
Citation: Wu, B.; Qin, J. A

List-Ranking Framework Based on

Linear and Non-Linear Fusion for

Recommendation from Implicit

Feedback. Entropy 2022, 24, 778.

https://doi.org/10.3390/e24060778

Academic Editors: Andrea Prati, Luis

Javier García Villalba and Vincent

A. Cicirello

Received: 30 April 2022

Accepted: 28 May 2022

Published: 31 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

A List-Ranking Framework Based on Linear and Non-Linear
Fusion for Recommendation from Implicit Feedback
Buchen Wu 1,2 and Jiwei Qin 1,2,*

1 School of Information Science and Engineering, Xinjiang University, Urumqi 830046, China;
buchen_wu@stu.xju.edu.cn

2 Key Laboratory of Signal Detection and Processing, Xinjiang Uygur Autonomous Region, Xinjiang University,
Urumqi 830046, China

* Correspondence: jwqin@xju.edu.cn

Abstract: Although most list-ranking frameworks are based on multilayer perceptrons (MLP), they
still face limitations within the method itself in the field of recommender systems in two respects:
(1) MLP suffer from overfitting when dealing with sparse vectors. At the same time, the model
itself tends to learn in-depth features of user–item interaction behavior but ignores some low-rank
and shallow information present in the matrix. (2) Existing ranking methods cannot effectively
deal with the problem of ranking between items with the same rating value and the problem of
inconsistent independence in reality. We propose a list ranking framework based on linear and
non-linear fusion for recommendation from implicit feedback, named RBLF. First, the model uses
dense vectors to represent users and items through one-hot encoding and embedding. Second, to
jointly learn shallow and deep user–item interaction, we use the interaction grabbing layer to capture
the user–item interaction behavior through dense vectors of users and items. Finally, RBLF uses the
Bayesian collaborative ranking to better fit the characteristics of implicit feedback. Eventually, the
experiments show that the performance of RBLF obtains a significant improvement.

Keywords: multilayer perceptrons; collaborative filtering; list ranking

1. Introduction

Many experiments have shown that deep neural networks (DNNs) are used in sev-
eral fields because of their ability to capture complex and deeper information, including
image segmentation [1], natural language processing [2,3], speech recognition [4], and
recommendation systems [5–7]. Dailing Zhang et al. [8] designed deep learning-based
frameworks that consist of both convolutional and recurrent neural networks to precisely
identify human intentions in brain–computer interfaces. Kaixuan Chen et al. [9] proposed
a semisupervised deep model for imbalanced activity recognition and pattern-balanced co-
training for extracting and preserving the latent activity patterns to improve the robustness
of co-training on imbalanced data. Minnan Luo et al. [4] exploited a novel semisupervised
feature selection method through incorporating the exploration of the local structure to
simultaneously learn the optimal graph. The primary assumption underlying the model
is that the instances with similar labels should have a larger probability of being neigh-
bors. With the large-scale application of neural networks in recommendation systems,
it was found that neural networks that can fit most functions [10] are better than matrix
factorization in extracting implicit user information. For instance, generative adversarial
networks have gained increasing attention in the recommendation systems. CFGAN [11]
and LARA [12] are pioneering methods to prove the potential of generative adversarial
networks in recommendation systems. DeepCF [13] combines representation learning
into a framework to overcome their disadvantages. A novel neural cooperative filtering
(NCF) [14] framework based on deep learning directly learned user ratings of items and
used MF and MLP to fit linear and nonlinear interactions. Ding, [15] et al. proposed

Entropy 2022, 24, 778. https://doi.org/10.3390/e24060778 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24060778
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e24060778
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24060778?type=check_update&version=1

Entropy 2022, 24, 778 2 of 16

the LMDB framework, which used modular functions to model the relevant attributes
of each item and used discrete functions to describe the diversity attributes of the item
set. Qiu, [16] et al. used content-rich domains to complement user representation and
introduced user encoders and comment encoders to model the user’s behavior. Liu, [17]
et al. found that directly fusing various types of side information into item embeddings
brought less negative impact and better performance on the model.

Although all of these methods have achieved good results, they have different prob-
lems in user preference modeling and in terms of rating prediction. In terms of user
preference modeling models, they either focus only on shallow information or only on
in-depth information. Meanwhile, models based on MLP alone can easily fall into the
overfitting problem and lose plenty of low-rank features. In terms of rating, there are many
0/1 ratings in implicit feedback, and the model has difficulty specifying the ranking order
of these items with the same rating, thus limiting the model performance.

To solve these two problems, we propose a column label ordering architecture called
RBLF that combines linear-nonlinear features with Bayesian coordination ranking for the
first time. We set the potential features of user and item to different size dimensions to
make the model more realistic. We explicitly fused user-embedding vectors and item-
embedding vectors to learn the shallow linear interaction, feeding the obtained results
into MLP to enhance the non-linearity of the model. The model fits the user–item feature
relationship more comprehensively to guide the prediction method to better learn the
user’s true preference attributes, thus giving more accurate rating prediction results. In the
list ranking, we used Bayesian collaborative ranking, called deep-setrank [18], to better fit
the features of implicit feedback in reality.

RBLF focuses on predicting the exact ranking of each item rather than the accuracy
of specific scores. In practice, users mostly try to click the music ranked first in the list.
Therefore, the ultimate goal of RBLF is list ranking. Furthermore, since there are far more
implicit data (indirectly reflecting user preferences) in the real world than explicit feedback,
this results in low cost of data collection. Our main contributions are as follows:

We propose a novel architecture to accommodate linear and non-linear interaction
feature vector processes and design a neural network-based list-learning RBLF framework.

We use the deep-setrank list ranking and two other traditional list ranking algorithms.
We compare these three ranking algorithms and conclude that our ranking algorithm is
the best.

We explore the impact of the shallow and deep interaction behavior on feature grab-
bing layers.

We conduct many experiments on three datasets and show that RBLF greatly outper-
forms other recent algorithms.

2. Preparations
2.1. List-Ranking Methods

Many collaborative filtering technologies have been used in recommendation sys-
tems [19,20], and matrix factorization (MF) [21] has gained industrial recognition since it
came out on top in the Netflix-Prize competition, creating many derivative models. Their
prominent examples include a large number of enhancing MF, such as using them with
biases [6] and extending them with the implicit parameters [22] to achieve universal fea-
ture modeling. Wang H, et al. [23] used feature matrices for capturing implicit user–item
interactions [24]. Koren Y, et al. [25] used time-series matrix factorization to capture user
preferences over time.

However, high-quality prediction accuracy and high-quality sorting recommendations
are not strongly correlated [26,27]; thus, MF needs to be modified when applying it to the
list sorting model. For example, Wu et al. [28] combined a learned ranking algorithm for
lists with matrix factorization (MF) by modifying the loss function to linearly relate the
observed scores of a given user–item matrix. Shi Y et al. [29] developed MF in the scenarios
with binary relevance data.

Entropy 2022, 24, 778 3 of 16

There is little user–item interaction information because of the sparse rating matrix, and
the performance of MF, which can be hindered by simply choosing the interaction function
(inner product) [30], is poor in most cases. As the user rating matrix expands, simply linear
combinations of the product of potential features cannot learn the users’ non-linear preferences.
At the same time, they cannot effectively learn the implicit feature between users and items,
which results in their poor ability to simulate implicit user feedback.

