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Abstract: Entropy is an important indicator to measure network heterogeneity. We propose a
new network structure entropy, SP (series-parallel) structure entropy, based on the global network
topology while adding a medial measure that considers the series-parallel structure. First, the
results of special networks show that SP structure entropy can overcome other structure’s entropy
deficiencies to some extent. Then, through simulation analysis of typical networks, the validity and
applicability of SP structure entropy in describing general networks are verified. Finally, we analyze
an enterprise consulting network to demonstrate the superiority of the SP structure entropy for real
network analysis.

Keywords: complex network; entropy; series-parallel structure; heterogeneity; consulting network

1. Introduction

A complex network is an abstraction of a complex system, and this is one of the
essential means to quantitatively describe a complex natural system and social system
and to then conduct research in fields, including virus transmission control [1–3], disaster
spread control [4,5], financial market analysis [6], structural efficiency evaluation [7] and
evolutionary game simulation [8]. Although the various parts of a complex network are
interrelated, they show a high degree of heterogeneity in connection mode and that the
structural characteristics of heterogeneity can greatly impact the network function [9].
Therefore, network heterogeneity has received significant attention from scholars.

Among these, entropy, as a measurement of the degree of system disorder, is widely
used due to its unique connotation and penetration and has become an important indicator
to measure network heterogeneity [10]: The macroscopic meaning of entropy is a measure
of the uniformity of system energy distribution [11]. The stronger the heterogeneity, the
smaller the entropy value; conversely, the greater the entropy value. At present, many
studies have defined network structure entropy from different angles [12–16]. However,
the form of network entropy used has always been the focus of complex network research.

In existing studies, network entropy is mainly defined from two aspects: information
theory and network structure characteristics. On the one hand, in the network entropy
based on information theory, Costa et al. proposed search information entropy, target en-
tropy and information path entropy, which are defined by the information search capability
of the network [17]; Boccaletti et al. defined the Shannon entropy of the network through
the information theory of network topology [18].

On the other hand, in the network entropy, which focuses on reflecting network
structure characteristics, Wang et al. and Wu et al., respectively, defined network entropy
in terms of the difference of network nodes and degree distribution entropy [19] and Wu
structure entropy [12]. Cai et al. argued that the structure entropies based on degree
distribution and degree relative value are not fully considered when describing network
characteristics [14] and thus proposed a network structure entropy based on point and edge
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difference (SD structure entropy) and a network structure entropy based on maximum flow
(FB structure entropy).

Degree distribution entropy defines network structure entropy according to the impor-
tance of network nodes [19], which depends on the relative number of nodes with the same
degree value in the network, H = −∑N

k=1 p(k) log p(k) , where p(k) is the distribution
function for a network node degree of k and N is the number of nodes in the network. Wu
structure entropy measures the network heterogeneity using the relative degree value of a
node, and this is defined as H = −∑N

i=1
ki

∑N
i=1 ki

log( ki
∑N

i=1 ki
), where ki is the degree of node i.

The above two network structure entropies only take neighbor nodes as consideration
objects. Still, they do not consider the influence of non-neighbor nodes, which cannot reflect
the global description of the network. In addition, because the degree distribution entropy
and Wu structure entropy consider network structural characteristics in terms of “nodes”
or “edges”, they have limitations in describing the heterogeneity of the special network,
such as a star network [14]. For example, a star network shows weak heterogeneity under
the description of degree distribution entropy, while Wu structure entropy has difficulty in
reflecting the scale effect of a star network.

Cai et al. proposed a network structure entropy based on the difference between
nodes and edges–SD structure entropy [14]. The node difference of node i is defined by
the number of nodes in the network that are different from the degree value of node i,
Si = [1− p(ki)]N, and the edge difference is defined as Di = ki[1− p(ki)]N, where ki is
the degree of node i in the network and p(ki) is the probability of nodes with degree ki
in the network. Considering the node difference and the edge difference, the structural
importance of node i is I′i = αSi + βDi, and the network structure entropy is defined as

H = −∑N
i=1

I′i
∑N

j=1 I′j
log( I′i

∑N
j=1 I′j

).

Compared with the degree distribution entropy and Wu structure entropy, SD struc-
ture entropy unifies the node and edge as a measurement standard. However, the essence
is still starting from the degree value of nodes, emphasizing too much the network local
characteristics and ignoring the global topological structure of the network. To compre-
hensively evaluate the local and global characteristics of the network, Cai et al. introduced
the concept of network flow into the definition of structure entropy, combined radial and
medial measures, and proposed a maximum flow-based network structure entropy–FB
structure entropy [14].

The medial measure is the absolute flow betweenness of node k, b′k = ∑i,j∈S(k)(
kWi,j−k

W∗i,j), S(k) = {(i, j) : 1 ≤ i ≤ N; 1 ≤ j ≤ N; i 6= j 6= k}. This measures the change of
network flow after a node in the network removes or stops transmission, where W denotes
the maximum flow matrix between all node pairs in the network; kW denotes the kth
row and kth column removed from the matrix W; kW∗ denotes the maximum flow matrix
recalculated after the removal of node k from the original network; and the radial measure
d′k is the node k degree value, which reflects the connection between a given node and other
nodes in the network.

Combining medial and radial measures, the structural importance of node k is defined

as I′k = αb′k + βd′k, and the FB structure entropy is H = −∑N
k=1

I′k
∑N

n=1 I′n
log( I′k

∑N
n=1 I′n

), where α

and β are the weights of the two measures, respectively. Compared with the first three types
of network structure entropy, FB structure entropy can measure the network heterogeneity
from a global perspective and reflect the differences in topology of network connections
more carefully.

From degree distribution entropy and Wu structure entropy to SD structure entropy
and then to FB structure entropy, the definition of network structure entropy changes from
considering a “node” or “edge” unilaterally to considering both “node” and “edge” and
then introducing the maximum flow to describe the network structure globally. The ability
to characterize the network heterogeneity has been enhanced; however, ultimately, they
have limitations.



