11]. This allows us to minimize
the least-squares criterion by alternatingly applying it in either of two spaces, the feature
space and the similarity data space. This KEFRiN method is a straightforward extension of
the conventional batch K-means clustering method. We operate with three versions of the
algorithm, KEFRiNe, KEFRiNm and KEFRiNc, based on the squared Euclidean distance,
Manhattan distance and the cosine distance, respectively. It appears they are competitive
against a set of recent algorithms from the literature, especially over the running time,
although no universal clear-cut winner emerges in our experiments.

There are two features distinguishing KEFRiN algorithms from others: (i) they admit
both categorical and quantitative features; (ii) they need data pre-processing, both shift of
the origin and normalization. The latter may be considered both a shortcoming (unfriendli-
ness to the user) and an advantage (the user may affect the results by using a meaningful
data standardization).

Among the directions for future work we would like to mention the following:
(a) adapting KEFRiN algorithms to larger datasets; (b) investigating the effects of bal-
ancing weights ρ and ξ and, moreover, automating the choice of them; (c) developing a
probabilistic framework in which KEFRiN-like algorithms would serve as model-fitting
procedures analogous to EM-algorithms for fitting mixture-of-distributions models; (d) ex-
tending KEFRiN algorithms to incremental and/or kernel-based options; (e) investigating
the issue of determining the “right” number of clusters;

Author Contributions: Conceptualization, B.M. and S.S.; Formal analysis, B.M.; Funding acquisition,
S.S.; Investigation, S.S.; Methodology, S.S.; Project administration, B.M.; Resources, S.S.; Software,
S.S.; Supervision, B.M.; Validation, S.S.; Writing—original draft, S.S.; Writing—review & editing, B.M.
All authors have read and agreed to the published version of the manuscript.

Funding: RF Government Grant ag. № 14.641.31.0004.

Data Availability Statement: https://github.com/Sorooshi/KEFRiN (accessed on 26 April 2022).

https://github.com/Sorooshi/KEFRiN

Entropy 2022, 24, 626 16 of 18

Acknowledgments: The contribution of S. Shalileh has been funded by the Center for Language and
Brain NRU Higher School of Economics, RF Government Grant ag. № 14.641.31.0004. B. Mirkin is
partially supported by the International Centre of Decision Choice and Analysis of the NRU HSE
Moscow. The authors are indebted to the anonymous referees for their invaluable comments taken
into account in the final draft.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bojchevski, A.; Günnemanz., S. Bayesian robust attributed graph clustering: Joint learning of Partial anomalies and group

structure. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February
2018; pp. 12–20.

2. Xu, Z.; Ke, Y.; Wang, Y.; Cheng, H.; Cheng, J. A model-based approach to attributed graph clustering. In Proceedings of the 2012
ACM SIGMOD International Conference on Management of Data (ACM), Scottsdale, AZ, USA, 20–24 May 2012; pp. 505–516.

3. Interdonato, R.; Atzmueller, M.; Gaito, S.; Kanawati, R.; Largeron, C.; Sala, A. Feature-rich networks: Going beyond complex
network topologies. Appl. Netw. Sci. 2019, 4, 4. doi: 10.1007/s41109-019-0111-x. [CrossRef]

4. Chunaev, P. Community detection in node-attributed social networks: A survey. Comput. Sci. Rev. 2020, 37, 100286. [CrossRef]
5. Citraro, S.; Rossetti, G. X-Mark: A benchmark for node-attributed community discovery algorithms. Soc. Netw. Anal. Min. 2021,

11, 99. [CrossRef]
6. Berahmand, K.; Mohammadi, M.; Faroughi, A.; Mohammadiani, R.P. A novel method of spectral clustering in attributed networks

by constructing parameter-free affinity matrix. Clust. Comput. 2021, 11, 869–888. [CrossRef]
7. Walia, A.K.; Chhabra, A.; Sharma, D. Comparative Analysis of Contemporary Network Simulators. affinity matrix. In Innovative

Data Communication Technologies and Application; Springer: Berlin/Heidelberg, Germany, 2022; pp. 369–383.
8. Jia, C.; Li, Y.; Carson, M.; Wang, X.; Yu, J. Node attribute-enhanced community detection in complex networks. Sci. Rep. 2017,

7, 2626. [CrossRef]
9. Mirkin, B. Clustering: A Data Recovery Approach, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2012.
10. Shalileh, S.; Mirkin, B. A Method for Community Detection in Networks with Mixed Scale Features at Its Nodes. In Proceedings

of the International Conference on Complex Networks and Their Applications, Madrid, Spain, 30 November–2 December 2020;
pp. 3–14.