In recent years, DNNs, which can theoretically model any function, have been used in
recommendation systems. Bai, et al. [31] created the NNCF model to capture localization
information that traditional latent factor models cannot capture effectively, which integrates
neighbor information as input into DNNs.

2.2. Implicit Feedback

Explicit feedback refers to numerical feedback with explicit rating criteria, such as the
five-star rating system for MovieLens movies. Implicit feedback contains only positive and
unobserved samples. Common implicit feedback includes click history, purchase history,
like history, etc.

Given a recommendation problem, we suppose there is a series of users i and a
series of items j. The recommendation task focused on in this paper requires both explicit
feedback and implicit feedback from users on the items. Implicit feedback yij is expressed
as predicting whether there is an interaction and is defined as follows:

yij =

{
1 user i has interaction on item j
0 otherwise

(1)

Here, yij is 1, indicating that there is a click or browsing behavior between user i and
item j. However, that does not mean that i truly likes j. Similarly, yij is 0, which does not
indicate that i is extremely averse to j, or that the user has not browsed and clicked on
these items. Although the observed items at least reflect the user’s specific interests, the
unchecked items may simply lose data.

In daily life, most users feedback is implicit, and the implicit feedback data will have
a large number of identical items; this is a challenge for the list sorting model based on
implicit feedback.

2.3. MLP

MLP is essentially a neural network. It aims to solve the nonlinear question that the
single-layer perceptron cannot solve. The MLP model is defined as follows:

φMLP = σ
(

hTφL(wx + b)
)

(2)

The structure of MLP is improved in two aspects from the single-layer perceptron structure:

(1) The hidden layer is added, which can have multiple layers to enhance the model’s
expressive ability. However, it also increases the complexity of the model.

(2) To extend the activation function, although the activation function of the perceptron
is simple, the processing capacity is limited. Thus, other activation functions are
generally used in the neural network. By using different activation functions, the
expression ability of the neural network is further enhanced.

For the activation function, sigmoid has limited the performance and caused a overfit-
ting problem. Although tahn is applied more, it does not solve the above issues. The relu
function is simple, has a fast-fitting speed, and will not cause oversaturation problems. We
used the relu function.

Relu(x) = max(0, x) (3)

Entropy 2022, 24, 778 4 of 16

3. The Experimental Model

Figure 1 illustrates the overall framework of RBLF, Figure 2 shows the shallow-deep
interaction grabbing layer structure of RBLF, and Figure 3 shows the idea of working with
three different sorting algorithms. The second subsection details the interaction capture
layer and describes how the layer works and the formula expression. In the third subsection,
we describe in detail the formulas used by the four different sorting algorithms and how
the results are sorted.

Entropy 2022, 24, x FOR PEER REVIEW 4 of 16

relu function is simple, has a fast-fitting speed, and will not cause oversaturation prob-

lems. We used the relu function.

𝑅𝑒𝑙𝑢(𝑥) = max (0, 𝑥) (3)

3. The Experimental Model

Figure 1 illustrates the overall framework of RBLF, Figure 2 shows the shallow-deep

interaction grabbing layer structure of RBLF, and Figure 3 shows the idea of working with

three different sorting algorithms. The second subsection details the interaction capture

layer and describes how the layer works and the formula expression. In the third subsec-

tion, we describe in detail the formulas used by the four different sorting algorithms and

how the results are sorted.

Figure 1. The architecture of RBLF.

Figure 1. The architecture of RBLF.

Entropy 2022, 24, x FOR PEER REVIEW 4 of 16

relu function is simple, has a fast-fitting speed, and will not cause oversaturation prob-

lems. We used the relu function.

𝑅𝑒𝑙𝑢(𝑥) = max (0, 𝑥) (3)

3. The Experimental Model

Figure 1 illustrates the overall framework of RBLF, Figure 2 shows the shallow-deep

interaction grabbing layer structure of RBLF, and Figure 3 shows the idea of working with

three different sorting algorithms. The second subsection details the interaction capture

layer and describes how the layer works and the formula expression. In the third subsec-

tion, we describe in detail the formulas used by the four different sorting algorithms and

how the results are sorted.

Figure 1. The architecture of RBLF.

Figure 2. The architecture of interaction grabbing layer.

Entropy 2022, 24, 778 5 of 16

Entropy 2022, 24, x FOR PEER REVIEW 5 of 16

Figure 2. The architecture of interaction grabbing layer.

Figure 3. Comparison of different list ranking methods.

3.1. Input Layer and Embedding Layer

The input layer transforms the sparse user–item vector into one-hot encoding and

feeds the result into the embedding layer.

The function of the embedding layer in RBLF is to transform the one-hot encoding of

users and items into a low-dimensional space and represent them using a dense vector.

The embedding layer is defined as follows:

𝑝𝑢 = 𝑓𝑙𝑜𝑜𝑘𝑢𝑝(𝑢) (4)

𝑞𝑖 = 𝑓𝑙𝑜𝑜𝑘𝑢𝑝(𝑖) (5)

where 𝑝𝑢 and 𝑞𝑖 represent the embedding vectors of the user and item.

In reality, users and items are independent of each other, and they own a different

number of latent features. Conversely, user preferences change over time, which leads to

changing latent features. Still, items have relatively fixed attributes from the beginning of

their creation; thus, the latent features of items do not change drastically [32]. We set dif-

ferent latent features. In the embedding layer, we use the list of 𝐾+positive items and

𝐾−negative items. 𝑞𝑖
+ and 𝑞𝑖

−denote the positive and negative samples.

3.2. Shallow-Deep Interaction Grabbing Layer

We want to capture shallow linear user–item interactions and deep non-linear inter-

actions in this layer.

First, the shallow interaction grabbing layer model carries the shallow user–item in-

teraction behavior through explicitly fusing 𝑝𝑢 and 𝑞𝑖:

𝑋𝑢𝑘 = |𝑝𝑢, 𝑞𝑖 , 𝑝𝑢⨀𝑞𝑖| (6)

𝑝𝑢⨀𝑞𝑖 is the element-wise of two vectors. |𝑝𝑢 , 𝑞𝑖 , 𝑝𝑢⨀𝑞𝑖| is the concatenation of these

three vectors. By concatenating the |𝑝𝑢⨀𝑞𝑖|, the interaction can be better accommodated

and prevent loss of feature [33]. We place 𝑋𝑢𝑘 into the deep interaction grabbing layer.

The goal of the deep interaction grabbing layer is to learn deep and non-linear inter-

action behavior, and a standard MLP (multilayer perceptron) is used to learn the interac-

tion latent features. Therefore, we can give the model nonlinear modeling capability rather

Figure 3. Comparison of different list ranking methods.

3.1. Input Layer and Embedding Layer

The input layer transforms the sparse user–item vector into one-hot encoding and
feeds the result into the embedding layer.

The function of the embedding layer in RBLF is to transform the one-hot encoding of
users and items into a low-dimensional space and represent them using a dense vector.