Entropy 2022, 24, 852 3 of 20

Degree distribution entropy and Wu structure entropy only consider network structure
characteristics from the “node” or “edge”, resulting in certain problems in describing the
heterogeneity of special networks, such as star networks [14]. SD structure entropy fully
considers the node difference and edge difference and has a good explanation for the
heterogeneity of sparse network and star network; however, it is still based on the node
degree value, with too much emphasis on the local characteristics of the network and then
ignores the global characteristics of the network [14].

FB structure entropy introduces the concept of network flow, describes network
heterogeneity from global structure, which—to an extent—overcomes the shortcomings of
the other three structure entropies in reflecting the network heterogeneity; however, the
network maximum flow may be limited by the maximum flow of a certain path.

Under this restriction, even if the network topology is changed, the FB structure
entropy cannot reflect the change in network heterogeneity. For example, Figure 1 shows
a set of 0-1 networks with a series-parallel structure given source node 1 and sink node
6. It can be seen that Figure 1a has three parallel paths between node pairs (3, 6), and
Figure 1b adds node 7 to Figure 1a. In Figure 1a, node 2 and node 4 are in completely
different positions in the network structure, with the former not in any parallel structure
and the latter in the parallel structure of node pair (3,6), and thus their importance in the
network is different.

However, degree distribution entropy, Wu structure entropy and SD structure entropy
are unable to distinguish the difference because their essence is to calculate the importance
of a single node based on the local structure of the network. Furthermore, compared to
Figure 1a, Figure 1b adds a parallel path (3, 7, 6) between the node pair (3, 6), and the
importance of nodes 4 and 5 in the parallel structure is shared and thus changes. However,
path (1, 2, 3) in the 0-1 network becomes the maximum flow bottleneck from node 1 to
node 6, and the maximum flow completely depends on the path set {(3, 4, 6), (3, 6), (3, 5, 6),
(3, 7, 6)}; yet, since each path in the set is a possible maximum flow path, the maximum
flow does not depend on any one of them, and the FB structure entropy cannot reflect the
change of network heterogeneity.

Aiming at the limitations of existing methods in describing the network heterogeneity,
this paper defines the structure entropy based on global network topology while over-
coming maximum flow bottleneck in the network, adds a medial measure considering
the series-parallel structure and proposes a new network structure entropy—SP structure
entropy (series-parallel structure entropy). On the one hand, through the analysis of special
networks, we show that the entropy indicator proposed in this paper has advantages in
considering the importance of series-parallel nodes and can overcome the deficiency of
other network structure entropies to a certain extent; on the other hand, through theoreti-
cal analysis and simulation experiments on typical networks, such as a regular network,
random network, scale-free network and small-world network, we further prove that SP
structure entropy is effective and usable in describing general networks.

1 2 3 6

5

4

(a)

1 2 3 6

5

4

7

(b)

Figure 1. A set of 0-1 networks with a series-parallel structure given source node 1 and sink node 6,
where the set of nodes in (a) is 1,2,3,4,5,6 and (b) adds node 7 to (a).
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2. Materials and Methods
2.1. SP Structure Entropy Model

Given an unweighted undirected network G(V, E), where the set of nodes
V = {v1, v2, · · · , vr} consists of r nodes and the set of edges E = {e1, e2, · · · , et} con-
sists of t edges, in order to avoid the difference in analysis caused by whether the network
has self-loop or not, this paper assumes that node can reach itself in 0 step. The centrality
metric of node k considering the series-parallel structure between the node pair (vi, vj) in
the network is defined asbk(i, j) =

∣∣∣pk
ij

∣∣∣
|pij| ·∑pk

ij

1∣∣∣ck
ij

∣∣∣ , pij 6= ∅

bk(i, j) = 0, pij = ∅
(1)

where ∅ denotes an empty set; pij denotes the set of maximal flow possible paths between
nodes vi and vj;

∣∣pij
∣∣ denotes the number of paths in pij; pk

ij denotes the set of paths through

node vk in the maximum flow possible path between nodes vi and vj;
∣∣∣pk

ij

∣∣∣ denotes the

number of paths in pk
ij; and ck

ij denotes the set consisting of the number of path nodes in pk
ij,

vi 6= vj 6= vk.

From Equation (1), it can be seen that

∣∣∣pk
ij

∣∣∣
|pij| is a measure of whether node vk is in a

parallel structure and its contribution to the parallel structure, and ∑pk
ij

1∣∣∣ck
ij

∣∣∣ is a measure

of whether node vk to the series structure in which it is located. To effectively measure
parallel structures in the network, we only include the node pairs (vi, vj) with

∣∣pij
∣∣ ≥ 1 in

the consideration range of bk(i, j).
In order to deepen the understanding of Equation (1), Figure 2 is given, where

nodes 3, 4 and 5 are in the same series structure as shown, we illustrate Figure 2: take
node 4 between node pair (1,7) as an example, p17 = {(1, 2, 3, 4, 5, 7), (1, 2, 7), (1, 2, 6, 7)},
p4

17 = (1, 2, 3, 4, 5, 7); therefore, |p
4
17|
|p17|

= 1
3 . The number of nodes on path (1, 2, 3, 4, 5, 7) in

the set p17 is 6,
∣∣p4

17

∣∣. In the end, |p
4
17|
|p17|
·∑p4

17

1
|c4

17|
= 1

3 ·
1
6 = 1

18 .

1 2

3 4 5

7

6

Figure 2. A 0-1 network with a series-parallel structure given source node 1 and sink node 7, where
nodes 3, 4 and 5 are in the same series structure.

Since the node pairs satisfying
∣∣pij
∣∣ ≥ 1 are not unique, in practice, we average bk over

all node pairs (vi, vj) that satisfy the condition:

b′k =
∑|pij|≥1 bk(i, j)

B
(2)

where B is the number of node pairs (vi, vj) in the network that satisfy
∣∣pij
∣∣ ≥ 1.

