
Supplementary Material 

Supplementary Notes 

A. Process of generating a multilayer SF network 

A.1 Generate a random SF network 

(1) Start from N disconnected nodes represented by ( ) ,  1,  2,  ...,  iV v i N= = . 

(2) Convert node set V   into ( ) ,  1,  2,  ...,  out out

iV v i N= =   and 

( ) ,  1,  2,  ...,  in in

iV v i N= = . 

(3) Assign a node weight ,, out inout in

iw i
−

=     , 0,1out in     to each node in outV   and 

inV . 

(4) Randomly select two nodes 
out

iv   and in

jv   from outV   and inV  with probability 

out

iw  and in

jw   respectively. 

(5) Connect 
out

iv  and in

jv  if there is no connection between them  which corresponds 

to a directed edge from 
out

iv  to in

jv ; otherwise  return to step (4). 

(6) Repeat steps (4) and (5) until the number of edges reaches the specified value. 

(7) Randomly generate a group of edge weights for each edge  where the value of each 

edge weight ranges from 1 to the number of edges in the network. 

(8) The degree distribution under this construction is ( ) ( ), ,
1 1

,

out in out in

out inP k k k
 − + −

=  . 

Randomly generate a number 0.713 as ,out in     which corresponds to 

, 2.402out in =   which allows the degree distribution of the synthetic network to be 

closely similar to that of most real networks [1]. 

A.2 Generate an L-layer SF network with different nodes 

We are not limited to an L-layer network that has the same nodes among different layers. 

However  detecting CCPs for a multilayer network in which each layer has distinct 

nodes is meaningless. Therefore  to ensure that the number of nodes between layers 

does not vary too much to allow the detection of CCPs  we define 

 ( )max min mindifferFrac N N N= −   (A.1) 

where maxN  and minN  are the number of layers with the most and least number of 



nodes  respectively. We randomly generate the number of nodes in the other L−2 layers 

between minN  and maxN . We set minN  = 500 for every synthetic multilayer network. 

We set max =575N   and differFrac is 0.15 for networks we generate to use in Figs. 2(a) 

and (e) for our experiments.  

A.3 Generate an L-layer SF network with common edges 

First  we generate a random SF network 1G  with minN  nodes as the first layer of an 

L-layer network according to the above methods. Second  we randomly select some 

edges from 1G   with a given proportion of common edges  and consider them as 

common edges across all L layers in the L-layer network. For the other 1L −  layers  

we retain the common edges and randomly generate the other edges. We set the 

proportion of common edges for the networks we generate to use in Figs. 2(d) and (e) 

to 0.5. 

A.4 Generate an L-layer SF network with a stable number of different nodes between 

adjacent layers 

We generate a network 1G  with minN  nodes. The number of nodes in the other 1L −  

layers increases uniformly. The incremental number depends on the ratio of different 

nodes; that is  ( )min  1,  1 1j iN N N propotion j i i L− =  = +   −    where iN   is the 

number of nodes in the i-th layer of the L-layer network.  

We fix every network density to 0.005 for the networks we generate to use in Figs. 2(a) 

and (d). Additionally  all the networks we generate are weighted. Therefore  to test the 

robustness of CCPs  we add four types of Gaussian noise ( =0  =1,  3,  5,  25 ) to the 

weights of edges in each network (network used in Figs. 2(b) and (d)). We obtain the 

Gaussian noise generated for every edge using the random.gauss (    ) function [2] 

in Python  where   is the mean and   is the standard deviation. 

B. Construct a cancer-related activated signaling network 

B.1 Human signaling network  

To construct a cancer-related activated signaling network  we first construct a 

background network  which we call the human signaling network. First  we collect the 

data of five signaling relationships and corresponding human proteins from the 

Pathway Commons database [3]  which integrates publicly available biological 

pathways from multiple organisms. The five signaling relationships are controls-state-

change-of  controls-transport-of  controls-phosphorylation-of  controls-expression-of  

and catalysis-precedes. Then  we treat proteins as nodes and signaling relationships as 



directed edges to construct the human signaling network. Moreover  we delete multiple 

edges between nodes  and finally  there are 148 721 edges between 7 795 nodes  which 

constitute the human signaling network. 