The embedding layer is defined as follows:

pu = flookup(u) (4)

qi = flookup(i) (5)

where pu and qi represent the embedding vectors of the user and item.
In reality, users and items are independent of each other, and they own a different

number of latent features. Conversely, user preferences change over time, which leads to
changing latent features. Still, items have relatively fixed attributes from the beginning
of their creation; thus, the latent features of items do not change drastically [32]. We set
different latent features. In the embedding layer, we use the list of K+ positive items and
K− negative items. q+i and q−i denote the positive and negative samples.

3.2. Shallow-Deep Interaction Grabbing Layer

We want to capture shallow linear user–item interactions and deep non-linear interac-
tions in this layer.

First, the shallow interaction grabbing layer model carries the shallow user–item
interaction behavior through explicitly fusing pu and qi:

Xuk =
∣∣pu, qi, pu

⊙
qi
∣∣ (6)

pu
⊙

qi is the element-wise of two vectors.
∣∣pu, qi, pu

⊙
qi
∣∣ is the concatenation of these

three vectors. By concatenating the
∣∣pu

⊙
qi
∣∣, the interaction can be better accommodated

and prevent loss of feature [33]. We place Xuk into the deep interaction grabbing layer.
The goal of the deep interaction grabbing layer is to learn deep and non-linear interac-

tion behavior, and a standard MLP (multilayer perceptron) is used to learn the interaction
latent features. Therefore, we can give the model nonlinear modeling capability rather
than simply using the inner product multiplied element-by-element as MF (generalized
matrix factorization) to describe the potential interaction characteristics. Since multilayer

Entropy 2022, 24, 778 6 of 16

perceptron can simulate any function, we hope that this layer perceptron can better simulate
the implicit preferences between user items. The model connects element-wise in series
with multilayer perceptrons, which can be defined as follows:

X1
uk = σ

(
W1

n Xuk + b1
n
)

X2
uk = σ

(
W2

n X1
uk + b2

n
)

. . .
Xl

uk = σ
(

W l
nXl−1

uk + bl
n

) (7)

Xl
ij is the result of the lth-layer, W l

n bl
n is the weight matrix and bias.

3.3. Predictive Layer
3.3.1. Pairwise Ranking

After we obtain the result of the interaction grabbing layer, we need the interaction
grabbing layer to map the result to the probability ŷuk. Probability has two properties: the
predicted probability is a nonnegative number. Softmax converts the prediction results
from negative infinity to positive infinity through the promotion of the two classification
functions sigmoid in multiclassification according to these two steps. The probability ŷuk is
formulated as follows:

ŷuk = so f tmax
(

Xl
uk

)
=

eXl
uk

∑K
k=1 eXl

uk
(8)

The pairwise RBLF is a special case of the listwise RBLF method. When the list is
2 (K = 2), the list-wise becomes the pairwise RBLF. The pairwise method models the relative
ranking of double items to make predictions. Therefore, the pairwise method constructs
the relationship between positive and negative examples. Then, the loss function we set
through cross entropy is as follows:

p(y, ŷ) = −
U

∑
u=1

(∑
i∈l+u

log ŷui + ∑
j∈l−u

log(1− ŷuj)) (9)

yui indicates the true probability, ŷui indicates the predicted probability, l+u and l−u represent
interactive and noninteractive items by user u, respectively.

Compared with listwise RBLF, the pairwise RBLF is used to determine the relative
order of two products and to integrate the results to obtain the final recommendation list,
which emphasizes the short running time of the code.

Finally, we use regularization methods to avoid overfitting, and the regularization is
defined as:

P = p(y, ŷ) + α(
L

∑
l=1
‖Wl‖2

F +
U

∑
u=1
‖pu‖2

F +
I

∑
i=1
‖qi‖2

F) (10)

where ‖·‖2
F represents the Fibonacci-norm and α is the regularization coefficient set in the

experiment.

3.3.2. Listwise Ranking

As in method pairwise RBLF, the listwise RBLF also needs the interaction-grabbing
layer to map the result to the probability ŷuk. Unlike method pairwise RBLF, the listwise
RBLF learns the sample features of an ordered list instead of learning an ordered pair. The
probability of items is defined as:

p(S(i1, i2, . . . , iK)) = ∏
i∈l+u

ŷui ∏
j∈l−u

1− ŷuj (11)

Entropy 2022, 24, 778 7 of 16

where S(i1, i2, . . . , iK) denotes the set of all items in list lu and K denotes the number of
items in the list lu. Then, the model simulates the distribution between the true list and
the predicted list by cross entropy. The listwise ranking with regularization is defined
as follows:

p(y, ŷ) = −
U
∑

u=1

(
∑

i∈l+u

log ŷui + ∑
j∈l−u

log(1− ŷuj)

)
+

α(
L
∑

l=1
‖Wl‖2

F +
U
∑

u=1
‖pu‖2

F +
I

∑
i=1
‖qi‖2

F)

(12)

3.3.3. Deep-Setrank

Considering that each user’s rating process can be approximated as independent
of each other and not influenced by other users, we first assume that each user’s rating
results are independent. Then, for each user, its preference for the positive sample can be
considered higher than that of the unobserved sample. Thus, we can compare each positive
sample of users with the set of unobserved samples and assume that the probability of a
user liking a positive sample is greater than the probability of liking the set of unobserved
samples. We can then maximize the likelihood probability values of these comparisons to
solve the problem. Compared to the pairwise assumption, the setrank assumption avoids
the problem of inconsistent independence by relaxing the independence requirement. The
Bayesian posterior probability of the setrank preference structure can be given as:

p(>total |Θ) =
U

∏
u=1

p(>u|Θ) =
U

∏
u=1

∏
k∈lu

p
(
l+u > l−u

∣∣Θ) (13)

where >total is the preference structure of all users, >u is a random variable representing
the preference structure of the representation user u, and Θ is the parameter to be learned
in the scoring modeling section. p(l+u > l−u |Θ) represents the probability that a positive
sample l+u is better than the preference structure of the set consisting of some unobserved
samples l−u . This probability can be equivalently considered as the probability that this
positive sample ranks first in the list consisting of this positive sample and all unobserved
samples, while the order between unobserved samples or within positive samples is not
to be considered; thus, there is no problem in sorting items with the same rating by the
listwise method.

As shown in Figure 3, the preferred items for user 1 are {a, e} and the unobserved
items are {b, c, d}. We only need to express that a > {b, c, d} and e > {b, c, d} without
sorting between items {a, e} and {b, c, d}. In the embedding layer, we use the list of one
positive items, and K− 1 negative items.

Our method only cares about the sorting probability when a positive sample is ranked
first; thus, introducing the listwise method’s list order-based probability modeling formula
to calculate the probability can be simplified as:

ps,1
(
l+u > l−u

∣∣Θ) = ∅
(

sl+u

)
∑K

a=1 ∅(sa)
(14)

where ps,1(l+u > l−u |Θ) denotes the probability that item l+u is ranked first, and sa is the
rating of item a.