Define d′k as the degree value of node vk in the undirected network, and then aij
represents the element value of the ith row and the jth column in the adjacency matrix of
network G.
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d′k = ∑
i

aki (3)

As Borgatti and Everett clearly indicated when summarizing node centrality from
the perspective of graph theory [20], the essence of a node centrality measure is to eval-
uate the participation of nodes in a network walk structure: the measure similar to the
degree centrality is the radial measure, and the measure similar to the betweenness is the
medial measure.

Therefore, b′k is a typical medial measure method, which reflects the dependence of
series-parallel structure on node vk, measures the number of paths through node vk in
parallel structure and the importance of being allocated by node vk in series structure. d′k
is a typical radial measure, a centrality measure method that takes a given node as the
starting node or end node in a network path, essentially reflecting the connection between
node vk and other nodes in network [14]. b′k and d′k constitute two parts of network walk
position classification considering a series-parallel structure [20].

Radial and medial measures reflect the different roles played by nodes in a network
and jointly determine the participation of nodes. In particular, this paper considers the
influence of a series-parallel structure on the node importance in a medial measure. The
two complement each other to form the total contribution of a given node to the network,
which more comprehensively describes the node importance and network heterogeneity.

Radial and medial measures also have corresponding meanings in the field of social
science: The former reflects bonding social capital—that is, from the perspective of internal
connection, solidarity and trust, it is argued that social capital is the connection between
individuals within an organization and small groups, which is used to reflect the connection
of homogeneous groups. The latter reflects bridging social capital, from the perspectives
of external relations, information asymmetry and power interests, and it is believed that
the value of social capital originates from participating in and controlling the diffusion of
information, which is used to reflect the ties of heterogeneous groups [20,21].

Similarly, from the perspective of social capital, aggregating social capital and outreach
social capital are two aspects of individual social capital, which are indispensable and
should be considered in a unified way [14]. Considering radial and medial measures
comprehensively, the node importance of node vk can be defined as

I′k = αb′k + βd′k (4)

where α and β are the weights of medial and radial measures, respectively, α + β = 1,
0 ≤ α, β ≤ 1. α = 1, β = 0 indicates the extent to which a given node contributes to the
network considered from the medial measure only; conversely, α = 0, β = 1 means that only
the radial measure is considered, and accordingly, I′k degenerates into a local measurement.

Therefore, the relative importance of node vk in the network can be defined as

Ik =
I′k

∑N
n=1 I′n

=
αb′k + βd′k

∑N
n=1(αb′n + βd′n)

=

eT
m M

vk
vi ,vj em

m + β
α eT

N ATδk

∑N
n=1(

eT
m Mvn

vi ,vj em

m + β
α eT

N ATδn)

(5)

where Mvk
vi ,vj is a m×m dimension matrix composed of bk calculated by Equation (1) for

all node pairs (vi, vj) satisfying the parallel structure conditions of node vk, and m is the
number of node pairs that satisfy the condition, that is, m = S(k). Similarly, m in the
denominator is the number of node pairs that satisfy the parallel structure condition of
node vn. em is a m-dimensional column vector with element 1. eT

m is the transpose of em. A
is the adjacency matrix of network G. AT is the transpose of A. N is the network size, and
δk is a N-dimensional column vector, where the kth element is 1 and the others are 0.

In Equation (5), β
α is a constant. This paper holds that a medial measure is as important

as a radial measure, β
α = 1, that is,
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Ik '
eT

m Mvk
vi ,vj em + meT

N ATδk +4

∑N
n=1(eT

m Mvn
vi ,vj em +4) + meT

N ATeN
(6)

To avoid the calculation of the above equation being meaningless when V 6= ∅ and
E = ∅, the 4 term is introduced to satisfy 4 ∼ O( 1

N2 ), N > 1. The introduction of this
term does not affect the results of the network structure heterogeneity analysis.

Based on Equation (6), the entropy of network structure in this paper is defined as

H = −
N

∑
k=1

Ik log Ik

= −
N

∑
k=1

eT
m Mvk

vi ,vj em + meT
N ATδk +4

∑N
n=1(eT

m Mvn
vi ,vj em +4) + meT

N ATeN
× log

eT
m Mvk

vi ,vj em + meT
N ATδk +4

∑N
n=1(eT

m Mvn
vi ,vj em +4) + meT

N ATeN

(7)

where vi, vj ∈ S(k), S(k) = {(vi, vj) : 1 ≤ vi ≤ N; 1 ≤ vj ≤ N; vi 6= vj 6= vk}.
SP structure entropy can not only consider the network heterogeneity from a global

perspective but also consider the influence of the series-parallel structure on node impor-
tance. The network shown in Figure 1a, Table 1 gives the calculation results of the node
importance Ik of Wu structure entropy, SD structure entropy, FB structure entropy and SP
structure entropy. It can be seen that Wu structure entropy and SD structure entropy have
no ability to distinguish node importance with the same degree value, even though node 2
and nodes 4, 5, which are in entirely different series-parallel situations in the network, as
long as their degree values are the same, have the same node importance in the network,
which clearly does not conform to the actual situation.

Under the measurement of FB structure entropy and SP structure entropy, the impor-
tance of node 2 and nodes 3, 4 in the network can be distinguished, which is in line with the
actual situation. To illustrate the case of series structure, we calculate the network structure
entropies in Figure 2, and the results are shown in Table 2: it can be seen that nodes 3, 4
and 5 and 6 have the same degree value, although they are all in parallel structure, and
nodes 3, 4 and 5 are in different series structure from node 6. For this, Wu structure entropy
and SD structure entropy cannot distinguish the difference; however, FB structure entropy
and SP structure entropy can distinguish this structural difference.

Table 1. The difference of node importance of four structure entropies on the network of Figure 1a.

