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Abstract: Computing influential nodes gets a lot of attention from many researchers for information
spreading in complex networks. It has vast applications, such as viral marketing, social leader
creation, rumor control, and opinion monitoring. The information-spreading ability of influential
nodes is greater compared with other nodes in the network. Several researchers proposed centrality
measures to compute the influential nodes in a complex network, such as degree, betweenness,
closeness, semi-local centralities, and PageRank. These centrality methods are defined based on the
local and/or global information of nodes in the network. However, due to their high time complexity,
centrality measures based on the global information of nodes have become unsuitable for large-scale
networks. Very few centrality measures exist that are based on the attributes between nodes and the
structure of the network. We propose the nearest neighborhood trust PageRank (NTPR) based on the
structural attributes of neighbors and nearest neighbors of nodes. We define the measure based on the
degree ratio, the similarity between nodes, the trust values of neighbors, and the nearest neighbors.
We computed the influential nodes in various real-world networks using the proposed centrality
method. We found the maximum influence by using influential nodes with SIR and independent
cascade methods. We also compare the maximum influence of our centrality measure with the
existing basic centrality measures.

Keywords: trust value; PageRank; similarity ratio; centrality measure; influential nodes; complex
networks

1. Introduction

Understanding the dynamics of information spreading in technological, biological,
and social networks become one of the most important topics for large-scale networks [1–3].
Thus, we studied the dynamics of information spreading by using influential nodes. The
information spreading ability of influential nodes is greater than that of other nodes in
the network. In this context, computing influential nodes in any network is important to
many researchers. We can also study or understand the attributes and characteristics of
the network while computing the influential nodes in complex networks [4,5]. Several
researchers proposed centrality measures to identify the influential nodes in a complex
network. The most commonly used centrality measures are the degree centrality [6],
closeness centrality [7], betweenness centrality [8], and semi-local centrality [9]. PageRank
centrality [10] and leader-rank centrality [11] were proposed based on the importance of
the quality and quantity of the node’s neighbors. PageRank is a measure of a page that
is measuring the quality or quantity of that page [10,12]. Zhang et al. [13,14] defined a
measure called H-index, which is an indicator of the citation pattern of the paper. Nomura
et al. [15] defined a hyperlink induced topic search (HITS) method which is based on the
hyperlink structures of web pages.
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Various measures and methods are focused on the network’s structure, and very
few measures are based on local information or local attributes of the node in the net-
work [16,17]. Some of the commonly used centrality measures are defined based on local
information, such as degree centrality, clustering coefficient [18,19], semi-local centrality,
normalized local centrality [20], local neighbor contribution [21], and local centrality with
coefficient [22]. The degree centrality measure has low accuracy due to consideration of
first-order neighbors [18]. Due to the increased time complexity, centrality measures based
on global information of nodes have become unsuitable for large-scale networks. In the
current scenario, the challenging task is to find the influential nodes with high accuracy
and in less running time. The k-core measure [23] also concentrates only on network
structure. Various local centrality measures are listed in Table 1. There exist very few
centrality measures that are based on the structure of the network and information between
nodes [24–26].

Table 1. Different local centralities.

Local Centrality Author and Year

Degree Freeman et al., 1978 [6]
Semi-Local Chen et al., 2012 [9]

Local Centrality with Coefficient Zaho et al., 2017 [22]
Clustering Coefficient Beralmand et al., 2018 [18,19]

Normalized Local Centrality Zhao et al., 2018 [20]
Local Neighbor Contribution Dai et al., 2019 [21]

PageRank Xing et al., 2004 [27]
Trust–PageRank Sheng et al., 2020 [28]

Nearest Neighborhood Trust Value Proposed in this paper and Hajarathaiah et al.,
2021 [29]

In social networks, information is spread between two individual people based on
similar behavior or other similarities [17,30,31]. Zhao et al. [16] gave a centrality measure
based on structural similarity for finding influential nodes. The K–L divergence [32] is used
to measure the structural similarity of nodes, and enhanced PageRank is used to rank the
nodes in large-scale networks. Sheng et al. [28] defined the trust–PageRank (TPR) measure
based on attribute information between nodes and network structure. Trust–PageRank
creates a relation between the trust value and the PageRank of a node in the network. The
trust value of two adjacent nodes is defined by the similarity ratio and the degrees of those
nodes. The similarity ratio of two individual nodes is similar to the characteristics of these
nodes. The construction of a measure of trust–PageRank mainly depends on the degree
and similarity, which play a key role in spreading the information in the network. During
the construction of a measure trust–PageRank, they considered only single a neighborhood
level. Thus, we explore this measure not only at one neighborhood level but also the second
neighborhood level. This idea can be further extended to other neighborhood levels too.