The complete probabilistic modeling form of the setrank method as:

p(>total |Θ) =
U

∑
u=1

∑
k∈lu

−log
∅(ŷui)

∅(ŷui) + ∑K−1
j∈l−u

∅
(
ŷuj
) (15)

Entropy 2022, 24, 778 8 of 16

Since we do not sort the set of unobserved items or the set of positive sample items
internally, we use the sigmoid function to map the results of the interaction-grabbing layer
into probabilities:

log∅(ŷuk) = sigmoid
(

Xl
uk

)
=

1

1 + eXl
uk

(16)

By means of maximizing the posterior probabilities, the final optimization objective
function can be given as:

P =
U

∏
u=1

∏
k∈lu

p(>total |Θ) + α(
L

∑
l=1
‖Wl‖2

F +
U

∑
u=1
‖pu‖2

F +
I

∑
i=1
‖qi‖2

F) (17)

4. The Experiment Evaluation

In this section, we introduce the dataset, the experimental evaluation index and the
algorithm to compare with our experiment. Our experiment aims to answer four key
questions

1. RQ1: How does RBLF perform compared to the currently popular list-sorting algo-
rithms?

2. RQ2: What are the effects of shallow and deep interaction methods in the feature
capture module on RBLF?

3. RQ3: What are the effects of different list ranking methods in the predictive layer
on RBLF?

4. RQ4: How does it impact the effect of different hyperparameters of the model?

4.1. Datasets, Evaluation Metrics and Compared Models

As shown in Table 1, we evaluated our model on several public datasets, including
MovieLens—100 k, MovieLens—1 M, and Yahoo. We randomly selected 80% of the scores
for training the data for each dataset.

Table 1. Statistics of the datasets.

Datasets Users Items Rating Sparsity

ML-100 K 943 1682 100,000 93.63%
ML-1 M 6040 3952 1,000,000 95.81%
Yahoo 7642 11,915 211,231 99.77%

In addition, we used two popular accuracy metrics, the HR@N and the NDCG@N (N
denotes that the RBLF generate the number of the top-n items).

The larger the value of HR and NDCG, the better the model’s performance. The
HR@N score is defined as:

HR@N =
∑#users

u=1
hits
N

#users
(18)

where #users are the total users whose items in the test set appear.
NDCG@N is defined as follows:

DCG(b, N) =
b

∑
i=1

ri +
N

∑
i=b+1

ri
logbi

(19)

NDCG =
DCG
iDCG

(20)

ri indicates whether the item ranked i is preferred by the user. ri = 1 indicates that the
user likes the product; ri = 0 indicates that the user does not like the product; b is the free
parameter, which is generally set to 2; N is the number of the top-n items from RBLF. DCG
was normalized to obtain NDCG.

Entropy 2022, 24, 778 9 of 16

We used the compared methods as shown below:
The ItemKNN model considers the evaluation bias after the calculation is completed

and obtains the k most similar items.
BPR [34] is a widely used Bayesian-sorting algorithm.
ListRank-MF [26] uses a learning-sorting algorithm and matrix factorization to im-

prove performance while maintaining low complexity.
Neural cooperative filtering (NCF) [14] directly uses a combination of the DNN and

matrix factorization, thereby alleviating the problem of DNN overfitting and ignoring
low-rank information.

The DeepCF [13] model is the deep matrix decomposition model (DMF) and gives its
own solution to NCF’s problem. It uses matching learning, which combines the advantages
of the two methods, and effectively avoids the shortcomings of the two methods.

The DeepRank [32] model is built on natural language processing capabilities and is
currently one of the best sorting algorithms.

4.2. Performance Evaluation (RQ1)

The model is compared with the benchmark in Table 2. The best marks are highlighted
in bold.

Table 2. Comparison results in different datasets.

Dataset Metrics HR@5 HR@10 NDCG@5 NDCG@10

MovieLens—100 K

ItemKNN 0.482 0.498 0.339 0.362
BPR 0.536 0.668 0.371 0.411

List-rank MF 0.511 0.653 0.355 0.399
NCF 0.627 0.721 0.432 0.472
DMF 0.653 0.750 0.431 0.487

DeepRank 0.778 0.768 0.521 0.511
RBLF 0.812 0.826 0.533 0.541

MovieLens—1 M

ItemKNN 0.452 0.478 0.226 0.279
BPR 0.516 0.696 0.351 0.413

List-rank MF 0.488 0.637 0.344 0.389
NCF 0.607 0.711 0.381 0.447
DMF 0.693 0.725 0.437 0.445

DeepRank 0.749 0.761 0.493 0.499
RBLF 0.789 0.819 0.531 0.529

Yahoo

ItemKNN 0.482 0.498 0.339 0.362
BPR 0.641 0.796 0.571 0.641

List-rank MF 0.618 0.737 0.556 0.608
NCF 0.785 0.821 0.648 0.694
DMF 0.787 0.825 0.657 0.703

DeepRank 0.853 0.868 0.695 0.713
RBLF 0.928 0.917 0.722 0.741

We compared the performance of RBLF and the adaptability of the model when facing
different datasets in Table 2 and the best performing numbers are in bold. At the same
time, we intuitively compared the DeepRank model, which is the closest to our model and
records results within each epoch at 100. As seen in Figures 4–6, the x-axis represents the
epoch and the y-axis represents the results.

Entropy 2022, 24, 778 10 of 16

Entropy 2022, 24, x FOR PEER REVIEW 10 of 16

DeepRank 0.853 0.868 0.695 0.713

RBLF 0.928 0.917 0.722 0.741

(a) (b)

Figure 4. (a) HR@10 comparison of RBLF and DeepRank in MovieLens—100 K; (b) NDCG@10 com-

parison of RBLF and DeepRank in MovieLens—100 K.

(a) (b)

Figure 5. (a) HR@10 comparison of RBLF and DeepRank in MovieLens—1 M; (b) NDCG@10 com-

parison of RBLF and DeepRank in MovieLens—1 M.

(a) (b)

Figure 6. (a) HR@10 comparison of RBLF and DeepRank in YaHoo Movie; (b) NDCG@10 compari-

son of RBLF and DeepRank in YaHoo Movie.

As seen in Table 2, our proposed method achieves excellent ranking performance and

has considerable advantages on each dataset. We believe that it is precisely because our

model better simulates the user’s preferences that the performance is ahead of the perfor-

mance of the comparison algorithm. In addition, RBLF consistently outperforms the

DeepRank model on the three datasets and increases by 6.3%, 7.1%, and 4.5%, respec-

tively. (According to the paper and our experimental data, the specific values of the hy-

perparameters when DeepRank achieves the best performance are: the length of the list K

Figure 4. (a) HR@10 comparison of RBLF and DeepRank in MovieLens—100 K; (b) NDCG@10
comparison of RBLF and DeepRank in MovieLens—100 K.

Entropy 2022, 24, x FOR PEER REVIEW 10 of 16

DeepRank 0.853 0.868 0.695 0.713

RBLF 0.928 0.917 0.722 0.741

(a) (b)

Figure 4. (a) HR@10 comparison of RBLF and DeepRank in MovieLens—100 K; (b) NDCG@10 com-

parison of RBLF and DeepRank in MovieLens—100 K.

(a) (b)

Figure 5. (a) HR@10 comparison of RBLF and DeepRank in MovieLens—1 M; (b) NDCG@10 com-

parison of RBLF and DeepRank in MovieLens—1 M.

(a) (b)

Figure 6. (a) HR@10 comparison of RBLF and DeepRank in YaHoo Movie; (b) NDCG@10 compari-

son of RBLF and DeepRank in YaHoo Movie.