Node Node Degree
Value

Wu Structure
Entropy

SD Structure
Entropy

FB Structure
Entropy

SP Structure
Entropy

1 1 0.0714 0.2054 0.02 0.072
2 2 0.1428 0.0136 0.2 0.1447
3 4 0.2857 0.4109 0.44 0.2838
4 2 0.1428 0.0136 0.08 0.1433
5 2 0.1428 0.0136 0.08 0.1433
6 3 0.2142 0.3424 0.18 0.2125

Table 2. The difference of node importance of four structure entropies on the network of Figure 2.

Node Node Degree
Value

Wu Structure
Entropy

SD Structure
Entropy

FB Structure
Entropy

SP Structure
Entropy

1 1 0.0625 0.1176 0.0086 0.064
2 4 0.25 0.2941 0.2931 0.247
3 2 0.125 0.0882 0.1551 0.1255
4 2 0.125 0.0882 0.1551 0.1248
5 2 0.125 0.0882 0.1551 0.1263
6 2 0.125 0.0882 0.0344 0.1247
7 3 0.1875 0.2352 0.1982 0.1874
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Since the ineffectiveness of Wu and SD structure entropies in series-parallel structure
has been proven, we only make further statements for FB and SP structure entropies. For
Figure 1a, the node importance results under FB and SP structure entropies from the whole
network are shown in Table 1, and the corresponding results of Figure 1b are shown in
Table 3.

It can be seen that both FB and SP structure entropies can reflect the fact that, after
adding node 7 between node 3 and node 6 (that is, adding a parallel path between node pair
(3, 6)), the importance of other parallel paths between node pair (3, 6) is shared. Specifically,
from Figure 1a to Figure 1b, the importance of node 4 changes from 0.08 to 0.0541 under
the FB structure entropy measure and from 0.1433 to 0.1041 under the SP structure entropy
measure. The importance of node 4 is allocated and becomes smaller after the addition of
node 7. Therefore, the validity of FB structure entropy and SP structure entropy is verified
for the whole network heterogeneity.

Table 3. The difference of node importance under two structure entropy measures on the network of
Figure 1b.

Node Node Degree Value FB Structure Entropy SP Structure Entropy

1 1 0.0135 0.0507
2 2 0.1622 0.1134
3 4 0.4459 0.2949
4 2 0.0541 0.1041
5 2 0.0541 0.1041
6 4 0.2162 0.2287
7 2 0.0541 0.1041

Since both FB structure entropy and SP structure entropy add the node degree value
as the measurement standard, it is impossible to determine whether the changes in node
importance are caused by the change of node degree value or the change of network
structure. In view of this, we examine the absolute importance of nodes between a single
node pair, that is, we calculate according to I′k = αb′k + βd′k, where b′k is radial measure of
structure entropy and d′k is medial measure, α + β = 1. Specifically, the node pair (1, 6) in
Figure 2 is selected as the consideration object. The importance of node 4 in the structure of
node pair (1, 6) is calculated, and the results are shown in Table 4.

Table 4. The absolute importance of node 4 under two structure entropies.

Figure 1a Figure 1b

FB structure entropy 2 2
SP structure entropy 2.0667 2.05

As can be seen from Table 4, the absolute importance under the FB structure entropy
measurement has not changed. In contrast, the SP structure entropy has changed, indi-
cating that FB structure entropy does not reflect the structural change of node pair (1, 6)
after adding node 7; however, the SP structure entropy can reflect the change. To better
understand, the specific calculation processes of FB structure entropy and SP structure
entropy are shown and analyzed next.

2.2. A Detailed Explanation of SP Structure Entropy Model
2.2.1. FB Structure Entropy

First, the maximum flow matrix of the corresponding network in Figure 1a is calcu-
lated as
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W =



0 1 1 1 1 1
1 0 1 1 1 1
1 1 0 2 2 3
1 1 2 0 2 2
1 1 2 2 0 2
1 1 3 2 2 0


It can be seen that the maximum network flow value between node pairs (1, 6) is 1.

Since the importance of node 4 is considered, the maximum flow matrix of the network is
recalculated after removing node 4 from the network as

4W∗ =


0 1 1 1 1
1 0 1 1 1
1 1 0 2 2
1 1 2 0 2
1 1 2 2 0


The maximum flow value between node pair (1, 6) is still 1.
Therefore, in Figure 1a, the absolute node importance to node 4 in the node pair (1, 6)

structure is
I′4(a) = αb′4 + βd′4 = b′4 + d′4 = 1− 1 + 2 = 2

For Figure 1b, the network maximum flow matrix is calculated as

W =



0 1 1 1 1 1 1
1 0 1 1 1 1 1
1 1 0 2 2 4 2
1 1 2 0 2 2 2
1 1 2 2 0 2 2
1 1 4 2 2 0 2
1 1 2 2 2 2 0


The maximum flow value between node pair (1, 6) is 1. Similarly, we recompute the

maximum flow matrix after removing node 4 as

4W∗ =



0 1 1 1 1 1
1 0 1 1 1 1
1 1 0 2 3 2
1 1 2 0 2 2
1 1 3 2 0 2
1 1 2 2 2 0


After recalculation, the maximum flow value between node pair (1, 6) remains at 1.
Therefore, in Figure 1b, the absolute node importance to node 4 in the node pair (1, 6)

structure is
I′4(b) = αb′4 + βd′4 = b′4 + d′4 = 1− 1 + 2 = 2

It can be seen that I′4(a) = I′4(b), and the FB structure entropy cannot reflect the change
of parallel structure between node 1 and node 6. At its root, FB structure entropy is a
measure of the structure entropy based on the network maximum flow as can be seen from
Figure 1a,b. Whether node 7 is added or not, the maximum flow value between node 1 and
node 6 is limited by the capacity of path (1, 3)—that is, in a 0-1 network, the maximum flow
between node pair (1, 6) is 1. Therefore, no matter how many nodes are added in parallel
with node 4, FB structure entropy cannot reflect that the importance of node 4 is shared
by its parallel paths. Therefore, FB structure entropy cannot reflect the change of network
structure between some specific node pairs.