11. Shalileh, S.; Mirkin, B. Summable and nonsummable data-driven models for community detection in feature-rich networks. Soc.
Netw. Anal. Min. 2021, 11, 67. [CrossRef]

12. Magara, M.B.; Ojo, S.O.; Zuva, T. A comparative analysis of text similarity measures and algorithms in research paper
recommender systems. In Proceedings of the Conference on Information Communications Technology and Society (ICTAS),
Durban, South Africa, 8–9 March 2018; pp. 1–5.

13. Bi, J.; Cao, H.; Wang, Y.; Zheng, G.; Liu, K.; Cheng, N.; Zhao, M. DBSCAN and TD Integrated Wi-Fi Positioning Algorithm.
Remote Sens. 2022, 14, 297. [CrossRef]

14. Shalileh, S.; Mirkin, B. Two Extensions of K-Means algorithm for Community Detection in Feature-Rich Networks. In Proceedings
of the 2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), The Hague,
The Netherlands, 7–10 December 2021; pp. 358–373.

15. Neville, J.; Adler, M.; Jensen, D. Clustering relational data using attribute and link information. In Proceedings of the Text Mining
and Link Analysis Workshop, 18th International Joint Conference on Artificial Intelligence, Acapulco, Mexico, 9–15 August 2003;
pp. 9–15.

16. Steinhaeuser, K.; Chawla, N. Community detection in a large real-world social network. In Social Computing, Behavioral Modeling,
and Prediction; Springer: Boston, MA, USA, 2008; pp. 168–175.

17. Cheng, Y.Z.H.; Yu, J. Clustering large attributed graphs: An efficient incremental approach. In Proceedings of the IEEE
International Conference on Data Mining, Sydney, Australia, 13–17 December 2010; pp. 689–698.

18. Yin, Z.; Gupta, M.; Weninger, T.; Han, J. A unified framework for link recommendation using random walks. In Proceedings of
the 2010 International Conference on Advances in Social Networks Analysis and Mining (IEEE), Odense, Denmark, 9–11 August
2010; pp. 152–159.

19. Cheng, H.; Zhou, Y.; Yu, J.X. Clustering large attributed graphs: A balance between structural and attribute similarities. ACM
Trans. Knowl. Discov. Data (TKDD) 2011, 5, 1–33. [CrossRef]

20. Cruz, J.; Bothorel, C.; Poulet, F. Entropy based community detection in augmented social networks. In Proceedings of the
International Conference on Computational Aspects of Social Networks (CASoN), Salamanca, Spain, 19–21 October 2011;
pp. 163–168.

21. Li, Y.; Jia, C.; Yu, J. Parameter-free community detection method based on centrality and dispersion of nodes in complex networks.
Phys. A–Stat. Mech. Its Appl. 2015, 438, 321–334. [CrossRef]

22. Page, L.; Brin, S.; Motwani, R.; Winograd, T. Pagerank Citation Ranking: Bringing Order to the Web; Technical Report; Stanford
InfoLab: Stanford, CA, USA, 1999.

http://doi.org/10.1007/s41109-019-0111-x
http://dx.doi.org/10.1016/j.cosrev.2020.100286
http://dx.doi.org/10.1007/s13278-021-00823-2
http://dx.doi.org/10.1007/s10586-021-03430-0
http://dx.doi.org/10.1038/s41598-017-02751-8
http://dx.doi.org/10.1007/s13278-021-00774-8
http://dx.doi.org/10.3390/rs14020297
http://dx.doi.org/10.1145/1921632.1921638
http://dx.doi.org/10.1016/j.physa.2015.06.043

Entropy 2022, 24, 626 17 of 18

23. He, D.; Jin, D.; Chen, Z.; Zhang, W. Identification of hybrid node and link communities in complex networks. Nat. Sci. Rep. 2015,
5, 8638. [CrossRef]

24. Jin, H.; Yu, W.; Li, S. A clustering algorithm for determining community structure in complex networks. Phys. A Stat. Mech. Appl.
2018, 492, 980–993. [CrossRef]

25. Green, P.; Silverman, B. Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach, 1st ed.; Chapman
and Hall/CRC: Boca Raton, FL, USA, 1993.

26. Abrahao, B.; Soundarajan, S.; Hopcroft, J.; Kleinberg, R. On the separability of structural classes of communities. In Proceedings
of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China, 12–16 August
2012; pp. 624–632.

27. Hu, Y.; Li, M.; Zhang, P.; Fan, Y.; Di, Z. Community detection by signaling on complex networks. Phys. Rev. E 2008, 78, 16115.
[CrossRef] [PubMed]

28. Wang, D.; Zhao, Y. Network community detection from the perspective of time series. Phys. A Stat. Mech. Its Appl. 2019,
522, 205–214. [CrossRef]

29. Chang, S.; Han, W.; Tang, J.; Qi, G.; Aggarwal, C.; Huang, T. Heterogeneous network embedding via deep architectures. In
Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, Australia,
10–13 August 2015; pp. 119–128.