Our Contribution: In this research work, we propose a nearest neighborhood trust
PageRank (NTPR) method which considers not only neighborhood trust values at the
one-neighborhood level but also the nearest neighbors of trust values up to the second-
neighborhood level. In this work, the degree ratio is also defined, along with next neighbor
levels, instead of adjacent nodes. Considering the greater number of neighbors, the degree
ratio and trust value capture information spread more accurately. We notice first-level
neighbors and second-level neighbors’ information plays a crucial role in the influence of a
node. Additionally, our method uses the trust value, which includes a degree ratio with
neighbors, the similarity ratio, and the second-level neighbors’ information. We proposed
an enhanced version of trust–PageRank, which is a nearest neighborhood trust PageRank
measure to compute the influential nodes in complex networks [29]. By using the proposed
centrality, we computed the influential nodes in various real-world networks. We found
the maximum influence of influential nodes by using the SIR, independent cascade, and
greedy methods. In [29], we defined the NTPR measure. In this paper, we provide results
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and comparisons with other basic centralities. We also compare our centrality measure
with existing basic centrality measures, and it produces greater influence than the others
which are discussed in the coming sections.

The rest of the paper is structured as follows: We list some of the existing basic
centralities in Section 1.1. In Section 2, we define the nearest neighborhood trust page
centrality measure and design an algorithm for computing the measure of each node in the
network. We listed some of the network datasets which we used for our experiments and
SIR, the independent cascade model, and Kendall’s tau details are given in Section 3. In
Section 4, we discuss the correlations between NTPR and various basic centrality measures.
We observe the difference between infection rate and centrality value with SIR and the
independent cascade model. We also explain the performance of NTPR with various basic
methods and the maximum influence levels of nodes at different infection rates. Finally,
the conclusions are discussed, along with future research work.

1.1. Related Work

In this section, we list a few centrality methods and consider unweighted and undi-
rected networks. Let G = (V, E) be a network, where V denotes the vertices and E denotes
the edges of network G. The degree centrality (DC) [6] denotes the number of nodes
adjacent or directly connected to a node. The closeness centrality (CC) [7] of a node is how
closely it is connected to other nodes using distance which is computed within the graph.
The closeness centrality (CC) of node v defined as

CC(v) =
1

∑
vi∈V

d(v, vi)

where d(v, vi) denotes the distance between vertices vi and v. The betweenness centrality
(BC) [8] of the vertex is a measure of the ratio of the shortest path involving the vertex to all
the shortest paths between every pair of vertices. The betweenness centrality (BC) of node
v can be calculated as

BC(v) = ∑
vi 6=vj 6=vs.∈V

dvivj(v)
dvivj

where dvivj is the shortest path from the vertex vi to vj (or vj to vi ), and dvivj(v) is the
shortest path between vertices vi and vj passing through vertex v. The semi-local centrality
(SC) [9] is defined by the number of neighbors up to two levels, and vertex v is computed
as

SC(v) = ∑
vi∈Nv

∑
vj∈Nvi

NN(vj)

where Nv and Nvi are sets of adjacent nodes to vertices v and vi, respectively; and NN(vj)
represents the second-level neighbors of vertex vj. PageRank measures the quality or
quantity of a page [10,12]. PageRank is used for webpage sorting and for ranking data on
various networks’ webpages.

PRt
v =

1− α

n
+ α ∑

vi∈Nv

PRt−1
vi

kvi

where n is number of vertices in a network, Nv represents the neighbors of vertex v, α is the
jump probability, kvi is the number of vertices to which the vertex vi points, and t represents
an iterative parameter. The first term in PageRank is for regularizing the PageRank, and
the sum should become one when it is maximized.