Entropy 2022, 24, 852 9 of 20

2.2.2. SP Structure Entropy

We calculate the importance of node 4 between node pair (1, 6) in Figure 1a. The set of
maximum flow possible paths between node pair (1, 6) is p16 = {(1, 2, 3, 4, 6), (1, 2, 3, 6),
(1, 2, 3, 5, 6)} and the set of paths passing through node 4 in set p16 is p4

16 = {(1, 2, 3, 4, 6)}.
Then, the number of paths in p16 is

∣∣p4
16

∣∣ = 3, and the number of paths in p4
16 is

∣∣p4
16

∣∣ = 1.
The number of nodes on the path (1, 2, 3, 4, 6) is 5; thus,

∣∣c4
16

∣∣ = 5. Therefore, the medial
measure of the importance of node 4 on the node pair (1, 6) structure in Figure 1a is

b′4 =

∣∣p4
16

∣∣
|p16|

·∑
p4

16

1∣∣c4
16

∣∣ = 1
3
· 1

5
=

1
15

= 0.0667

Therefore, the absolute importance of node 4 in the node pair (1, 6) structure in
Figure 1a is

I′4(a) = αb′4 + βd′4 = b′4 + d′4 = 0.0667 + 2 = 2.0667

Next, calculating the importance of node 4 between node pair (1,6) in Figure 1b. The set
of paths between node pair (1, 6) is p16 = {(1, 2, 3, 4, 6), (1, 2, 3, 6), (1, 2, 3, 5, 6), (1, 2, 3, 7, 6)},
and the paths set through node 4 in p16 are p4

16 = {(1, 2, 3, 4, 6)}. Then, |p16| = 4,∣∣p4
16

∣∣ = 1,
∣∣c4

16

∣∣ = 5. Therefore, the medial measure of the importance of node 4 on
the node pair (1, 6) structure in Figure 1b is

b′4 =

∣∣p4
16

∣∣
|p16|

·∑
p4

16

1∣∣c4
16

∣∣ = 1
4
· 1

5
=

1
20

= 0.05

Therefore, the absolute importance of node 4 in the node pair (1, 6) structure in
Figure 1b is

I′4(b) = αb′4 + βd′4 = b′4 + d′4 = 0.05 + 2 = 2.05

It can be seen that I′4(a) 6= I′4(b), and thus SP structure entropy can reflect the change of
parallel structure between node pair (1, 6).

The above analysis shows that both FB structure entropy and SP structure entropy can
reflect the change of network heterogeneity through node importance when considering
the whole network structure. However, when focusing on a specific node pair structure, FB
structure entropy cannot accurately reflect the corresponding heterogeneity changes due to
the maximum flow. In contrast, SP structure entropy considers the series-parallel structure
in the network; therefore, it can accurately describe the heterogeneity changes, both in the
whole network structure and in the local node pair structure.

3. Results and Discussion
3.1. Structure Entropy Simulation Experiments for Typical Networks

In general, network models can be divided into three categories [22]: the first category
is random networks, such as the ER random network proposed by Erdos and Renyi [23];
the second is regular networks, such as a star network and nearest-neighbor coupled
network [22]; and the third type is the network structure between random and regular
networks, which combines some characteristics of both regular and random networks,
such as the BA scale-free network proposed by Barabasi and Albert [24] and WS small-
world network proposed by Watts and Strogatz [25]. We constructed simulations of typical
social networks, a nearest-neighbor coupled network, a star network, an ER random
network, a BA scale-free network and a WS small-world network, and we calculated their
structure entropies.

It is worth noting that network heterogeneity is a context-dependent concept, for
instance, in the BA scale-free network model, degree centrality is a commonly used metric
for heterogeneity and is widely used in immunization strategy formulation [26]; however, it
performs poorly in other situations where the global network structure needs to be consid-
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ered. Thus, the significance of the experiment is to show that each structure entropy metric
can be effective in heterogeneity measurements of typical networks while maintaining its
own superiority in specific contexts. The simulation experiments were implemented with
Python3.8 programming.

To facilitate comparison with other typical network entropies, the typical networks
chosen for the experiments were all undirected and unweighted; to facilitate the comparison
between different network entropies, and the natural logarithm was used for all numerical
calculations of entropy in the experiments. As4 can take any small non-zero number, we
set4 to 10−9.

3.1.1. Simulation Experiment of Typical Social Network Structure Entropy

In this paper, six typical social network structures were selected for structure entropy
simulation, namely the chain network, Y network, complete network, star network, loop
network and cellular network. We calculated the degree distribution entropy, Wu structure
entropy, SD structure entropy, FB structure entropy and SP structure entropy for each
network, and the results are demonstrated in Table 5. To present the results more visually,
the corresponding line diagram and network topology are shown in Figure 3.

Table 5. Structure entropy of six typical social network structures.

Chain
Network Y Network Complete

Network
Star

Network
Loop

Network
Cellular
Network

Degree distribution entropy 0.6730 0.9503 0 0.5004 0 0.9503
Wu structure entropy 1.5596 1.4942 1.6094 1.3863 1.3578 1.5571
SD structure entropy 1.6094 1.4185 1.6094 0.9944 1.6094 1.5175
FB structure entropy 1.3216 1.0956 1.6094 0.7777 1.6094 1.3655
SP structure entropy 1.5502 1.4764 1.6094 1.3578 1.6094 1.5455

Chain Y Complete Star Loop Cellular
network type
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Figure 3. Structure entropy and topology structure of typical social networks. The size of typical
social networks is 5.