30. Shi, W.; Huang, L.; Wang, C.D.; Li, J.H.; Tang, Y.; Fu, C. Network embedding via community based variational autoencoder. IEEE
Access 2019, 7, 25323–25333. [CrossRef]

31. Zhang, Y.; Levina, E.; Zhu, J. Community detection in networks with node features. Electron. J. Stat. 2016, 10, 3153–3178.
[CrossRef]

32. Li, J.; Rong, Y.; Cheng, H.; Meng, H.; Huang, W.; Huang, J. Semi-supervised graph classification: A hierarchical graph perspective.
In Proceedings of the World Wide Web Conference (ACM), San Francisco, CA, USA, 13 May 2019; pp. 972–982.

33. Stanley, N.; Bonacci, T.; Kwitt, R.; Niethammer, M.; Mucha, P.J. Stochastic block models with multiple continuous attributes. Appl.
Netw. Sci. 2019, 4, 54. [CrossRef]

34. Peel, L.; Larremore, D.; Clauset, A. The ground truth about metadata and community detection in networks. Sci. Adv. 2017,
3, e1602548. [CrossRef]

35. Newman, M.; Clauset, A. Structure and inference in annotated networks. Nat. Commun. 2016, 7, 11863. [CrossRef]
36. Yang, J.; McAuley, J.; Leskovec, J. Community detection in networks with node attributes. In Proceedings of the IEEE 13th

International Conference on Data Mining, Dallas, TX, USA, 7–10 December 2013; pp. 1151–1156.
37. Jin, D.; He, J.; Chai, B.; He, D. Semi-supervised community detection on attributed networks using non-negative matrix

tri-factorization with node popularity. Front. Comput. Sci. 2021, 15, 154324. [CrossRef]
38. Luo, X.; Liu, Z.; Shang, M.; Zhou, M. Highly-Accurate Community Detection via Pointwise Mutual Information-Incorporated

Symmetric Non-negative Matrix Factorization. IEEE Trans. Netw. Sci. Eng. 2020, 8, 463–476. [CrossRef]
39. Wang, X.; Jin, D.; Cao, X.; Yang, L.; Zhang, W. Semantic community identification in large attribute networks. In Proceedings of

the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; pp. 265–271.
40. Cao, J.; Wanga, H.; Jin, D.; Dang, J. Combination of links and node contents for community discovery using a graph regularization

approach. Future Gener. Comput. Syst. 2019, 91, 361–370. [CrossRef]
41. Shalileh, S.; Mirkin, B. Least-squares community extraction in feature-rich networks using similarity data. PLoS ONE 2021,

16, e0254377. [CrossRef] [PubMed]
42. Akoglu, L.; Tong, H.; Meeder, B.; Faloutsos, C. Parameter-free identification of cohesive subgroups in large attributed graphs.

In Proceedings of the 12th SIAM International Conference on Data Mining (PICS), Anaheim, CA, USA, 26–28 April 2012;
pp. 439–450.

43. Mirkin, B. The iterative extraction approach to clustering. In Principal Manifolds for Data Visualization and Dimension Reduction;
Gorban, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 151–177.

44. Steinley, D. K-means clustering: A half-century synthesis. Br. J. Math. Stat. Psychol. 2006, 59, 1–34. [CrossRef] [PubMed]
45. Arthur, D.; Vassilvitskii, S. k-means++: The advantages of careful seeding. In Proceedings of the Eighteenth Annual ACM-SIAM

Symposium on Discrete Algorithms, Miami, FL, USA, 22–24 January 2006; pp. 1027–1035.
46. Shalileh, S.; Mirkin, B. A One-by-One Method for Community Detection in Attributed Networks. In Proceedings of the

International Conference on Intelligent Data Engineering and Automated Learning, Guimaraes, Portugal, 4–6 November 2020;
Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2020; Volume 12490, pp. 413–422.

47. Tsitsulin, A.; Palowitch, J.; Perozzi, B.; Müller, E. Graph clustering with graph neural networks. arXiv 2020, arXiv:2006.16904.
48. Leskovec, J.; Sosič, R. SNAP: A General-Purpose Network Analysis and Graph-Mining Library. ACM Trans. Intell. Syst. Technol.