As seen in Table 2, our proposed method achieves excellent ranking performance and

has considerable advantages on each dataset. We believe that it is precisely because our

model better simulates the user’s preferences that the performance is ahead of the perfor-

mance of the comparison algorithm. In addition, RBLF consistently outperforms the

DeepRank model on the three datasets and increases by 6.3%, 7.1%, and 4.5%, respec-

tively. (According to the paper and our experimental data, the specific values of the hy-

perparameters when DeepRank achieves the best performance are: the length of the list K

Figure 5. (a) HR@10 comparison of RBLF and DeepRank in MovieLens—1 M; (b) NDCG@10 compar-
ison of RBLF and DeepRank in MovieLens—1 M.

Entropy 2022, 24, x FOR PEER REVIEW 10 of 16

DeepRank 0.853 0.868 0.695 0.713

RBLF 0.928 0.917 0.722 0.741

(a) (b)

Figure 4. (a) HR@10 comparison of RBLF and DeepRank in MovieLens—100 K; (b) NDCG@10 com-

parison of RBLF and DeepRank in MovieLens—100 K.

(a) (b)

Figure 5. (a) HR@10 comparison of RBLF and DeepRank in MovieLens—1 M; (b) NDCG@10 com-

parison of RBLF and DeepRank in MovieLens—1 M.

(a) (b)

Figure 6. (a) HR@10 comparison of RBLF and DeepRank in YaHoo Movie; (b) NDCG@10 compari-

son of RBLF and DeepRank in YaHoo Movie.

As seen in Table 2, our proposed method achieves excellent ranking performance and

has considerable advantages on each dataset. We believe that it is precisely because our

model better simulates the user’s preferences that the performance is ahead of the perfor-

mance of the comparison algorithm. In addition, RBLF consistently outperforms the

DeepRank model on the three datasets and increases by 6.3%, 7.1%, and 4.5%, respec-

tively. (According to the paper and our experimental data, the specific values of the hy-

perparameters when DeepRank achieves the best performance are: the length of the list K

Figure 6. (a) HR@10 comparison of RBLF and DeepRank in YaHoo Movie; (b) NDCG@10 comparison
of RBLF and DeepRank in YaHoo Movie.

As seen in Table 2, our proposed method achieves excellent ranking performance
and has considerable advantages on each dataset. We believe that it is precisely because
our model better simulates the user’s preferences that the performance is ahead of the
performance of the comparison algorithm. In addition, RBLF consistently outperforms
the DeepRank model on the three datasets and increases by 6.3%, 7.1%, and 4.5%, re-
spectively. (According to the paper and our experimental data, the specific values of the
hyperparameters when DeepRank achieves the best performance are: the length of the list
K = 15, the user and item dimension sizes of embedding du, du = {16, 8}, and the depth
of MLP L = 4.) Figures 4–6 show that the RBLF and DeepRank epoch are between 0–100,

Entropy 2022, 24, 778 11 of 16

including the values of HR@10 and NDCG@10. In the figure, we can see more clearly that
the performance of RBLF is better at each epoch, and at the same time, it avoids DeepRank
due to the problem of mid-term performance degradation.

On the sparsest dataset Yahoo! Movie, RBLF is also superior to other methods, indi-
cating that the idea of combining RBLF in our model simulates the invisible preferences
of users, ensuring high performance and high flexibility of the model. Since BPR and
ListRank-MF are simply linear interactions, they perform relatively poorly on all datasets,
although they also model invisible preferences. The DeepRank model uses the MLP model,
which omits some low-rank information and some simple user characteristics in the user–
item matrix. As a result, although their performance is high, they are still inferior to RBLF.
Although the NCF model uses MLP and MF, our model is a cascade fusion, which allows
the model to better integrate these two algorithms, and thus, our model performance is
even better. The DeepCF method is concerned with the point-by-point method and ignores
the paired ranking information. Our model captures the user’s characteristics from the
user’s paired item. This result in our model is more powerful than theirs in predicting the
performance of personalized rankings.

4.3. Ablation Experiments of Shallow and Deep Interaction Methods (RQ2)

As shown in Table 3,
√

represents whether the feature capture layer includes this
module. We did three types of experiments in total and recorded the performance changes
when the model only has a shallow interaction grabbing layer, only a deep interaction
grabbing layer, and a complete shallow deep interaction grabbing module. The performance
of the RBLF model decreases by 1.5% when the shallow interaction-grabbing layer is lost.
In comparison, the overall performance of the model reduces by 3.4% when the multilayer
perceptron for grabbing the deep interaction is lost. This proves that the model for capturing
shallow interaction has less impact on the overall performance than MLP, and the nonlinear
module can better model the user’s preference.

Table 3. Comparative results of ablation experiments.

Dataset
Module Evaluation Indicators

Shallow Deep HR@10 NDCG@10

100 K

√
0.803 0.518√
0.787 0.509√ √
0.815 0.521

1 M

√
0.795 0.517√
0.774 0.515√ √
0.813 0.519

Yahoo

√
0.881 0.736√
0.870 0.711√ √
0.895 0.740

4.4. Different List Ranking Methods (RQ3)

The results for different list ranking methods are shown in Table 4. Deep-setrank
outperforms the pairwise ranking and listwise ranking on the two datasets and increases
by 10% and 1.8%, respectively.

Table 4. Comparison results for different list ranking methods.

List—Methods
MovieLens—100 K MovieLens—1 M

hr@10 ndcg@10 hr@10 ndcg@10

pairwise ranking 0.7407 0.4756 0.7429 0.4940
listwise ranking 0.8080 0.5271 0.7937 0.5390
Deep-set rank 0.8234 0.5408 0.8191 0.5291

Entropy 2022, 24, 778 12 of 16

The reason Deep-setrank performance is substantially better than pairwise ranking
is that pairwise methods typically model the preference structure in implicit feedback
based on an item pair consisting of a positive feedback item and an unobserved item. This
approach is prone to the problem of inconsistent independence in assumptions and imple-
mentation. Pairwise ranking attempts to maximize the probability of pairwise comparisons
between positive and unobserved simples. This work requires the strict assumption that
two items have independent pairwise preferences as the basis for constructing the loss
function. Therefore, the independence between preference pairs cannot be guaranteed,
which affects the optimization results of the pairwise loss function. Only the order of the
two documents is considered, and the position of the documents in the search list is not,
resulting in a less-than-optimal final ranking.

The reason Deep-setrank outperforms listwise ranking is that the list method is imple-
mented by defining a probabilistic relationship between the preference sizes on the list of
items. For the list method, items with the same rating value cannot be handled efficiently,
especially because there is no explicit graded rating in the implicit feedback but 0/1 rating,
which can lead to a large number of items with the same rating. In contrast, Deep-setrank
does not sort the set of unobserved items or the set of positive sample items internally but
only ensures that each positive sample is larger than the set of unobserved samples. Therefore,
Deep-setrank models the implicit feedback data more realistically than listwise ranking.

4.5. Different Hyperparameters of the Model (RQ4)

The effect of the length of the list is shown in Table 5. First, as the list length K increases,
the model performance increases. After K = 5, the performance is not significantly improved.
After K = 10, the performance of the model begins to decrease as K increases. This is because
our model is more complex, and the meaningless increase in the length of the list affects the
final performance. At the same time, the longer list length inevitably leads to a substantial
increase in the running time. Therefore, we finally take K as 5, the optimal parameter after
combining time and performance.