It can be seen that, since degree distribution entropy only considers the distribution
function of node degrees, which is 0 in the network with the same node degrees, it shows an
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opposite trend to the other structure entropies, while the rise and fall trend of other structure
entropies between different networks is the same. In particular, accurate characterization
of the star network, has always been a reflection of the superiority of SD and FB structure
entropies, and SP structure entropy can also solve this problem well. The minimum value
of structure entropy of six social networks under the same size is located at the star network,
and the strong heterogeneity of the star network is confirmed [11]. Therefore, SP structure
entropy can effectively reflect the heterogeneity of typical social networks and is particularly
similar to the calculation results of Wu structure entropy.

3.1.2. Simulation Experiment of Typical Network Structure Entropy

In this paper, five typical networks (nearest-neighbor coupled network, star network,
ER random network, BA scale-free network and WS small-world network) are numerically
simulated, respectively, and the degree distribution entropy, Wu structure entropy, SD
structure entropy, FB structure entropy and SP structure entropy are compared to prove
that SP structure entropy is effective and accurate in judging the overall heterogeneity of
typical networks on the basis of maintaining sensitivity to the series-parallel structure.

Figure 4 shows the structure entropies of the ER random network with connection
probability q = 0.02 (network density is 0.02) and BA scale-free network with growth rate
u = 1 under different structure entropy measurements. Each indicator was independently
performed 10 times and then averaged. From Figure 4a, it can be seen that the evolutionary
process of the ER random network reflects a significant entropy increase effect under all
five structure entropy indicators, in which the curves of the SD and Wu structure entropies
almost overlap. While the two types of network entropy evolve in very similar ways, the
meanings expressed are very different.

For example, when adding the first edge to the network, Wu structure entropy only
considers the two connected nodes, that is, the entire network consists of only two edges,
and the entropy value takes the maximum value ln2. This entropy value appears to be
small throughout the network evolution process due to the network size effect. In contrast,
SD structure entropy considers the entire network structure. Network heterogeneity is
strong when there is only one edge in the network, and the difference between nodes is
large. When the network size is 30, the trend of FB structure entropy and SD structure
entropy diverges, which, due to FB structure entropy, includes not only the radial measure
based on node degree value but also the medial measure based on the maximum flow.
As the network size increases and there are more connections between nodes, the medial
measure comes into play.

It can be seen that the value of degree distribution entropy is the smallest, which also
verifies that, under the degree distribution entropy indicator, the network takes longer
to reach a steady state and the entropy value grows significantly slower with network
evolution than with the other network structure entropies [14]. The SP structure entropy
curve lies above degree distribution entropy and below SD, FB and Wu structure entropies
in Figure 4, that is, SP structure entropy is greater than the degree distribution entropy and
smaller than the SD, FB and Wu structure entropies, which also indicates that SP structure
entropy, consisting of radial and medial measures, considers more medial measures based
on network series-parallel structure than degree distribution entropy, which only considers
the degree distribution.

Thus, after the network size exceeds 20, SP structure entropy is greater than the degree
distribution entropy due to the presence of series-parallel paths in the network. Since
medial measure of SP structure entropy considers series-parallel paths in the network,
the importance of a node on the series-parallel path will be shared by other nodes, and
thus the SP structure entropy is smaller than the SD, FB and Wu structure entropies that
do not consider series-parallel paths, thus, showing that the SP structure entropy has a
higher sensitivity to series-parallel structure in the network compared to other structure
entropy indicators.
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(a)

(b)

Figure 4. Structure entropy of the ER random network and BA scale-free network under different
structure entropy indicators. (a) shows the results for ER random network with connection probability
q = 0.02, (b) shows the results for BA scale-free network with growth rate u = 1. Each result is
independently performed 10 times and then averaged, and the result curves are shown with error bars.

The BA scale-free network illustrated in Figure 4b shows a significant entropy increase
effect with the evolution of network under five network entropy indicators. Precisely,
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similar to the results for ER random network, the maximum and minimum structure
entropy values remain Wu structure entropy and degree distribution entropy. Different
from the ER random network, the changing trend of the SD structure entropy curve is still
synchronized with Wu structure entropy, however, is no longer numerically equivalent to
it; the entropy increase effect of degree distribution entropy is not obvious. Particularly
after the network size reaches 20, the degree distribution entropy does not change greatly.

The former indicates that both SD structure entropy and Wu structure entropy can
more accurately reflect the heterogeneity of the ER random network and BA scale-free
network; however, there will be a gap in the numerical results due to the difference in the
scope of investigation; the latter shows that, under the measurement of degree distribution
entropy, the BA scale-free network reaches a steady state earlier than other structure entropy
indicators, reflecting a slight lack of degree distribution entropy in portraying network
heterogeneity [14].

The FB structure entropy and SP structure entropy curves are located in the middle,
and the SP structure entropy value is slightly smaller than FB structure entropy due to the
sharing effect of series-parallel structure on node importance being considered. However,
the trend of the two is roughly the same with the increasing network size, which also
reflects the fact that the parallel structure measure of SP structure entropy is weakened due
to the structure characteristics of the BA scale-free network, thus, showing a similar growth
rate change trend to that of FB structure entropy.

Figure 5 shows the structure entropy results of the WS small-world network with
reconnection probability p. Each metric was independently performed 10 times and then
averaged, where the network size is 100 and the average degree is 2. The evolution process
of the network with reconnection probability p from 0 to 1 reflects the change of nearest-
neighbor coupled network to random network. Wu structure entropy argues that network
heterogeneity changes little during the evolution process, while SD structure entropy has
a significant change in network heterogeneity. SP structure entropy, FB structure entropy
and degree distribution entropy are intermediate between Wu structure entropy and SD
structure entropy, all with a small range of variation.