The trust–PageRank [28] method is defined based on involving the trust value in
the PageRank method. The intuition behind including the trust value is that if the vertex
has more trust value, it receives more information from the other vertices. This is due
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to information spreading through the neighbor nodes within the network. The trust–
PageRank [28] method is defined as follows:

TPRt
v =

1− α

n
+ α ∑

vi∈Nv

T(v, vi)TPRt−1
vi

(1)

where T(v, vi) denotes the trust values of nodes v and vi, n is the number of nodes, Nv is set
of adjacent nodes of v, α denotes jump probability, and t represents an iterative parameter.
The first term in TPR is for regularizing the TPR, and the sum should be one when it
is maximized.

2. A Centrality Measure Using Second-Level Neighborhood Trust Values

We define a nearest neighborhood trust PageRank (NTPR) method which is con-
structed using the trust values of neighbors up to the second-level. The degree ratio and
similarity ratio of neighbors of the node up to the second-level play a crucial role in con-
structing the centrality measure NTPR. The trust values of neighbors mainly depend on the
degree ratio and similarity ratio. In the article [28], the trust–PageRank (TPR) method was
defined. In this research, other levels of adjacent neighborhood attributes were missing.
Our intuition is that if we insist on second-level neighborhood trust values, then we could
observe the influence maximization by computing the seed nodes or influential nodes in
the complex network. We can also apply this logic to getting further level neighborhood
information on trust values. However, time complexity may increase if we increase the
number of levels.

Similarity Ratio: The similarity ratio of a vertex vi and an adjacent neighbor vj is
the similarity of vi and vj divided by the addition of the similarity between the adjacent
neighboring vertex vj and its adjacent neighbor vertices vl . The similarity ratio can be
measured as follows:

SR(vi, vj) =
S(vi, vj)

∑
vl∈Nvj

S(vj, vl)
(2)

The SimRank [33] is constructed to measure the similarity of two nodes. In the SimRank
method, if any two nodes are similar, then both are related to each other with some
common attribute information or characteristics. The similarity between vi and vj can be
calculated as:

S(vi, vj) =





1
|Nvi ||Nvj |

∑
vl∈Nvi

∑
vm∈Nvj

S(vl , vm), if vi 6= vj

1, if vi = vj

(3)

where Nvi and Nvj sets of adjacent vertices of vi and vj, respectively; S(vl , vm) is the
similarity of vl and vm. In Equation (3), computing S(vi, vj) is an iterative process. In this
iteration, we consider S(vi, vj) is 1 if vi = vj and S(vi, vj) is 0.1 if vi 6= vj.

Degree ratio: The degree ratio of a vertex vi and an adjacent vertex vj is the ratio of the
degree of vertex vi to the sum of the degrees of adjacent vertices of vj. For normalization of
this degree ratio, we use the sum of the degrees of the neighbors of vj and the sum of the
degrees of the second-level neighbors of vj. The degree ratio can be defined as:

DR(vi, vj) =

∑
vl∈Nvi

dvl

∑
vm∈Nvi

dvm + ∑
vm∈Nvj

∑
vn∈Nvm

dvn

(4)

Trust value: Trust values of vertices vi and vj are defined by the similarity ratios and
degree ratios of vi to vj. Trust value is calculated as follows:
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TV(vi, vj) = (1− k)SR(vi, vj) + kDR(vi, vj) (5)

where SR(vi, vj) and DR(vi, vj) are degree ratios and similarity ratios of vertices vi and
vj, respectively. The parameter k value is in between 0 and 1 and this value is taken to
be k = 0.85. Now, we propose nearest neighborhood trust–PageRank (NTPR) using trust
value of adjacent vertices up to the second-level, as follows:

NTPRt(vi) =
1− α

|V| +
α

|V|2

[
∑

vj∈Nvi

TV(vi, vj)NTPRt−1(vj)

+ ∑
vj∈Nvi

∑
vl∈Nvj

TV(vl , vj)NTPRt−1(vl)

]
(6)

where TV(vi, vj) represents the trust values of nodes v and vj; |V| represents the number of
vertices; α indicates jump probability, and we consider this value to be 0.85. The first term
in NTPR is a regularizing term, the second term of NTPR contains neighbors’ similarity
and degree ratios, and the third term of NTPR contains second-level neighbors’ similarity
and degree ratios. Our intuition to define Equation (6) is if we insist on second-level
neighborhood information of trust value, then we can observe the influence maximization
by computing the seed nodes or influential nodes in the complex network. We could also
extended it up to further levels of neighborhood information of trust value. In Equation (6),
computing NTPRt is in iterative relation, and we consider the number of iterations t
from 0 to 1000. We can consider beyond 1000, but we considered up to 1000 to simplify
our simulations. We initialized the NTPR0 at every vertex to 0.1. For more details, see
Algorithm 1.