Table 5. Comparison results for the different lengths of the list.

K
MovieLens—100 K MovieLens—1 M Yahoo! Movie

hr@10 ndcg@10 hr@10 ndcg@10 hr@10 ndcg@10

2 0.7440 0.4849 0.7494 0.4867 0.8515 0.6706
5 0.8235 0.5480 0.8185 0.5486 0.8991 0.7453

10 0.8189 0.5282 0.7993 0.5319 0.8941 0.7354
15 0.8218 0.5329 0.8033 0.5366 0.8990 0.7312

The embedding size is important for the representation of the project. We conducted
experiments to determine the impact of embeddings of different dimensional sizes on
the performance of the model. We set the user and item embedding dimension size
du = {8, 16, 32}, e di = {8, 16, 32}, and the results are shown in Table 6. Figures 7–9
show that the user embedding remains unchanged in MovieLens—100 K and the impact of
changing the size of the item embedding, where the x-axis represents the epoch and the
y-axis represents the results.

Entropy 2022, 24, 778 13 of 16

Table 6. Comparison results in the different dimension sizes of embedding.

du di
MovieLens—100 K MovieLens—1 M

hr@10 ndcg@10 hr@10 ndcg@10

8 8 0.7467 0.5003 0.7676 0.5113
8 16 0.8167 0.5348 0.8071 0.5274
8 32 0.8006 0.5329 0.7991 0.5148

16 8 0.8145 0.5231 0.8058 0.5228
16 16 0.8021 0.5217 0.7964 0.5199
16 32 0.7826 0.5232 0.7637 0.5190

32 8 0.7607 0.5156 0.7629 0.5140
32 16 0.7544 0.5074 0.7553 0.4999
32 32 0.7588 0.0.5095 0.7487 0.5029

Entropy 2022, 24, x FOR PEER REVIEW 13 of 16

Table 6. Comparison results in the different dimension sizes of embedding.

𝒅𝒖 𝒅𝒊
MovieLens—100 K MovieLens—1 M

hr@10 ndcg@10 hr@10 ndcg@10

8 8 0.7467 0.5003 0.7676 0.5113

8 16 0.8167 0.5348 0.8071 0.5274

8 32 0.8006 0.5329 0.7991 0.5148

16 8 0.8145 0.5231 0.8058 0.5228

16 16 0.8021 0.5217 0.7964 0.5199

16 32 0.7826 0.5232 0.7637 0.5190

32 8 0.7607 0.5156 0.7629 0.5140

32 16 0.7544 0.5074 0.7553 0.4999

32 32 0.7588 0.0.5095 0.7487 0.5029

(a) (b)

Figure 7. (a) 𝑑𝑢 = 8, comparisons of HR@10 under different 𝑑𝑖 in MovieLens—100 K; (b) 𝑑𝑢= 8,

comparisons of NDCG@10 under different 𝑑𝑖 in MovieLens—1 M.

(a) (b)

Figure 8. (a) 𝑑𝑢 = 16, comparison of HR@10 under different 𝑑𝑖 in MovieLens—100 K; (b) 𝑑𝑢 = 16,

comparison of NDCG@10 under different 𝑑𝑖 in MovieLens—1 M.

Figure 7. (a) du = 8, comparisons of HR@10 under different di in MovieLens—100 K; (b) du = 8,
comparisons of NDCG@10 under different di in MovieLens—1 M.

Entropy 2022, 24, x FOR PEER REVIEW 13 of 16

Table 6. Comparison results in the different dimension sizes of embedding.

𝒅𝒖 𝒅𝒊
MovieLens—100 K MovieLens—1 M

hr@10 ndcg@10 hr@10 ndcg@10

8 8 0.7467 0.5003 0.7676 0.5113

8 16 0.8167 0.5348 0.8071 0.5274

8 32 0.8006 0.5329 0.7991 0.5148

16 8 0.8145 0.5231 0.8058 0.5228

16 16 0.8021 0.5217 0.7964 0.5199

16 32 0.7826 0.5232 0.7637 0.5190

32 8 0.7607 0.5156 0.7629 0.5140

32 16 0.7544 0.5074 0.7553 0.4999

32 32 0.7588 0.0.5095 0.7487 0.5029

(a) (b)

Figure 7. (a) 𝑑𝑢 = 8, comparisons of HR@10 under different 𝑑𝑖 in MovieLens—100 K; (b) 𝑑𝑢= 8,

comparisons of NDCG@10 under different 𝑑𝑖 in MovieLens—1 M.

(a) (b)

Figure 8. (a) 𝑑𝑢 = 16, comparison of HR@10 under different 𝑑𝑖 in MovieLens—100 K; (b) 𝑑𝑢 = 16,

comparison of NDCG@10 under different 𝑑𝑖 in MovieLens—1 M.

Figure 8. (a) du = 16, comparison of HR@10 under different di in MovieLens—100 K; (b) du = 16,
comparison of NDCG@10 under different di in MovieLens—1 M.

After conducting many experiments, we can conclude the following: First, when the
user–item embedding dimensions are different, the performance is better than that of the user
and the item with the same embedding dimension. Second, if you want to achieve better results,
neither user embedding nor item embedding can take 32 because excessive dimensions.

Entropy 2022, 24, 778 14 of 16Entropy 2022, 24, x FOR PEER REVIEW 14 of 16

(a) (b)

Figure 9. (a) 𝑑𝑢 = 32, comparison of HR@10 under different 𝑑𝑖 in MovieLens—100 K; (b) 𝑑𝑢 = 32,

comparison of NDCG@10 under different 𝑑𝑖 in MovieLens—1 M.

After conducting many experiments, we can conclude the following: First, when the

user–item embedding dimensions are different, the performance is better than that of the

user and the item with the same embedding dimension. Second, if you want to achieve

better results, neither user embedding nor item embedding can take 32 because excessive

dimensions.

Third, the dimension of user embedding is preferably smaller than the dimension of

item embedding. Finally, we conclude that when 𝑑𝑢= 8 and 𝑑𝑖= 16, the model’s perfor-

mance can reach its highest and performs much better on different datasets, proving that

the generalization ability is well.

In the new experiment, we set the size of MLP to [8], [16,8], [32,16,8], [64,32,16,8] and

[128,64,32,16,8], and the results are shown in Table 7.

Table 7. Comparison results for different numbers of layers for MLP.

L
MovieLens—100 K MovieLens—1 M

hr@10 ndcg@10 hr@10 ndcg@10

1 0.7504 0.5149 0.7691 0.4731

2 0.7916 0.5289 0.7667 0.4768

3 0.8181 0.5300 0.7996 0.4986

4 0.8234 0.5408 0.8191 0.5291

5 0.8049 0.5326 0.7885 0.4861

In the beginning, as the number of layers of MLP increases, the performance of the

model also improves because the deep neural network is similar to the structure of the

shallow neural network when the number of layers is too small, and the model does not

have sufficient fitting capabilities. Therefore, as L increases, the fitting ability of the deep

neural network also increases, which drives the improvement of the model’s performance.