0.0 0.2 0.4 0.6 0.8 1.0
reconnection probability

0

1

2

3

4

en
tro

py

Smallworld Network(network size=100, average degree=2)

SP entropy
Degree entropy
FB entropy
SD entropy
Wu entropy

Figure 5. Structure entropy of the WS small-world network under different structure entropy
indicators, where the network size is 100 and the average degree is 2. Each result is independently
performed 10 times and then averaged. The result curves are shown with error bars.
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It can be seen that SP structure entropy, SD structure entropy, FB structure entropy and
degree distribution entropy all show noticeable changes at p ∈ [0, 0.1]. Among them, SD
structure entropy reaches a steady state after p = 0.4. However, the sharp shift in entropy
value still occurs before p = 0.1, which also verifies that the small-world characteristics of
the WS small-world network are mainly reflected in an interval of reconnection probability
of [0, 0.1] [25].

The small-world characteristics are mainly reflected in high clustering coefficients and
short path lengths, except for Wu structure entropy, which is always in a steady state. The
fastest curve into a steady state is the one corresponding to SP structure entropy. According
to the construction idea of SP structure entropy, the series-parallel structures in the network
do not contain only the shortest paths. From this perspective, SP structure entropy considers
that small-world characteristics do not greatly change the network heterogeneity.

Figure 6 illustrates the SP structure entropy of the ER random network as the network
size N and connection probability q change, where the ER random network is constructed
according to N = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] and q = [0.002, 0.004, 0.006, 0.008,
0.01, 0.012, 0.014, 0.016, 0.018, 0.02]. As network size N increases, the SP structure entropy
value of the ER random network increases substantially, and network size has a clear
influence on the SP structure entropy. However, when the network size is fixed, the change
of connection probability q does not cause a regular change in SP structure entropy, that
is, the SP structure entropy values for connection probabilities in the range [0.002, 0.02]
remain in a stable range. Therefore, it can be concluded that, when the network connec-
tion probability is small, SP structure entropy is not affected by the change of network
connection probability.

N

20 40 60
80

100

q

0.0025
0.0050

0.0075
0.0100

0.0125
0.01500.01750.0200

SP

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

SP entropy of ER random network

Figure 6. SP structure entropy of the ER random network, where the network size is increased from
10 to 100 in steps of 10, and the connection probability q is increased from 0.002 to 0.02 in steps
of 0.002.

To further verify the validity and superiority of SP structure entropy, numerical
simulations were conducted on four typical networks, namely the nearest-neighbor coupled
network, star network, ER random network and BA scale-free network, and each index
was independently performed 10 times and then averaged. Among them, the network
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evolution scale of the BA scale-free network was increased from 10 to 15 with a step size of
1, and the growth rate was constructed according to the maximum network density under
the corresponding size. The ER random network was constructed according to the scale
and density of the BA scale-free network in the evolution process, that is, the BA scale-free
network and the ER random network have the same size and density. Table 6 shows the
simulation sizes, growth rates and densities for the BA scale-free and ER random networks.
The nearest-neighbor coupled network and star network were constructed according to the
corresponding BA scale-free network size.

Table 6. The network size, density and growth rate of the BA scale-free network and ER random network.

N Network Increase Rate Network Density

10 5 0.5556
11 5 0.5454
12 6 0.5454
13 6 0.5384
14 7 0.5384
15 7 0.5333

Since the literature [14] verified that FB structure entropy is more effective than
degree distribution entropy, Wu structure entropy and SD structure entropy on these
four typical networks, we only compared SP structure entropy with FB structure entropy.
Figure 7 shows FB and SP structure entropies for the nearest-neighbor coupled network, star
network, ER random network and BA scale-free network. Since the ER random network
and BA scale-free network were averaged over 30 experiments, we show the result curves
with upper and lower bound regions.

The structure entropy of nearest-neighbor coupled network and star network are fixed
for fixed network sizes, and we show the result curves without upper and lower bounds. It
can be seen that both FB and SP structure entropies consider the bounds (maximum and
minimum values) of network entropy correspond to the nearest-neighbor coupled network
and star network, respectively, which is also consistent with the analysis in Section 3.1
and reflects the ability of SP structure entropy to accurately portray these two types of
regular networks. According to the network structural characteristics, the BA scale-free
network satisfies the characteristics that a large number of nodes have a small number of
connections and a few nodes have a large number of connections; thus, its heterogeneity
should be stronger than the ER random network under the same size and density.

Comparing the result curves of the ER random network and BA scale-free network
in Figure 7, both the FB and SP structure entropies show that the BA scale-free network
structure entropy is smaller than for the ER random network, which satisfies the network
structure characteristics. However, as can be seen by the magnitude of difference, SP
structure entropy can better distinguish between the BA scale-free network and ER random
network in terms of the network heterogeneity.
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(a)

(b)

Figure 7. The structure entropy and topology structure of four typical networks. (a) the FB structure
entropy and (b) the SP structure entropy. The results of the ER random network and BA scale-free
network are independently performed 30 times and then averaged for the result curves with upper
and lower bound regions. The network size N is increased from 10 to 15 in steps of 1.

3.2. Empirical Analysis

Previous studies have found that interpersonal relationship in enterprise is an es-
sential factor affecting the performance of employees, and the location of employees in
a social network can predict their personal performance [27,28]. A consulting network
is a typical social network within an enterprise, which reflects an informal network rela-
tionship within an organization and is an important way for team members to exchange
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knowledge and information. These can effectively reflect interpersonal interactions. To
further verify the practical value of SP structure entropy, we surveyed a small–medium
enterprise in China engaged in airfreight, domestic logistics, rail-sea intermodal transport
and international express.

From the perspective of the whole network, the research object is 52 employees of
the enterprise. By analyzing their consulting network, we demonstrated the validity
and superiority of node importance under SP structure entropy measurement (hereafter
referred to as SP node importance, calculated by Equation (6)) in reflecting the location
characteristics of the individual network, which in turn affects their personal performance.
The network topology is shown in Figure 8 (right).
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Enterprise Consulting Network

Figure 8. Regression results (left) and consulting network topology (right). The left shows the
regression results with SP node importance as the independent variable and individual performance
as the dependent variable. The right shows the consulting network of the enterprise, where the nodes
represent employees.