Algorithm 1: Computing NTPRt for every vertex of graph G.
Input: Graph G = (V, E) with vertices and edges
Output: NTPRt for every vertex of graph G

1 begin
2 for every pair (vi, vj) in V do
3 if vi = vj then
4 s(vi, vj) = 1

5 else
6 s(vi, vj) = 0.1 and s(vi, vj) = 0.1

7 while t < Iteration do
8 For every edge (vi, vj) in E, compute S(vi, vj) by using Equation (3).
9 For every edge (vi, vj) in E, compute SR(vi, vj) by using Equation (2).

10 For every edge (vi, vj) in E, compute DR(vi, vj) by using Equation (4).
11 For every edge (vi, vj) in E, compute TV(vi, vj) by using Equation (5) with

DR(vi, vj), SR(vi, vj) and k = 0.85.
12 for each node vi in V do
13 NTPR0(vi) = 0.1

14 while t < Iteration do
15 for each node vi in V do
16 compute NTPRt(vi) by using Equation (6) with TV, NTPRt−1, and

α = 0.85

17 Return (NTPRt) /* measure for every node of G*/

Algorithm 1 is the procedure for computing the NTPR measure for each vertex in
the network. We illustrate Algorithm 1 by using an example that is given in Figure 1.
Finding NTPR is depends on trust values. Each trust value is based on similarity and
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degree ratio. For Figure 1, we used Equations (2) and (4) to calculate the similarity ratio
SR(vi, vj) and degree ratio DR(vi, vj) for every pair of vertices. We found trust values
TV(vi, vj) by using Equation (5) with the help of DR(vi, vj), SR(vi, vj), and k = 0.85 for
every pair of vertices in the network, as shown in Figure 2. We found the NTPR measure for
every vertex using Equation (6). For the network in Figure 1, NTPR values for all nodes are
as follows: {0.22398, 0.22398, 0.40797, 0.33179, 0.33179, 0.22757} × 10−23. Thus, vertex 3 has
the highest NTPR value, i.e., 0.40797× 10−23, and the sequence of influenced nodes of the
network in Figure 1 is {3, 4, 5, 6, 1, 2}. In our simulations, the number of iterations was set
to 1000. The combination depends on the value of the damping factor, which is between 0
and 1. The damping factor α [34] specifies how long a random web surfer spends following
the hyperlink structure rather than teleporting. If we consider the damping factor to be
0.8, that means out of total time, 80% of the time has been taken by a random web surfer
to follow the hyperlink structure, and the remaining 20% of the time they teleport to new
web pages randomly. To maximize the influence by computing the influential nodes in the
complex network and to avoid the various parameters in our simulations, we fixed the
values of k and α to 0.85 [34]. Complexity will increase if we tune all these parameters.

1

2

3

4

5

6

Figure 1. A graph with 6 vertices and 8 edges.
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SR(vi , vj) DR(vi , vj)


0 0.589 0.262 0 0 0
0.589 0 0.262 0 0 0
0.411 0.411 0 0.265 0.265 0

0 0 0.238 0 0.348 0.5
0 0 0.238 0.348 0 0.5
0 0 0 0.387 0.387 0







0 0.333 0.2 0 0 0
0.333 0 0.2 0 0 0
0.667 0.667 0 0.444 0.444 0

0 0 0.3 0 0.333 0.5
0 0 0.3 0.3 0 0.5
0 0 0 0.222 0.222 0




TV(vi , vj)


0 0.551 0.253 0 0 0
0.589 0 0.253 0 0 0
0.449 0.449 0 0.292 0.292 0

0 0 0.247 0 0.346 0.5
0 0 0.247 0.346 0 0.5
0 0 0 0.363 0.363 0




Figure 2. Degree ratio DR(vi, vj), similarity ratio SR(vi, vj) and trust value TV(vi, vj) for every pair
of nodes of graph in Figure 1.

Time Complexity of NTPR

Consider a graph G = (V, E) with |V| = n and maximum degree is d. Clearly we
can observe that time complexity of measures SR, DR and TV are O(d2), O(d3), and O(d3)
respectively. So time complexity to find NTPRt measure for a vertex is O(td5). To find
NTPRt measure all vertices in the graph G is O(td5n). We considered t is constant in our
algorithm and time complexity of Algorithm 1 is O(d5n) where d is maximum degree and
n is number of vertices of graph.