(TIST) 2016, 8, 1–20. [CrossRef] [PubMed]
49. Shalileh, S. SEANAC Source Code. Available online: https://github.com/Sorooshi/SEANAC(accessed on 30 August 2020).
50. Cross, R.; Parker, A. The Hidden Power of Social Networks: Understanding How Work Really Gets Done in Organizations; Harvard

Business Press: Boston, MA, USA, 2004.
51. Lazega, E. The Collegial Phenomenon: The Social Mechanisms of Cooperation among Peers in a Corporate Law Partnership; Oxford

University Press: Oxford, UK, 2001.

http://dx.doi.org/10.1038/srep08638
http://dx.doi.org/10.1016/j.physa.2017.11.029
http://dx.doi.org/10.1103/PhysRevE.78.016115
http://www.ncbi.nlm.nih.gov/pubmed/18764028
http://dx.doi.org/10.1016/j.physa.2019.01.028
http://dx.doi.org/10.1109/ACCESS.2019.2900662
http://dx.doi.org/10.1214/16-EJS1206
http://dx.doi.org/10.1007/s41109-019-0170-z
http://dx.doi.org/10.1126/sciadv.1602548
http://dx.doi.org/10.1038/ncomms11863
http://dx.doi.org/10.1007/s11704-020-9203-0
http://dx.doi.org/10.1109/TNSE.2020.3040407
http://dx.doi.org/10.1016/j.future.2018.08.009
http://dx.doi.org/10.1371/journal.pone.0254377
http://www.ncbi.nlm.nih.gov/pubmed/34264961
http://dx.doi.org/10.1348/000711005X48266
http://www.ncbi.nlm.nih.gov/pubmed/16709277
http://dx.doi.org/10.1145/2898361
http://www.ncbi.nlm.nih.gov/pubmed/28344853
https://github.com/Sorooshi/SEANAC

Entropy 2022, 24, 626 18 of 18

52. Nooy, W.D.; Mrvar, A.; Batagelj, V. Exploratory Social Network Analysis with Pajek; Cambridge University Press: Cambridge, MA,
USA, 2004.

53. Larremore, D.; Clauset, A.; Buckee, C.O. A network approach to analyzing highly recombinant malaria parasite genes. PLoS
Comput. Biol. 2013, 9, e1003268. [CrossRef]

54. Sen, P.; Namata, G.; Bilgic, M.; Getoor, L.; Galligher, B.; Eliassi-Rad, T. Collective classification in network data. AI Mag. 2008,
29, 93–106. [CrossRef]

55. Shchur, O.; Mumme, M.; Bojchevski, A.; Günnemann, S. Pitfalls of graph neural network evaluation. arXiv 2018, arXiv:1811.05868.
56. Snijders, T. Lawyers Data Set. Available online: https://www.stats.ox.ac.uk/~snijders/siena/ (accessed on 26 April 2022).
57. Smith, D.; White, D. Structure and Dynamics of the Global Economy-Network Analysis of International-Trade 1965–1980. Soc.

Forces 1992, 70, 857–893. [CrossRef]
58. Kovaleva, E.V.; Mirkin, B. Bisecting K-means and 1D projection divisive clustering: A unified framework and experimental

comparison. J. Classif. 2015, 32, 414–442. [CrossRef]
59. Hubert, L.; Arabie, P. Comparing partitions. J. Classif. 1985, 2, 193–218. [CrossRef]
60. Cover, T.; Thomas, J. Elements of Information Theory; John Wiley and Sons: New York, NY, USA, 2006.
61. Blömer, J.; Lammersen, C.; Schmidt, M.; Sohler, C. Theoretical analysis of the k-means algorithm—A survey. In Algorithm

Engineering; Springer: Berlin/Heidelberg, Germany, 2016; pp. 81–116.

http://dx.doi.org/10.1371/journal.pcbi.1003268
http://dx.doi.org/10.1609/aimag.v29i3.2157
https://www.stats.ox.ac.uk/~snijders/siena/
http://dx.doi.org/10.2307/2580193
http://dx.doi.org/10.1007/s00357-015-9186-y
http://dx.doi.org/10.1007/BF01908075

	Introduction: The Problem and Our Approach
	Related Work
	General
	Augmenting the Network Structure
	Converting the Network Structure into Feature Space
	Model-Based Community Detection

	Least-Squares Criterion and Extended K-Means
	The Summability and Non-Summability Assumptions
	The Criterion and Its Alternating Minimization
	Using Manhattan Distance in KEFRiN
	Using Cosine Distance in KEFRiN

	Defining Experimental Framework for Testing KEFRiN
	Algorithms under Comparison
	Datasets
	Real World Datasets
	Generating Synthetic Data Sets

	The Adjusted Rand Index as an Evaluation Criterion

	Computationally Testing KEFRiN Methods
	Data Pre-Processing
	Experimental Validation of KEFRiN Methods at Synthetic Feature-Rich Networks
	KEFRiN on Synthetic Networks with Quantitative Features
	KEFRiN at Synthetic Networks with Categorical Features
	KEFRiN at Synthetic Networks Combining Quantitative and Categorical Features

	Experimental Comparison of Selected Methods
	Comparison of Methods over Synthetic Networks with Categorical Features
	Comparison of the Algorithms over Real-World Feature-Rich Network Data
	Comparison of Methods over Computational Complexity

	Conclusions
	References