After L = 4, the performance decreases instead because the model adds a shallow interac-

tion-grabbing layer, limiting the MLP model’s depth.

In this section, we compare the performance and time cost of three list ranking meth-

ods. Table 8 shows the training time of the three models on the MovieLens—100 K and

Movielens—1 M datasets.

Table 8. Time cost for different list ranking methods.

 MovieLens—100 K Movielens—1 M

Pairwise-ranking 2 m 12 s 14 m 49 s

Listwise-ranking 5 m 5 s 38 m 20 s

Deep-setrank 5 m 1 s 36 m 22 s

Figure 9. (a) du = 32, comparison of HR@10 under different di in MovieLens—100 K; (b) du = 32,
comparison of NDCG@10 under different di in MovieLens—1 M.

Third, the dimension of user embedding is preferably smaller than the dimension
of item embedding. Finally, we conclude that when du = 8 and di = 16, the model’s
performance can reach its highest and performs much better on different datasets, proving
that the generalization ability is well.

In the new experiment, we set the size of MLP to [8], [16,8], [32,16,8], [64,32,16,8] and
[128,64,32,16,8], and the results are shown in Table 7.

Table 7. Comparison results for different numbers of layers for MLP.

L
MovieLens—100 K MovieLens—1 M

hr@10 ndcg@10 hr@10 ndcg@10

1 0.7504 0.5149 0.7691 0.4731
2 0.7916 0.5289 0.7667 0.4768
3 0.8181 0.5300 0.7996 0.4986
4 0.8234 0.5408 0.8191 0.5291
5 0.8049 0.5326 0.7885 0.4861

In the beginning, as the number of layers of MLP increases, the performance of the
model also improves because the deep neural network is similar to the structure of the
shallow neural network when the number of layers is too small, and the model does
not have sufficient fitting capabilities. Therefore, as L increases, the fitting ability of
the deep neural network also increases, which drives the improvement of the model’s
performance. After L = 4, the performance decreases instead because the model adds a
shallow interaction-grabbing layer, limiting the MLP model’s depth.

In this section, we compare the performance and time cost of three list ranking meth-
ods. Table 8 shows the training time of the three models on the MovieLens—100 K and
Movielens—1 M datasets.

Table 8. Time cost for different list ranking methods.

MovieLens—100 K Movielens—1 M

Pairwise-ranking 2 m 12 s 14 m 49 s

Listwise-ranking 5 m 5 s 38 m 20 s

Deep-setrank 5 m 1 s 36 m 22 s

The time cost of the pairwise-ranking model is far superior to that of those models,
although the performance of pairwise-ranking is the worst. As for listwise-ranking and
deep-setrank, they take about the same amount of time, but the performance of deep-
setrank is better than the listwise-ranking. Thus, we suggest that if you care about the

Entropy 2022, 24, 778 15 of 16

time cost, you should choose pairwise-ranking, and if you prefer higher performance, you
should choose deep-setrank.

5. Conclusions and Future Work

This paper proposes a list-ranking framework based on linear and non-linear fusion
for recommendation (RBLF). The model addresses the problem in that current list-sorting
recommender systems always fail to capture the full range of user–item interaction infor-
mation by adding a shallow–deep interaction-grabbing layer, thus improving the model
performance.

In the future, we want to optimize the way to obtain the potential vectors of users and
items. As the theory of graph neural networks matures, the potential vectors obtained by
graph neural networks are much richer than one-hot coding and embedding. In addition,
multimodal auxiliary information can make the features more adequate, such as using the
item’s image and the user’s comment to optimize the feature vector.

Author Contributions: Conceptualization, B.W.; methodology, B.W.; software, B.W.; validation, B.W.;
formal analysis, J.Q.; writing—original draft preparation, B.W.; writing—review and editing, B.W.;
supervision, B.W.; funding acquisition, J.Q. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was supported by the National Science Foundation of China under grant no.
61867006. This work was supported by the Science Fund for Outstanding Youth of Xinjiang Uygur
Autonomous Region under grant no. 2021D01E14; the Key Laboratory Open Project of Science
and Technology Department of Xinjiang Uygur Autonomous Region named Research on video
information intelligent processing technology for Xinjiang regional security; the Major science and
technology project of Xinjiang Uygur Autonomous Region under grant no 2020A03001; the project of
China Mobile Communications Group Xinjiang Ltd. under grant no. CMXJ-20201279.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: We evaluated our algorithm on three datasets: MovieLens—100 k,
MovieLens—1 M, and Yahoo. https://grouplens.org/datasets/MovieLens/100k/ (accessed on
15 October 2020); https://grouplens.org/datasets/MovieLens/1m/http://webscope.sandbox.yahoo.
com/catalog.php?datatype=r&did=75 (accessed on 16 October 2020).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
2. Serban, I.; Sordoni, A.; Bengio, Y.; Courville, A.; Pineau, J. Building end-to-end dialogue systems using generative hierarchical

neural network models. In Proceedings of the AAAI Conference on Artificial Intelligence, Phoenix, AR, USA, 12–17 February
2016; Volume 30.

3. Yu, L.; Zhang, W.; Wang, J.; Yu, Y. Seqgan: Sequence generative adversarial nets with policy gradient. In Proceedings of the AAAI
Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31.

4. Luo, M.; Chang, X.; Nie, L.; Yang, Y.; Hauptmann, A.G.; Zheng, Q. An adaptive semisupervised feature analysis for video
semantic recognition. IEEE Trans. Cybern. 2017, 48, 648–660. [CrossRef] [PubMed]

5. Sedhain, S.; Menon, A.K.; Sanner, S.; Xie, L. Autorec: Autoencoders meet collaborative filtering. In Proceedings of the 24th
International Conference on World Wide Web, Florence, Italy, 18–22 May 2015; pp. 111–112.

6. Gong, J.; Du, W.; Li, H.; Li, Q.; Zhao, Y.; Yang, K.; Wang, Y. Score prediction algorithm combining deep learning and matrix
factorization in sensor cloud systems. IEEE Access 2020, 9, 47753–47766. [CrossRef]

7. Zhang, Q.; Cao, L.; Zhu, C.; Li, Z.; Sun, J. Coupledcf: Learning explicit and implicit user-item couplings in recommendation for
deep collaborative filtering. In Proceedings of the IJCAI International Joint Conference on Artificial Intelligence, Stockholm,
Sweden, 13–19 July 2018.

8. Zhang, D.; Yao, L.; Chen, K.; Wang, S.; Chang, X.; Liu, Y. Making sense of spatio-temporal preserving representations for
EEG-based human intention recognition. IEEE Trans. Cybern. 2019, 50, 3033–3044. [CrossRef] [PubMed]

9. Chen, K.; Yao, L.; Zhang, D.; Wang, X.; Chang, X.; Nie, F. A semisupervised recurrent convolutional attention model for human
activity recognition. IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 1747–1756. [CrossRef] [PubMed]

https://grouplens.org/datasets/MovieLens/100k/
https://grouplens.org/datasets/MovieLens/1m/http://webscope.sandbox.yahoo.com/catalog.php?datatype=r&did=75
https://grouplens.org/datasets/MovieLens/1m/http://webscope.sandbox.yahoo.com/catalog.php?datatype=r&did=75
http://doi.org/10.1109/TCYB.2017.2647904
http://www.ncbi.nlm.nih.gov/pubmed/28237940
http://doi.org/10.1109/ACCESS.2020.3035162
http://doi.org/10.1109/TCYB.2019.2905157
http://www.ncbi.nlm.nih.gov/pubmed/31021810
http://doi.org/10.1109/TNNLS.2019.2927224
http://www.ncbi.nlm.nih.gov/pubmed/31329134

Entropy 2022, 24, 778 16 of 16

10. Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2,
359–366. [CrossRef]

11. Chae, D.K.; Kang, J.S.; Kim, S.W.; Lee, J.T. Cfgan: A generic collaborative filtering framework based on generative adversarial
networks. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Turin, Italy,
22–26 October 2018; pp. 137–146.