3. Details on Implementation

Data Sets Description: To test our suggested centrality NTPR, we consider four data
sets [35] for performance evaluation. The four data sets are email-univ, euroroad, power-
grid, and web-polblogs which are provided on https://networkrepository.com/ . Table 2
summarises the details of the networks.

Figure 2. Degree ratio DR(vi, vj), similarity ratio SR(vi, vj), and trust value TV(vi, vj) for every pair
of nodes of the graph in Figure 1.

Time Complexity of NTPR

Consider a graph G = (V, E) with |V| = n and the maximum degree of d. Clearly, we
can observe that the time complexities of measures SR, DR, and TV are O(d2), O(d3), and
O(d3), respectively. Thus, the time complexity to find the NTPRt for a vertex is O(td5). To
find the NTPRt measure for any vertex in the graph G is O(td5n). We considered t constant
in our algorithm, and the time complexity of Algorithm 1 is O(d5n), where d is maximum
degree and n is the number of vertices of the graph.

3. Details on Implementation

Description of Datasets: To test our suggested centrality NTPR, we used four datasets [35] in
a performance evaluation. The four datasets were email-univ, euroroad, powergrid, and
web-polblogs which are provided at https://networkrepository.com/ on 19 March 2020.
Table 2 summarizes the details of the networks.

https://networkrepository.com/
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Table 2. Fundamental properties of four real networks.

Real
Networks Vertices Edges Maximum

Degree
Average
Degree

Avg. Cluster
Coeff.

email-univ 1133 5451 71 9 0.220
euroroad 1174 1417 10 2 0.017

powergrid 4941 6594 19 2 0.080
web-polblogs 643 2280 165 7.09 0.232

Susceptible–Infected–Recovered Model: In this work, we investigated the dynamics
of information spreading by using the SIR simulation model [36,37]. The SIR model is
commonly used for how much information is spread with in the network. This model
is used to understand the dynamics of the spreading of diseases and to find a total num-
ber of infected nodes at different infection probabilities. The SIR model is divided into
3 components, susceptible, infected, and recovered. The susceptible part tells us that no
infection has taken place. The term “infected” refers to infections spread over the network
by others. Finally, recovered means the cured individuals, and they do not infect after a
certain number of rounds. At the starting stage, seed nodes will be infected, which can
help us to find the spreading capability. These infected nodes later in each iteration infect
their neighbors with a certain probability in the network. The number of infected nodes
grows over time until it reaches a stable state. The SIR model is one of the methods used to
estimate centrality measurements in terms of network performance.

Independent Cascade Model (IC): The IC model is a stochastic technique in which
data are transferred from one node to another depending on probabilistic criteria [3]. Li
et al. [38] categorized the diffusion models into two types, predictive and explanatory
models. The IC model is a predictive model that uses specific parameters to estimate the
forecast information diffusion process and influence maximization in social networks. The
IC model’s information diffusion operates as follows: The network’s nodes can be in one
of two states: active or inactive. If a node accepts the information being circulated in the
network, it is deemed active; if it does not have information, it is considered inactive. Thus,
an independent cascade model, which is a form of an epidemic model, proposes that an
individual will achieve innovation with a specific probability if at least one of its neighbors
has done so. We compared this model with the SIR model.

Greedy Model: The greedy algorithm implements the problem-solving strategy of
choosing the locally best option at every stage [3]. A greedy strategy may not generate an
optimal result in many cases, but it can produce locally optimized solutions that resemble
globally optimal solutions in acceptable time frames. Greedy algorithms are usually less
computationally efficient than other techniques, such as dynamic programming, but they
often compromise the quality of the solution to achieve speed. This algorithm was used
to find top-ten seed nodes. The greedy model evaluates the incremental spread of each
node separately rather than as a whole. It determines the maximum information spread
for all remaining candidate nodes before selecting the node with the highest spread. The
calculation of the spread for all nodes uses iterations and selects the top 10 nodes in terms
fo influence. We compare the maximum influence with the greedy approach with that
found by our centrality measure.