B.2 The Cancer Genome Atlas (TCGA) multi-omics data 

We collect the publicly available somatic mutation and expression data of 16 common 

cancers  where the sample size of the controls of each cancer needs to be at least 10 

from TCGA multi-omics data [4]. We use an R packet edgeR [5] for differential 

expression analysis and obtain p-values for all genes. The 16 cancers are BLCA  BRCA  

COAD  ESCA  HNSC  KICH  KIRC  KIRP  LIHC  LUAD  LUSC  PRAD  READ  

STAD  THCA  and UCEC. 

B.3 Cancer-related activated signaling network 

We construct a cancer-related activated signaling network based on the human signaling 

network and TCGA multi-omics data. In previous studies  researchers indicated that 

significantly co-expressed genes are inclined to interact (i.e.  to produce connection 

edges in the network) [6 7]. Therefore  we not only consider the expression of a single 

gene but also co-expressed gene pairs of cancer-related data from TCGA. We use the 

method used by Liu et al. [8] to calculate the activity of edges  as in the following 

formula: 

 ( )( ) ( ) ( ) ( )( )1 2 1 2 1 2, , , ,activity e g g f diff g diff g corr g g=   (B.1) 

where ( )1 2,e g g  represents the directed edge from gene 1g  to gene 2g   ( )1diff g  

and ( )2diff g  are p-values that indicate the significance of the differential expression 

(p-value) of genes 1g   and 2g   in cancer samples compared with control samples  

( )1 2,corr g g   is the co-expression significance (p-value) for 1g   and 2g   in cancer 

samples  and f   is a function of two differential expression variables and one co-

expression correlation variable. Then  we use Fisher’s test [9] to define function f  as 

a combination of the statistical significance of tests. Therefore  the activity of edges can 

be calculated by the following equation: 

 ( )( ) ( )1 2

1

, 2 log
k

i

i

activity e g g p
=

= −     (B.2) 

where ip  is the p-value of individual test i and k  is total number of tests. We set 

3k =  and use the combined value in Equation (B.2) to check whether an edge is active. 

Mathematically  2

2~ kactivity    [8] and when the threshold of p-value is 0.05  the 

threshold of activity is 12.59. Thus  we define one edge as active for one cancer in the 



human signaling network only if its activity is more than 12.59; that is  we reserve the 

active edges of each cancer in the human signaling network and we consider the edge 

activity as original edge weight ( )w e . Additionally  somatic mutation is a strong signal 

in cancers  which should be taken into account in the process of constructing a cancer-

related activated signaling network. To avoid eliminating genes with lower mutation 

frequency that are closely related to cancers  we consider all genes with a mutation 

frequency larger than zero to be somatically mutated.  

Broadly  the process of constructing a cancer-related activated signaling network can 

be summarized as three steps: First  we construct the human signaling network as the 

background network. Second  we obtain active edges through the expression data of 

control and disease samples for each cancer. Finally  we screen genes using their 

mutation frequency. Each cancer network is one layer in the 16-layer cancer-related 

signaling network. 

Specifically  in the cancer-related signaling network  the weight of edge e in OINs can 

be described as ( )
( )

( ) ( )( )1 lg
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lE  is the 

number of edges in lG ; and ( )( ), lrank w e E  denotes the rank of edge e among all 

edges in lE   which ranges from 1 to 
lE . The larger the weight of edge e ( ( )w e )  the 

higher the assigned rank of edge e. Correspondingly  edges with larger activity are 

detected among edges with equal CVs because we ensure that the first term of ( )ŵ e  

is larger than the second term ( )( ), lrank w e E . ( )ŵ e  can be changed to adapt to a 

practical application.  

C. Pathway-based enrichment 

We use ConsensusPathDB [10] to perform pathway-based enrichment analysis and 

select functional pathways from at most three sources of databases that contain KEGG  

Reactome  and WikiPathways. We set the p-value cutoff to 0.01 and minimum overlap 

with the input list (cpCCPs of one cancer) to 2. 

D. Drug repositioning 

D.1 Conditions of drug repositioning with CCPs for BCLLS 

From the analysis in the main text  the drug targets are inclined to be located upstream 

of the CCPs; therefore  we mainly focus on long CCP in CCPs. Before drug 

repositioning  we delete the CCPs that are constituted by only one edge. We obtain all 

FDA-approved drugs  called FA-BCLLS  which can remedy any of the cancers in 

BCLLS from the repoDB [11]. Then  we retain all drug targets T from DrugBank[12] 

for each drug in FA-BCLLS. We represent the CCPs for BCLLS as 1CCPs – 5CCPs  



and genes in the CCPs of one cancer as CCP genes. For every target t ( t T )  if it is in 

the CCP genes of one cancer c (cBCLLS) and at least one FDA-approved drug d 

contains target t can remedy cancer c in repoDB  we predict that drug d can remedy 

cancer c  and the correlation of drug d and cancer c is called a known d-c pair. We 

conduct drug repositioning based on the known d-c pair  that is  we predict that drug d 

can remedy another cancer in BCLLS for which there is no known d-c pair  but target t 

is in the CCP genes of the cancer. Thus  we can obtain all d-c pairs we predict based on 

targets T and CCPs. 