12. Sun, C.; Liu, H.; Liu, M.; Ren, Z.; Gan, T.; Nie, L. LARA: Attribute-to-feature adversarial learning for new-item recommendation.
In Proceedings of the 13th International Conference on Web Search and Data Mining, Houston, TX, USA, 3–7 February 2020;
pp. 582–590.

13. Deng, Z.H.; Huang, L.; Wang, C.D.; Lai, J.H.; Philip, S.Y. Deepcf: A unified framework of representation learning and matching
function learning in recommender system. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA,
27 January–1 February 2019; Volume 33, pp. 61–68.

14. He, X.; Liao, L.; Zhang, H.; Nie, L.; Hu, X.; Chua, T.S. Neural collaborative filtering. In Proceedings of the 26th International
Conference on World Wide Web, Perth, Australia, 3–7 April 2017; pp. 173–182.

15. Ding, Q.; Liu, Y.; Miao, C.; Cheng, F.; Tang, H. A hybrid bandit framework for diversified recommendation. arXiv 2020,
arXiv:2012.13245.

16. Qiu, Z.; Wu, X.; Gao, J.; Fan, W. U-BERT: Pre-training user representations for improved recommendation. In Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI-21), Menlo Park, CA, USA, 2–9 February 2021; pp. 1–8.

17. Liu, C.; Li, X.; Cai, G.; Dong, Z.; Zhu, H.; Shang, L. Non-invasive Self-attention for Side Information Fusion in Sequential
Recommendation. arXiv 2021, arXiv:2103.03578.

18. Wang, C.; Zhu, H.; Zhu, C.; Qin, C.; Xiong, H. Setrank: A setwise bayesian approach for collaborative ranking from implicit
feedback. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI-20), New York, NY, USA, 7–12 February 2020;
Volume 34, pp. 6127–6136.

19. Goldberg, D.; Nichols, D.; Oki, B.M.; Terry, D. Using collaborative filtering to weave an information tapestry. Commun. ACM 1992,
35, 61–70. [CrossRef]

20. Adomavicius, G.; Tuzhilin, A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible
extensions. IEEE Trans. Knowl. Data Eng. 2005, 17, 734–749. [CrossRef]

21. Koren, Y.; Bell, R.; Volinsky, C. Matrix factorization techniques for recommender systems. Computer 2009, 42, 30–37. [CrossRef]
22. Xue, H.J.; Dai, X.; Zhang, J.; Huang, S.; Chen, J. Deep matrix factorization models for recommender systems. In Proceedings of the

2017 International Joint Conference on Artificial Intelligence, Melbourne, Australia, 19–25 August 2017; Volume 17, pp. 3203–3209.
23. Wang, H.; Zhang, F.; Zhao, M.; Li, W.; Xie, X.; Guo, M. Multi-task feature learning for knowledge graph enhanced recommendation.

In Proceedings of the World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019; pp. 2000–2010.
24. Kim, D.; Park, C.; Oh, J.; Lee, S.; Yu, H. Convolutional matrix factorization for document context-aware recommendation. In

Proceedings of the 10th ACM Conference on Recommender Systems, Boston, MA, USA, 15–19 September 2016; pp. 233–240.
25. Koren, Y. Collaborative filtering with temporal dynamics. In Proceedings of the 15th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, Paris, France, 28 June–1 July 2009; pp. 447–4566.
26. Shi, Y.; Larson, M.; Hanjalic, A. List-wise learning to rank with matrix factorization for collaborative filtering. In Proceedings of

the Fourth ACM Conference on Recommender Systems, Barcelona, Spain, 26–30 September 2010; pp. 269–272.
27. Zhou, X.; Wu, S. Rating LDA model for collaborative filtering. Knowl.-Based Syst. 2016, 110, 135–143. [CrossRef]
28. Wu, L.; Hsieh, C.J.; Sharpnack, J. Sql-rank: A listwise approach to collaborative ranking. In Proceedings of the International

Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 5315–5324.
29. Shi, Y.; Karatzoglou, A.; Baltrunas, L.; Larson, M.; Oliver, N.; Hanjalic, A. Climf: Learning to maximize reciprocal rank with

collaborative less-is-more filtering. In Proceedings of the Sixth ACM Conference on Recommender Systems, Dublin, Ireland, 9–13
September 2012; pp. 139–146.

30. He, X.; Zhang, H.; Kan, M.Y.; Chua, T.S. Fast matrix factorization for online recommendation with implicit feedback. In
Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, Pisa, Italy,
17–21 July 2016; pp. 549–558.

31. Bai, T.; Wen, J.R.; Zhang, J.; Zhao, W.X. A neural collaborative filtering model with interaction-based neighborhood. In Proceedings
of the 2017 ACM on Conference on Information and Knowledge Management, Singapore, 6–10 November 2017; pp. 1979–1982.

32. Chen, M.; Zhou, X. DeepRank: Learning to rank with neural networks for recommendation. Knowl.-Based Syst. 2020, 209, 106478.
[CrossRef]

33. Mu, N.; Zha, D.; He, Y.; Tang, Z. Graph attention networks for neural social recommendation. In Proceedings of the 2019 IEEE 31st
International Conference on Tools with Artificial Intelligence (ICTAI), Portland, OR, USA, 4–6 November 2019; pp. 1320–1327.

34. Rendle, S.; Freudenthaler, C.; Gantner, Z.; Schmidt-Thieme, L. BPR: Bayesian personalized ranking from implicit feedback. arXiv
2012, arXiv:1205.2618.

http://doi.org/10.1016/0893-6080(89)90020-8
http://doi.org/10.1145/138859.138867
http://doi.org/10.1109/TKDE.2005.99
http://doi.org/10.1109/MC.2009.263
http://doi.org/10.1016/j.knosys.2016.07.020
http://doi.org/10.1016/j.knosys.2020.106478

	Introduction
	Preparations
	List-Ranking Methods
	Implicit Feedback
	MLP

	The Experimental Model
	Input Layer and Embedding Layer
	Shallow-Deep Interaction Grabbing Layer
	Predictive Layer
	Pairwise Ranking
	Listwise Ranking
	Deep-Setrank

	The Experiment Evaluation
	Datasets, Evaluation Metrics and Compared Models
	Performance Evaluation (RQ1)
	Ablation Experiments of Shallow and Deep Interaction Methods (RQ2)
	Different List Ranking Methods (RQ3)
	Different Hyperparameters of the Model (RQ4)

	Conclusions and Future Work
	References