Kendall’s tau (τ): This is used to determine how closely two ranking lists rate the
same set of items [39,40]. Kendall’s tau (τ) measures how many concordant and discordant
ranking pairs there are in each of the two lists. Kendall’s tau (τ) [41] is defined as:

τ =
∑i<j[sgn[(Pi − Pj)(Qi −Qj)]

0.5(N(N − 1))

where sgn(P) is a sign function, if P > 0 returns 1, if P < 0 returns −1, and if P = 0 returns
0. Pi and Pj are the ranks of nodes i and j in ranking list one. Qi and Qj are the ranks of
nodes i and j in ranking list two, and N is the number of nodes. Let us take two variables,
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P and Q. Case 1: if (Pi − Pj)(Qi −Qj) > 0, both nodes are concordant pairs in ranking lists
one and two. Case 2: if (Pi − Pj)(Qi −Qj) < 0, both nodes are discordant pairs in ranking
lists one and two. Case 3: if (Pi − Pj)(Qi − Qj) = 0, both nodes are in the same rank in
ranking lists one and two.

4. Results

In this section, we show the results on the correlations of our method NTPR with other
different existing centrality measures. We show that the spread of information increases
with the value of the centrality of a node in the network. Based on the SIR simulation and
independent cascade models, we compared cumulative infected nodes for NTPR, BC, CC,
DC, SC, PR, and TPR centralities, and the greedy approach. We studied the pattern of
maximum influence with different infection rates for these centralities.

4.1. Correlations of the NTPR Method with Various Centrality Measures

We show the results of correlations between the NTPR method and other basic cen-
trality methods, such as TPR, PR, BC, DC, CC, and SC, on various real-world networks, in
Table 3 and Figure 3. We computed the ranking of each vertex by using these centralities
in the network. In Figure 3, we show correlation plots of the NTPR method and basic
centrality methods for every top-N vertices, where N = {1, 2, · · · , n} and n is the number
of nodes in the network. For every vertex, the correlation value of the NTPR method and
each basic centrality method is shown in Table 3. In Table 3 and Figure 3, we can observe the
close connection between any basic centrality method and the NTPR method. In Figure 3
and Table 3, we see that the NTPR measure is similar to PR for email-univ, euroroad, and
powergrid datasets. We can also observe that NTPR is similar to DC for email-univ and
web-polblogs datasets. This is because NTPR is an improved version of PageRank with
degree centrality. The NTPR method does not have a close correlation with any of the
other centralities. Degree centrality is primarily correlated with the NTPR measure at the
initial set of vertices in the powergrid network and email-univ. Degree centrality is highly
correlated with the NTPR method in the second half of set of vertices in the web-polblogs
network. Thus, the NTPR measure does not closely correlate with existing basic centralities
except PR and DC.

Table 3. Correlation τ(NTPR,X), where X is TPR, PR, SC, CC, BC, or DC centrality.

τ(NTPR,X)/
Networks τ(NTPR,DC) τ(NTPR,BC) τ(NTPR,CC) τ(NTPR,SC) τ(NTPR,PR) τ(NTPR,TRP)

email-univ 0.92 0.73 0.67 0.73 0.92 0.95
euroroad 0.65 0.43 0.05 0.24 0.89 0.94

powergrid 0.78 0.52 0.12 0.38 0.84 0.92
web-

polblogs 0.82 0.66 0.47 0.51 0.81 0.83
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Figure 3. Correlation (τ) between NTPR with DC, BC, CC, SC, PR, and TPR and top nodes.

We show that the information-spreading rate of the NTPR method is higher than
those of the BC, DC, SC, CC, PR, and TPR methods with the help of SIR simulations. We
computed the centrality value for each node by using each centrality method. The infected
node was the single node with the highest centrality value. The cumulative infection was
calculated by running SIR simulations 100 times. We took infection probability β to be in
between 0.1 and 0.4. Figure 4 shows a plot of the centrality value of nodes with increasing
infection rate. Our method NTPR, TPR, PR, and DC measures had good connections
compared with SC, BC, and CC in the email-univ network, as shown in Figure 4a. The
NTPR method shows more information spreading when we compare it with TPR, PR,
SC, CC, BC, and DC in the euroroad network (see column b in Figure 4). We can observe
that, if the node has a high NTPR centrality value, then the node has a high information
propagation capability (see Figure 4c). The centralities DC and BC have poor information
spreading capabilities when compared with other centralities in the powergrid network,
which can be observed in Figure 4c. The CC, DC, TRP, PR, and NTPR measures show
good cumulative infection compared to SC and BC methods in web-polblogs. For the
web-polbogs network, SIR simulation plots are given in Figure 4d. The NTPR centrality
method provides more information spreading in the euroroad and powergrid networks.
Clearly, we can observe that information spreading increases with the node centrality
measure NTPR in four different real-world networks.
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Figure 4. Centrality value with infection rate according to SIR simulations in four networks, column-
wise.