Additionally  we consider three conditions for drug repositioning with the CCPs and 

further filter some d-c pairs. First  we only retain drug target t ( t T ) when it appears 

in the CCP genes of at least two cancers (i.e.  ( )
5

1

,  2i

i

I t CCPs genes
=

 ≥ . If target t 

occurs in  iCCPs genes   ( ),   iI t CCPs genes  is 1; otherwise  it is 0  and there exists 

at least one d-c pair that is a known therapeutic relation (i.e.  known d-c pair) . 

Second  we only consider target t located upstream of the CCPs. We define whether 

target t is located upstream of the CCPs using the proportion of the position of target t 

to the length of 
t

iCCPs  ( - tpos prop )  where  ( )1,5t

iCCPs i is a CCP that contains 

target t in the i-th cancer among BCLLS: 

 -    in  of t t

t i ipos prop pos of t CCPs length CCPs=   (D.1) 

where pos of t in 
t

iCCPs  is the position of t in 
t

iCCPs . For the path A→B→C  the pos 

of B in 
t

iCCPs is 2. The length of 
t

iCCPs  represents the number of genes in 
t

iCCPs . 

Additionally  we believe that target t is located upstream of 
t

iCCPs when - tpos prop  

satisfies 
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where n is the length of 
t

iCCPs . 

Third  we consider the overlap between the CCPs containing target t: 

 ( )t t t

prop i j ioverlap CCPs CCPs CCPs= .  (D.3) 

For the i-th cancer among BCLLS  there exists a known d-(i-th) cancer pair based on 

target t  whereas the d-(j-th) cancer pair is unknown for the j-th cancer. Thus  we 

consider that target t satisfies 0.5propoverlap  . Particularly  we only retain d-c pairs 

obtained by drug repositioning with the CCPs based on target t only when one target 

t T  and t is one target of d that satisfies all three conditions mentioned above.  



D.2 Drug repositioning with disease genes and disease modules 

We consider disease genes or modules of a cancer as the CCP genes of the cancer. We 

predict that one drug d in FA-BCLLS can remedy cancer c in BCLLS if target t (t is one 

target of d) is in the CCP genes of cancer c. For the disease genes and C3 modules of 

BCLLS  no target satisfies the first condition mentioned above  whereas targets exist 

that satisfy the first condition for DIAMOnD modules. Therefore  for DIAMOnD 

modules  we only consider d-c pairs to be true if drug target t T (t is one target of d) 

satisfies the first condition.  

D.3 Human Protein-Protein Interactome (PPI) 

The human PPI was compiled by Cheng et al. [13 14]  who collected multiple 

interactions that included binary interactions  literature-curated interactions  signaling 

interactions  and kinase-substrate pairs. We obtain the human interactome network that 

includes 239 305 interactions among 16 461 unique proteins. 

D.4 Drug repositioning using the proximity method 

We obtain the upstream genes from each CCP of the CCPs in each cancer among 

BCLLS. The definition of upstream genes varies from the former 10% to the former 

50% of genes of the CCPs. Then  we acquire the C3 module with the upstream genes 

of each cancer. We use the proximity method [15] to measure the distance between 

drugs in DrugBank and the C3 module of disease genes or upstream genes from CCPs 

in the PPI network for each cancer. We consider the known drug targets of each drug in 

DrugBank as T and disease genes in the C3 module as S. The distance between drug T 

and disease module S is evaluated as 

 ( ) ( )1 min ,s S

t T

d T d s t



=  .  (D.4) 

Comparing the distance with random degree-preserving randomization  we capture the 

statistical significance (z-score  
d

z




−
= ) to measure how far drug T is from disease 

module S. Additionally  we rank the drugs using the z-score. Then  we consider FDA-

approved drugs from repoDB as validation data and use all predicted drugs with an 

unlimited z-score or drugs with a z-score less than 0 to compute the ROC curves and 

AUC scores. 
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