To examine the influence of SP node importance on individual performance, we used
regression analysis to analyze the employee consulting network. The dependent variable
of the regression model is the individual performance (denoted by Z), which is measured
using wages and bonuses. The Z-score of average monthly income is calculated as in
Equation (8), where Y is the actual income of an employee, µ is the average income of
all employees and σ is the standard deviation of income. A Z-score of 0 means that the
employee receives the average salary and bonus of the enterprise, while a Z-score of 1
means that the employee’s earnings are one standard deviation above the average income
of the enterprise.

Z =
Y− µ

σ
(8)

The independent variables are the SP node importance (denoted by SPNI), in-degree
centrality (IDC), out-degree centrality (ODC), betweenness centrality (BC), in-degree close-
ness centrality (ICC) and out-degree closeness centrality (OCC). The control variables are
gender, political affiliation and work time (years of service in the current position). First, a
regression analysis was conducted with SP node importance as the independent variable,
Z-score performance as the dependent variable and no other control variables considered.
The results are shown in Figure 8 (left).

It can be seen that there is a significant positive correlation between individual per-
formance and SP node importance, that is, the greater the SP node importance in the
consulting network, the higher the corresponding individual performance. This is also
consistent with the social significance that SP node importance as a good indicator of an
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individual’s absolute resource occupancy (node degree) and status specificity (whether or
not they are in a series-parallel structure) in the network.

On the one hand, the node degree value considered by SP structure entropy can reflect
an individual’s number of direct contacts. Based on social capital theory, the number of
direct contacts can be regarded as a kind of social resource. Therefore, the greater the degree
of value in the network, the more resources the individual obtains and the more critical the
status is. On the other hand, as an important part of SP structure entropy, series-parallel
structure reflects the special status of nodes in the network to a certain extent.

The more important the position of a node in the network information transmission,
that is, the fewer serial nodes or parallel paths, the more special the node position in
the network, and the greater the advantage of the corresponding individual acting as
a competitor of the “information bridge”, the greater the opportunity to gain potential
benefits and have advantages of information and control. Thus, by virtue of absolute
resource occupation and status specificity, individuals with high SP node importance in the
consulting network tend to achieve higher individual performance.

The above analysis demonstrated the validity of SP node importance in predicting
individual performance. Next, we introduced other classical network indicators for com-
parison to prove the superiority of SP node importance. The regression analysis results are
shown in Table 7. Models 1 to 6 used SPNI, IDC, ODC, BC, ICC and OCC as independent
variables in the OLS regression model. As can be seen, each model is significant, justifying
the reasonableness of using the social network to explain individual performance. Further-
more, the adjusted R2 for model 1 is 0.594, which is the maximum value among all models,
indicating that model 1 has the best fit.

Thus, compared with other network structure indicators, SP node importance has the
optimum capacity in explaining individual performance. Among the control variables,
political affiliation and work time also showed statistical significance: members of the
Chinese Communist Party perform better than non-party members, likely because the
party members are often strictly selected, which makes them better at their jobs as well; the
longer employees work, the more comfortable they are in their job. Therefore, these two
groups obtain better performance.

Table 7. The regression analysis results of the consulting network.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Intercept
term −0.892 *** −0.767 *** −0.849 *** −0.749 *** −2.122 ** −1.596 ***

SPNI 24.072 ***
IDC 0.149 ***
ODC 0.1 ***
BC 0.544 ***
ICC 0.765 *
OCC 0.435 **

gender 0.150 0.175 0.144 0.208 0.273 0.095
political

affiliation 0.486 * 0.534 * 0.629 * 0.781 *** 0.659 * 0.644 *

work time 0.051 ** 0.021 * 0.076 ** 0.064 ** 0.025 * 0.09 **
adjusted

R2 0.594 0.540 0.384 0.388 0.216 0.284

F-value 19.624 *** 15.940 *** 8.939 *** 9.067 *** 4.514 *** 6.062 ***
Note: The regression coefficients are shown in this table. In all models, the VIF indicator is far below the critical
value of 10, and thus there is no significant multicollinearity. *** means p < 0.001, ** means p < 0.01, * means
p < 0.05 (two-tailed test).

4. Conclusions

This paper proposed a new network structure entropy indicator-SP structure entropy
by considering the network heterogeneity from a global perspective while considering the



Entropy 2022, 24, 852 19 of 20

influence of the series-parallel structure on node importance. On the one hand, analyzing
the network with series-parallel structure verified the superiority of SP structure entropy
in considering the importance of series-parallel nodes, which can overcome the deficiency
of other network structure entropies to a certain extent.

On the other hand, by analyzing and comparing the structure entropy of six typical
social networks (such as the chain network, Y network and complete network) and five typ-
ical networks (such as the BA scale-free network, ER random network and WS small-world
network), the validity of SP structure entropy in portraying general networks was verified.

We investigated an enterprise in China and demonstrated the superiority of SP node
importance in reflecting network structure and explaining employee performance by
analyzing the employee consulting network. Therefore, SP structure entropy as proposed
in this paper revealed the characteristics of network series-parallel structure and at the same
time portrayed the heterogeneity of different network structures, enriching the network
structure indicator system.

The main work in this paper focused on the design of network structure entropy
and the experimental analysis of its properties. More in-depth theoretical analysis and
application will be the content of subsequent research. Specifically: The network structure
entropy considering series-parallel structure proposed in this paper has a clear advantage
for the network containing series-parallel structures, as the medial measure is based on the
series-parallel structure and the radial measure is based on node degree distribution, while
there should be multiple measurements of the node importance.

In the future, other measurements can be considered to be added to SP structure
entropy so that it can also show advantages when measuring networks with insignificant
series-parallel structures. In addition, a more brief mathematical analytic expression and
quantitative description form of typical network structure entropy will be derived.
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