4.2. Cumulative Infected Nodes for the Proposed Centrality and Basic Centralities

In this sub-section, we show the cumulative infected nodes or the effect of spreading
the information while initially infected by the top-ten seed node or influential nodes. We
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computed the top-ten most influential nodes or seed nodes by using the proposed centrality
method (NTPR); basic centrality measures BC, CC, SC, DC, PR, and TPR; and a greedy
method. With the help of the SIR model, initially, these top-ten seed nodes were infected.
In the next time step, adjacent vertices of these seed nodes get infected with infection
probability β. We consider infection probability β to be in between 0.1 and 0.4. After some
time, whoever gets infected can recover with a certain recovery rate γ, which we have
considered as one. The time steps were limited to 40, and we ran 100 simulations and
found the average cumulative infected nodes. The results for four networks are displayed
in Figure 5. The proposed centrality NTPR gives more cumulative infected nodes than
TRP, PR, SC, CC, BC, and DC in euroroad and powergrid networks. The NTPR gives better
results than the greedy method in the powergrid and euroroad networks. For email-univ
and web-polblogs networks, our method provides similar results to the existing centralities.
In email-univ and web-polblogs networks, the NTPR and greedy model give good results.
The four networks’ results are displayed in Figure 5. In Figure 5, in most cases, information
spreading with the proposed NTPR centrality method is dominating compared with the
basic centrality measures.
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Figure 5. Cumulative infected nodes of the SIR model according to NTPR and other centralities for
four real-world networks (top-10 seed nodes).

4.3. Results on Spreading Information Rate vs. Centrality Value of a Vertex

In Figure 6, we show the average number of nodes at which information is received
with different time steps by using the independent cascade model. The seed nodes were
computed from different centrality measures which were input to the independent cascade
model. In the independent cascade model, the number of iterations used for simulations
was 1000. In email-univ and web-polblogs networks, the average information spread was
greater at the initial steps for our centrality measure, and in the latter half, PR centrality
dominated. However, NTPR and the greedy method both produced good results. The
greedy method produced better results than basic centralities (DC, BC, CC, SC). In euroroad
and powergrid, early on, our centrality measure produced good information spread, and
in the second half of the time, greedy and PR performed well. In some cases, NTPR
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produced better average information spread than the other basic centrality measures with
the independent cascade model. These results are shown in Figure 6.
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Figure 6. Average information spread among NTPR with other centralities for the four networks
(top-10 seed nodes) using the independent cascade model.

To more clearly understand, we have plotted for NTPR with basic centralities sepa-
rately in Appendix A (see Figures A1–A5).

4.4. Maximum Influence at Various Infection Probabilities with Various Centrality Methods

The results of the evaluation of the top-10 most influential nodes of infection spreading
ability are displayed in this section. The top-10 most influential nodes were discovered us-
ing several centralities, such as TPR, PR, DC, SC, CC, BC, and NTPR. From the information
in the networks, we know that most influential nodes have the power to propagate. The SIR
model was utilized, and the infection probability was considered to be between 0.1 and 0.4.
We ran the SIR simulations with 100 iterations. To observe the effects of basic centralities
and our new centrality, we found the maximum infection population at various infection
probability levels. In this section, we talk about maximum information spread with differ-
ent infection probabilities using the IC model. In this model, the infection probability is
considered between 0.1 and 0.5. We ran the IC model simulations with 1000 iterations.

In Figure 7, we illustrate the normalized maximum infection with various infection
probabilities. On the dataset email-univ, our measure NTPR produced good results com-
pared to PR, TPR, SC, CC, BC, and DC, as shown in Figure 7. For the euroroad and
web-polblogs datasets, DC performed well. However, our measure is close to DC centrality.
On the powergrid network, NTPR took the top position over other centralities.

In Figure 8, we illustrate the maximum information spread with various infection
probabilities using the independent cascade model. In the email-univ network, the greedy
and NTPR have more influence compared to other centralities. The greedy method has
maximum information spread in euroroad and powergrid networks, which is shown in
Figure 8. In webpolblogs networks, the greedy method is at the top position, and NTPR is
close to the greedy method.
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Figure 7. Normalized maximum influence levels of the top-ten most influential nodes of networks
with various infection probabilities using the SIR model.
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Figure 8. Normalized maximum information spread of the top-ten most influential nodes of networks
with various infection probabilities using the independent cascade model.

For clearer understanding, we show some of the figures for the two networks, email-
univ and web-polblogs, in Appendix A (Figure A6); and for maximum information spread
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with various infection probabilities using the independent cascade model, we display
figures for the four networks in Appendix A (Figure A7).

5. Conclusions

We focused on creating a centrality metric based on node attribute information and
network topology. The degree ratio is utilized for node attribute information, whereas
the similarity ratio is used for network structure information. The TPR was combined
with trust value and PageRank in the previous work. However, we have focused on the
importance of trust value in the nearest neighborhood throughout our work. The major
goal of our metric is to evaluate trust value and PageRank, along with the closest neighbors.
We use the degree ratio for second-level network neighbors as well. We can analyze the
dynamics of spread inside the network by stepping up to the second-level. To assess
performance, the SIR model and independent cascade model were used. Kendall’s tau was
used to determine whether the NTPR and other existing basic centralities are similar. We
obtained the experimental results by employing our nearest neighborhood trust metric,
which is intended to identify the network’s most influential nodes.

Instead of using degree ratio, we would like to use closeness, betweenness, or other
centrality measures to examine information spread with the proposed measure in the future.
The value of the nearest neighborhood trust will also have the ability to expand to more
layers of neighbors based on the diameter of the network or the maximum number of
vertices of the network.
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SR Similarity Ratio
BC Betweenness Centrality
DR Degree Ratio
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Appendix A

Appendix A.1. Cumulative Infected Nodes for Proposed Centrality with Basic Centralities

We present the cumulative infected nodes or the effect of spreading the information
while infecting the top-10 seed nodes or influential nodes in this part. The top-10 seed nodes
were computed by the proposed centrality approach (NTPR); basic centrality measures BC,
CC, SC, DC, PR, and TPR; and a greedy method. These top-10 seed nodes were initially
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infected via the SIR model. The neighboring vertices of these seed nodes were infected
with infection probability β in the next time step. The infection probability β was estimated
to be between 0.1 and 0.4. The top-ten influential nodes were discovered by NTPR, DC, CC,
PR, BC, SC, TPR, and the greedy method using the SIR model for 4 different networks. For
better understanding and analysis, we show Figures A1–A5.
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Figure A1. Cumulative infected nodes of the SIR model according to NTPR and other centralities for
email-univ network (top-10 seed nodes).
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Figure A2. Cumulative infected nodes of the SIR model according to NTPR and other centralities for
euroroad network (top-10 seed nodes).
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Figure A3. Cumulative infected nodes of the SIR model according to NTPR and other centralities for
powergrid network (top-10 seed nodes).
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Figure A4. Cumulative infected nodes of the SIR model according to NTPR and other centralities for
web-polblogs network (top-10 seed nodes).

The NTPR centrality produced a better outcome than PR, TPR, CC, DC, BC, SC,
TPR, and the greedy approach in powergrid and euroroad networks. For email-univ and
web-polblogs networks, our method performed similarly to the existing centralities.
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Figure A5. The top-10 seed nodes are initial infected nodes, identified by NTPR and a greedy
algorithm using the SIR model for four datasets.

Appendix A.2. Maximum Influence at Various Infection Probabilities with Various
Centrality Methods

We have shown the normalized maximum infection with different infection probability
in Figure A6. We compare NTPR with TPR, PR, BC, SC, DC, and CC centralities and a
greedy approach. In this section, we show the email-univ and web-polblogs networks. In
both networks, the results of greedy, TPR, SC, CC, BC, and DC centralities all one. The
PR had low performance for these networks. We display the average information spread
with various infection probabilities in Figure A7. In the four datasets, the greedy method
produced greater average information spread compared with other centralities.
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Figure A6. Normalized maximum influence levels of the top-ten most influential nodes of networks
with various infection probabilities using the SIR model (email-univ and web-polblogs).
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Figure A7. Average information spread of the top-ten most influential nodes of networks with
various infection probabilities using the independent cascade model.
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